한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다"

Transcription

1 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다. 통계학은수리과학의한분과학문으로 ( 물론이주장에동의를안하는수학자도있습니다 ), 이러한자료의홍수속에서귀중한정보를추출할수있게끔도와주는방법을연구하는학문입니다. 따라서통계학을잘이해를하고또올바로응용을하면우리가갖고있는자료에서유의미한정보와무의미한정보를분리할수있게되어 안녕들하지못한 현실에서유익한의사결정을내릴수있게되지않을까생각합니다. 또한통계학은곧있으면배우게될계량경제학의논리와이론들을올바로이해하게끔하는데필수적인역할을하기때문에, 계량경제학을배우고자한다면반드시통계학을제대로공부해야합니다. 통계학은크게두가지분야로이루어져있습니다. 1. 기술통계학 (descriptive statistics): 수치로되어있는자료의특성을기술하고요약하는방법들을배우게됩니다. 2. 추론통계학 (inference statistics): 추정및가설검정같은것을하는방법을배우게됩니다. 많은사람들이추론통계학이통계학에서가장중요한분야라고생각을합니다. 그이유는자료를통해 올바른 결론을내리는방법들을추론통계학에서배우기때문입니다. 저는추론통계학이중요하다는점에동의를하지만추론통계학이기술통계학보다더중요하다는점에는결코동의를할수없습니다. 물론학문적인측면에서는추론통계학이더재미있고또연구할가치가있지만통계학을응용하는연구자의입장에서는기술통계학이훨씬더중요하다고생각을합니다. 그이유는기술통계학에서배우는도구들없이는추론통계학에서배우는방법들을갖고올바른결론을내릴수없기때문입니다. 간단하게얘기해서이렇게생각하면됩니다. 아무리화려한통계기법을사용해도그기법을적용할때사용한자료가엉망이면그화려한기법을통해도출한결론또한엉망이다 라는것입니다. 더간단한예를들어보겠습니다. 보사연에서사용하고있는복지패널자료를만약초등학생이만들었다면, 여러분들은복지패널자료를사용해서연구를하시겠습니까? 그래서우리는먼저통계학, 그중에서도기술통계학을먼저배울것입니다. 기술통계학분야에서우리는세가지방법들을배우게됩니다 : i) 자료의특성을검토하는방법 (characteristics of data), ii) 자료내에존재하는관계를조사하는방법 (relationship within data), iii) 자료의질을확보하는방법 (quality of data). 손호성 1 노트 2

2 2017년 4월 5월 한국보건사회연구원 통계학 및 계량경제학의 기초 및 응용 모집단과 표본 I. 본격적으로 공부를 하기에 앞서 통계학에서 사용하는 두 가지 중요한 용어에 대해서 정확 한 정의를 내리도록 하겠습니다. 통계학을 배울 때는 정의(definition) 를 정확하게 이해를 하셔야 합니다. 정의의 정의는 우리들끼리 하는 약속이라고 생각하시면 될 것 같습니다. 즉 우리끼리 약속한 내용이기 때문에 토를 달지 말라는 것입니다. Definition 1 모집단(Population): 연구자는 어떤 특정한 집단을 대상으로 조사를 하여 그 조사를 통해 끄집어 낸 사실을 전체 집단에 대해서 일반화하고 싶어 합니다. 이 전체 집단을 모집단이 라고 합니다. 예를 들어, 대통령 선거 결과를 예측하고 싶을 때 모집단은 무엇일까요? 모집단은 모든 유권자가 되겠죠. Definition 2 표본(Sample): 연구를 할 때 모집단을 다 조사하는 것은 참 힘듭니다. 물론 모집단이 뭐냐 에 따라 쉽게 조사할 수도 있습니다만, 일반적으로 모집단 전체를 조사하는 것은 참 힘든 일입니다. 그래서 대개 모집단의 일부만 조사를 해서 연구를 하게 됩니다. 이 일부가 바로 표본입니다. 자 이제 위 두 용어에 대해서 정의를 내렸으니 이에 대해서는 토를 달면 안됩니다. 자료의 특성 검토: 분포(Distribution) II. 기술통계학에서 배우는 첫 번째 방법은 자료의 특성을 검토하는 방법입니다. 모든 자료에 는 한 가지 명백한 특성이 있는데 그것은 바로 자료에 있는 관측치의 값들이 대개 다르다는 것입니다. 즉 관측치의 값들에 분포(distribution)가 있다는 점입니다. A. 왜 자료의 분포를 검토해야 하는가? Outliers! 자료의 특성, 즉 자료의 분포를 검토해야 좋은 자료로 통계분석을 할 수 있습니다. 사실 모든 연구자가 연구를 수행하는 과정에서 반드시 그리고 가장 먼저 해야할 일이 자료의 손호성 2 노트 2

3 분포를검토하는것입니다. 왜냐고요? 글쎄요. 많은이유를댈수있을것같습니다만, 제가생각하는가장큰이유는자료의분포를검토하면서자신이이용하고자하는자료에있는특이값 (outlier) 들을식별할수있기때문입니다. 특이값이란말그대로특이한값입니다. 모든자료에는어떤전반적인패턴이라는것이있는데어떤값이그패턴에서굉장히벗어나있을때그런값을특이값이라고합니다. 이러한특이값이자료에존재하게되는이유는여러가지가있지만대개두가지이유때문에발생합니다. 첫번째는자료를만드는사람이실수할때입니다. 두번째는의도적으로그러한값을만들때입니다. 경험이있으신분은아시겠지만가공되지않은서베이자료를보면 라는값을갖는관측치가있습니다. 이것은대개결측값 (missing value) 을표시할때사용되는특이값입니다. 특이값이생기는이유가무엇이든간에이러한특이값을식별하지않고처리를하지않은상태의자료를갖고통계분석을하게되면아주잘못된결론을내리게됩니다. 이런실수를누가하겠냐 이렇게생각하시는분들이있을것같은데요, 실제로많은분들이이특이값을처리하지않고통계분석을합니다. 저도그런실수한적있습니다. 만약이런실수를하게된사실이밝혀지면그실수를한사람이수행한연구결과에대해서사람들이신뢰를하지않음은물론이고그사람이차후에수행하는연구에대해서사람들이신뢰를안하지않을까요? 아무튼결론은특이값이자료에존재하면이특이값에대해서어떤처리를해야하는데그러기위해서는이특이값이자료에존재하는이유를밝혀내야합니다. 문제는어떤값이특이값이다라고결론을내릴때대개연구자의판단이개입을하게됩니다. 어떤특이값을없앨지안없앨지판단을하기쉬운경우도있지만그렇지않은경우도많습니다. 합리적인이유로존재하는특이값을단지좀특이하다고해서없애버리면그건자료를조작하는것입니다. 즉절대로해서는안되는일이지요. 그렇기때문에연구를수행하는과정에서어떤특이값에대해서처리를했다고한다면왜그렇게처리를했는지에대한근거를반드시제시하셔야합니다. B. 자료의분포를검토할때사용하는방법 1: 표와그래프 ( 그림을이용한표현 ) 자료의분포를살펴볼때사용할수있는방법에는여러가지가있지만이강의에서는그중에서두가지, 즉도수분포표 (frequency distribution) 와도수분포도 ( 히스토그램 ) 에대해서만다루도록하겠습니다. 1 도수분포도는도수분포를그래프로나타낸것입니다. 무슨말장난같은정의죠? 그냥이두가지방법이무엇인지를구체적인예를통해서보여드리도록하겠습니다. 1 pie chart, stemplot, boxplot 같은것도많이활용이됩니다. 손호성 3 노트 2

4 표 1은우리나라박사급연구원들의연봉자료입니다 ( 물론제가가짜로만든자료입니다 ). 표 1을보시면알겠지만표에있는자료를봐서는자료의분포를살펴보기가참힘듭니다. 자료를좀단순화해서자료의분포를검토할수있게끔만들필요성이커보입니다. 이때사용할수있는것이도수분포와히스토그램입니다. 표 1: 박사급연구원들의연봉자료 ( 단위, 백원 ) 도수분포표를만들기위해첫번째로해야할일이자료를나눌때사용할구간 (bin 혹 은 interval) 의개수를정하는것입니다. 전그냥 10개로하겠습니다. 구간의개수는자기 마음대로하면됩니다. 위자료에서최소값은 21149이고최대값은 67482이므로자료의 범위 (range) 는 = 46333가됩니다. 제가결정한구간의개수는 10이므로한 개구간의범위를 46333/ 으로설정하겠습니다. 따라서첫번째구간이커버하는 관측치는 20000에서 24999, 두번째구간이커버하는관측치는 25000에서 29999, 세번 째구간이커버하는관측치는... 아시겠죠? 마지막구간이커버하는관측치는 65000에서 69999입니다. 두번째로해야할일은각각의구간에서커버하는관측치의개수를세는것입니다. 그러면다음과같은표를만들수가있는데이표가도수분포표입니다. 표 2: 표 1에있는자료로만든도수분포표 구간 (bin) 빈도수 상대도수 누적도수 200만원 만 만원 만 만원 만 만원 만 만원 만 만원 만 만원 만 만원 만 만원 만 만원 만 Total 손호성 4 노트 2

5 표 1에서와는달리표 2에서는자료의분포를검토하기가훨씬수월해지지않았나요? 우선표 2를보면연봉이 250만원미만인박사급연구원의비율은 2% 임을알수있습니다. 또약 14% 정도되는연구원이연봉을 600만원에서 만원버는것을알수있습니다. 연구자들은표 2를보고다른건몰라도이런결론을내릴줄알아야합니다. 아, 자료의중심값은 450만원에서 500만원사이이구나. 라고. 히스도그램을그리면좀더자료의분포를파악하기가쉬워집니다. 히스토그램은그냥표 2를도표로나타낸것에불과합니다. 그림 1이그히스토그램입니다. A. 도수히스토그램 B. 상대도수히스토그램 그림 1: 도수히스토그램과상대도수히스토그램 항상그래프를볼때는 x축과 y축이무엇을가리키는지파악을하셔야정확한해석을할수있습니다. 그림 1.A는도수히스토그램이고 x축과 y축은각각연봉과도수 (Count) 를나타냅니다. 그림 1.B는상대도수히스토그램이고 x축과 y축은각각연봉과상대도수 (%) 를나타냅니다. 그림 1을보면확실히표 2에비해서자료의분포가더명확하게파악이됩니다. 세가지정도의사실을끄집어낼수있는데요, 첫째는자료의중심이어디에위치하는지, 둘째는분포의모양이어떻게생겼는지, 그리고샛째는특이값이존재하는지입니다. 이번에는다른자료를이용해서분포를파악하도록해보겠습니다. 표 3에있는자료는보건복지부 A과에서근무를하고있는소속직원의나이입니다. 그리고그림 2는표 3에있는자료를바탕으로해서상대도수히스토그램을작성하였습니다. 자그림 2를보면한가지는확실합니다. 자료에 2개의특이값이존재합니다. 그럼이 2개의특이값을어떻게처리를해야할까요? 삭제를하고통계분석을해야하나요? 삭제를하기위해서는이 2개의특이값이오류등으로인해발생한값이어야하는데이 2개의특이값이오류라고단정할수있을만한타당한이유가있어야합니다. 한번같이판단을 손호성 5 노트 2

6 표 3: 보건복지부 A과소속직원의연령 그림 2: 상대도수히스토그램 해보죠. 이자료는뭐에대한자료입니까? 바로보건복지부소속직원의연령입니다. 제가알기로공무원의정년은 60세입니다. 그렇기때문에보건복지부에연령이 64세와 87세인직원이있을확률이거의없다고판단이됩니다. 솔직히 64세는잘모르겠습니다. 하지만 87세는확실합니다. 따라서 87세는삭제해도무방하다고생각합니다. 물론보건복지부 A 과에전화를해서확인하는것이이러한특이값을처리할때가장확실하게처리할수있는방법입니다. 반대로표 3에있는자료가보건복지부직원의연령이아닌어떤아파트에사는입주민들의연령이라고칩시다. 그럼저 2개의특이값이오류이고삭제해야할값들일까요? 그건아닐것같습니다. 충분히 64세및 87세의입주민이있을확률이있습니다. 그렇기때문에이런경우에는비록저 2개의값이특이하긴하지만오류로인해삭제해야하는그런값들은아닙니다. 이두예를통해서우리는자료의분포를보고 어떤특이값이오류이다아니다를판단하기가쉬운일은아니다 라는것을알수있습니다. 전개인적으로특이값의오류여부를판단할때 2가지전략을사용합니다. 하나는아까예에서볼수있듯이자료의배경을 손호성 6 노트 2

7 생각을해봅니다. 자료가뭐에대한자료인지, 누가자료를만들었는지, 이런질문을하면서특이값의오류여부를판단합니다. 두번째전략은다른자료를보면서판단을하는것입니다. 대개우리가갖고있는자료에는여러변수에대한자료가있습니다. 예를들어사람의생년월에대한정보가대개있는데만약연령에대한판단을할때이생년월과비교를하면어떤특이값이오류인지아닌지를판단할수있습니다. 물론생년월도오류가있으면곤란하긴하지만요. 아무튼결론은통계분석에앞서자료의분포를반드시확인하셔야하며특히특이값이존재한다면반드시특이값에대한처리를하셔야한다는겁니다. 만약특이값을삭제하기로하셨다면반드시삭제할타당한이유가있어야하며그타당한이유를기록해놓으셔야합니다. C. 자료의분포를검토할때사용하는방법 2: 요약통계량 ( 수치를이용한표현 ) B절에서우리는표와그래프로자료의분포를검토하는법을배웠습니다. C절에서는요약통계량 (summary statistics) 을이용해서자료의분포를검토하는법을배울것입니다. 기술통계량을통해우리는자료의변이 (variation) 가어떻게되는지그리고자료의중심 (center) 이어디에위치해있는지를파악할수있습니다. 이절에서는평균, 중간값, 분산, 그리고표준편차를다룰것입니다. 2 C.1. 자료의중심경향치 (central tendency) 를나타내는지표 자료의분포에서중심값을나타내는지표로많이활용되고있는것은평균과중간값입 니다. 가. 평균 (Mean) 아마평균은웬만한사람들이다아는지표일것입니다. 평균이막상간단한개념같지만실제로이평균이라는개념이그렇게쉬운개념은아닙니다. 통계학에서사용하는평균은두가지종류가있습니다. 만약 N개의관측치가존재하는모집단을대상으로평균을계산하면, 그러한평균을모집단평균이라고하고 µ 라고표시할것입니다 (µ 는 뮤 라고발음하는그리스문자입니다 ). 반면 n개의관측치가존재하는표본을대상으로평균을계산을하게되면표본평균이라고하고 x 라고표시할것입니다 ( x 는엑스바라고 2 이외에도다른지표가많이있지만 ( 예, mode, kurtosis) 그렇게자주활용되는지표가아니므로다루지않겠습니다. 손호성 7 노트 2

8 발음합니다 ). 앞으로모집단의관측치수를표시할때는대문자 N 을사용할것이고표본 의관측치수를표시할때는소문자 n 을사용할것입니다. 통계학에서는이러한구분이 굉장히중요하기때문에이렇게구분짓는것을하찮게생각하시면안됩니다. Definition 3 모집단평균 (Population Mean): N 개의관측치, 즉 x 1, x 2,..., x N 가존재하는모집단이 있을때, 모집단평균 µ 는다음과같이계산합니다. µ = N x i i=1 N = x 1 + x x N N. Definition 4 표본평균 (Sample Mean): n 개의관측치, 즉 x 1, x 2,..., x n 가존재하는표본이있을때, 표본평균 x 는다음과같이계산합니다. x = n x i i=1 n = x 1 + x x n. n 위식을이용해서평균값을계산하는것은누구나가할수있으므로다루지않겠습니다. 제가이강의에서항상강조를하겠지만평균을계산할줄아는것은그렇게큰능력이아닙니다. 연구자는다음과같은평균의특성들을알고있는게더중요합니다. 평균값은반드시자료에있는어떤특정한값과같은값이어야하는건아닙니다. 예를들어표 1에있는자료를이용해평균을계산하면 48380이나옵니다. 표 1을보시면아시겠지만이 48380은표 1 어디에도존재하지않습니다. 평균값은극단치혹은특이값에큰영향을받습니다. 예를들어표 1에있는자료의평균이 48380인데만약표 1에서마지막관측치값을 로대체를하고다시평균을계산하면평균이 이됩니다. 예를들어표 1에있는자료가마이크로소프트회사에다니는직원의연봉이라고합시다. 그러면 이라는값이분명존재할것입니다 ( 빌게이츠회장의연봉은어마어마한거아시죠?). 이처럼평균은특이값에굉장히민감하게영향을받기때문에평균은중심경향치를나타내는지표로써강건 (robust) 하지않다고합니다. 손호성 8 노트 2

9 2017년 4월 5월 한국보건사회연구원 통계학 및 계량경제학의 기초 및 응용 나. 중간값(Median) 자료의 중심 경향치를 나타내는 지표로 자주 활용되는 또 하나의 지표는 중간값입니다. Definition 5 중간값(Median): 자료의 값들을 순서대로 배열을 한 다음에, i) 만약 자료의 개수가 홀수 이면 중간 순서에 위치해 있는 값을 중간값이라고 하고, ii) 만약 자료의 개수가 짝수이면 중간 순서에 위치해 있는 두 개의 값의 평균을 중간값이라고 합니다. 예를 들어 1, 1, 2, 2, 3, 4, 4, 6, 6이라는 자료가 있을 때 9개의 관측치가 있으므로 이 자료의 중간값은 가운데에 있는 3이 됩니다. 만약 1, 2, 3, 4, 4, 5, 6, 6, 6, 7과 같이 10개의 관측치가 있으면 중간값은 가운데에 있는 두 개의 값의 평균, 즉 (4 + 5/2) = 4.5가 됩니다. 자료의 개수가 짝수인데 그 수가 굉장히 많으면 도대체 몇 번째 값을 택해야 할지 헷갈 립니다. 그래서 공식이 있습니다. (n + 1)/2를 쓰면 됩니다. 예를 들어 n = 10이면 공식에 의해 (10 + 1)/2 = 5.5가 되어 다섯 번째 및 여섯 번째 값을 취해서 그 두 값의 평균을 구하면 그것이 중간값이 됩니다. 평균과 마찬가지로 중간값을 계산하는 것이 중요한 것이 아니라 중간값의 중심 경향 치로서의 어떤 장 단점을 알아야 합니다. 중간값의 가장 큰 장점은 특이값에 강건하다는 것입니다. 다시 표 1에 있는 자료를 이용해 무슨 뜻인지 알아보도록 하겠습니다. 자료 1 의 중간값은 ( )/2 = 48170입니다. 또한 마지막 관측치 값을 로 대 체를 하고 다시 중간값을 계산해도 중간값은 여전히 48170입니다. 즉 중간값은 평균과는 달리 중심 경향치로서 특이값에 강건하다는 사실을 알 수 잇습니다. 그러면 도대체 사람들은 왜 중간값 보다는 평균을 많이 쓰는 걸까요? 그 이유에는 여러 가지가 있습니다만 제일 중요한 이유는 중간값은 정보를 너무 이용을 안 한다는 것입니다. 중심 경향치를 도출할 때 평균은 모든 관측치의 값을 활용하지만 중간값은 한 개 혹은 두 개의 관측치만을 활용하기 때문에 만약 다른 관측치 값이 중요한 정보를 포함하고 있다면 중간값은 뭔가 결론을 오도할 수도 있는 상황을 발생시킬 수 있습니다. C.2. 자료의 산포도(dispersion)를 나타내는 지표 C.1절에서 다룬 평균과 중간값은 자료의 분포를 검토할 때 상당히 유용한 정보를 제공합니 다만 자료의 분포를 완전하게 알려주지는 않습니다. 그 이유는 평균이나 중간값은 자료의 변이(variability) 혹은 변동폭의 정도를 알려주지 않기 때문입니다. 표 4에는 세 개의 자료 가 있습니다. 세 개의 자료 별로 평균과 중간값을 계산해 보면 모두 50으로 동일합니다. 중심 경향치의 척도를 토대로 이 세 자료의 분포에 대한 판단을 하면 세 자료의 분포가 손호성 9 노트 2

10 동일하다는결론을내리게됩니다. 하지만실제로그럴까요? 그림 3은표 4의각각의자 료를이용해서히스토그램을그린것입니다. 그림 3을보시면알겠지만세자료의분포는 굉장히다름을알수있습니다. 표 4: 세개의서로다른자료 자료 No. 관측치 중간값 평균 자료 1 50, 50, 50, 50, 50, 50, 50, 50, 자료 2 10, 20, 30, 30, 50, 50, 70, 91, 자료 3 9, 10, 10, 50, 50, 50, 90, 90, A. 자료 1 B. 자료 2 C. 자료 3 그림 3: 표 4에있는자료별히스토그램위예에서알수있듯이중심경향치의지표만으로는자료의분포를제대로파악할수없습니다. 물론평균과중간값은매우훌륭한지표이지만이러한한계점때문에자료의분포를좀더잘파악을하기위해또다른지표가필요한것입니다. 그지표는자료의산포도, 즉자료의어떤변동폭혹은변이를알려주는지표입니다. 이지표로많이활용이되고있는것이분산과표준편차입니다. 나. 분산 (Variance) 자료의산포도를살펴볼때가장많이사용되는지표가분산입니다. Definition 6 분산 (Variance): 분산은각각의관측치가평균으로부터 평균적으로 얼마나떨어져있는지를나타내는지표입니다. 모집단의분산은 σ 2 ( 시그마제곱이라고발음합니다 ) 로표시하고표본의분산은 s 2 라고표시합니다. 각각의분산의공식은다음과같습니다 : σ 2 = N (x i µ) 2 i=1 N and s 2 = n (x i x) 2 i=1. n 1 손호성 10 노트 2

11 분산공식의아이디어는이렇습니다. i) 우선자료의평균을구합니다. ii) 그리고나서각각의관측치값이이자료의평균으로부터얼마나떨어져있는지를알아봅니다. 즉평균으로부터의거리를계산합니다. iii) 그다음에계산한각각의거리를제곱합니다. iv) 마지막으로제곱한거리값들의평균을구합니다. 이것이바로분산입니다. 관측치의값들이평균으로부터많이떨어져있으면이분산값은커지게됩니다. 즉분산이크면자료의산포도혹은변이가크다는것을의미합니다. 분산식의분모를보면모집단의경우는 N으로나누지만표본분산의경우는 n 1 로나누는것을알수있습니다. 이분모식에있는것을자유도 (degree of freedom) 라고하는데서로다른자유도를사용해서분산값을구하는이유가있습니다. 이이유를정확히이해하기위해서는나중에배우게될개념인추정량 (estimator) 및비편의 (unbiasedness) 에대해서알아야하기때문에나중에다시이부분을다루도록하겠습니다. 이분산식을이용해서분산값을구하는것은하지않겠습니다. 컴퓨터가알아서구해줍니다. 다시말씀을드리지만분산값을구하는것보다는이식의특성을정확히알고있는것이중요합니다. 분산식을자세히들여다보면이분산또한좀문제점이있다는것을알수있습니다. 분산식에보면 µ 혹은 x, 즉평균이들어가있죠? 앞서말씀드린대로평균은특이값에강건하지않습니다. 따라서분산식또한특이값에강건한지표가아닙니다. 또다른문제점이있습니다. 분산은각각의관측치값의평균과의거리를제곱해서도출이되기때문에원래의관측치값들과는다른단위로표시가됩니다. 예를들어원래의자료가체중을나타내서 kg으로표시가되어있으면분산은 kg 2 으로표시가되어버립니다. 예를들어표 1에있는자료의분산값은약 123억입니다. 이값이표 1 자료의어떤변이로써와닿나요? 아니죠? 그래서대개자료분포의변이의척도로분산보다는표준편차를이용합니다. 나. 표준편차 (Standard Deviation) Definition 7 표준편차 (Standard Deviation): 표준편차는분산의루트 ( ) 값입니다. 따라서모집단표 준편차 (σ) 와표본표준편차 (s) 각각의공식은다음과같습니다 : σ = σ 2 and s = s 2. 표 1 자료의표준편차는 = 입니다. 분산과는달리표준편차를계산 하면표 1 자료의변동폭이대충그려집니다. 이표준편차가의미하는바는각각의보사연 박사급연구원들의연봉이평균으로부터대충 100 만원정도떨어져있다는것입니다. 손호성 11 노트 2

12 D. 자료의분포를검토할때사용하는방법 3: 밀도곡선 (Density Curve) 지금까지자료의분포를검토할때사용하는방법으로두가지를배웠습니다 : 중심경향치 ( 평균, 중간값 ) 그리고산포도 ( 분산, 표준편차 ). 전자는그림을이용한방법이고후자는수치를이용한방법입니다. D절에서는또하나의방법, 즉밀도곡선에대해서다루고자합니다. 그리고여러가지밀도곡선중에서연구에가장많이활용이되는정규곡선혹은정규분포에대해서도다루도록하겠습니다. D.1. 밀도곡선 (Density Curve) 간단하게얘기해서밀도곡선은히스토그램에그려져있는막대그래프들의높이를매끄럽게이은것이라고생각하시면될것같습니다. 그림 4.B에그려져있는검정색선이바로밀도곡선입니다. A. Frequency Histogram B. Histogram with Density Curves 그림 4: 히스토그램과밀도곡선 그림 4.B에나와있는밀도곡선은그냥대충제가그린것은아닙니다. 이밀도곡선을그리기위한공식이있습니다. 매우복잡합니다. 대충다음과같은식을이용합니다. e.g.) ˆf h (x ) = 1 n 1 (d(x, x i ) < 1) (1 d(x, x i )) n i=1 즉굳이공부를안하시는게신상에좋을것같습니다. 어차피우리의절친인통계패키지가알아서그려줍니다. 그럼왜이밀도곡선이유용한지말씀을드리도록하겠습니다. 밀도곡선을그려보면자료분포의대략적인패턴이나모양을파악할수있습니다. 손호성 12 노트 2

13 밀도곡선을그려놓고나면어떤구간에속해있는관측치의비율을계산할수있습니다. 예를들어그림 4.B에서구간 40000에서 사이에있는관측치의비율을계산을할수있습니다. 어떻게구하냐면구간 40000에서 사이에있는밀도곡선면적을구하면됩니다. 밑에그림에서파란색부분의면적을구하면 40000에서 사이에있는관측치의비율이나옵니다. 나중에배우게되겠지만이밀도곡선은통계적추론 (statistical inference) 를할때필수적인역할을하게됩니다. 이밀도곡선은한가지매우중요한특성을갖고있는데바로밀도곡선의넓이는항상 1이라는점입니다. 즉 100% 라는것입니다. 이것은당연한얘기입니다. 밀도곡선의넓이는어떤관측치가속할확률이라고말씀드렸습니다. 그럼전체구간에속해있는관측치의비율은당연히 100% 죠. D.2. 정규곡선 (Normal Curve) 혹은정규분포 (Normal Distribution) 통계학자들은굉장히많은종류의밀도곡선을개발했습니다. 그중에서정말가장많이사용되고있는밀도곡선이있습니다. 아마지금까지밝혀진세상의여러진리가이밀도곡선이없었다면밝혀지지않았을까할정도로학계에매우큰획을그은곡선입니다. 그렇다고뭐어려운것은아닙니다. 아무튼그밀도곡선의이름은정규곡선이라고합니다. 그러한곡선을갖는자료를정규분포를갖는자료라고합니다. 정규곡선의특징은대부분의관측치의값들이중앙에몰려있고중심치에서곡선이대칭인모양을갖고있다는점입니다. 그림 4.B에있는밀도곡선도정확하지는않습니다만정규곡선이라고할수있습니다. 손호성 13 노트 2

14 정규곡선의정확한모양은평균과표준편차에의해서결정이됩니다. 정규곡선의중심은평균이되고만약모양이중심치에서정확하게대칭이라면중간값도중심이됩니다. 그리고표준편차가이정규곡선의어떤산포도를결정을합니다. 그림 5가정규곡선의한예입니다. 그림 5에두개의서로다른평균값을갖는정규곡선을표시했습니다. 그림 5: 두개의서로다른평균값을갖는정규곡선 평균값만다른경우두개의정규곡선은모양은같습니다. 단지 x축에서위치가달라집니다. 그림 6에는평균은같은데표준편차가다를때정규곡선의모양이어떻게달라지는지를표시했습니다. 그림 6을보시면알겠지만표준편차가클수록정규곡선의모양이좀더넓게퍼지게됩니다. 즉평균값과표준편차가뭐냐에따라다양한정규곡선이존재합니다. 정규곡선을그리기위한식은다음과같습니다. ( 1 x µ 1 σ 2π e 2 σ ) 2 위식안에는평균 µ 가있고표준편차 (σ) 가있는데이식에의해서정규곡선이그려지기때문에당연히이에따라정규곡선의모양이달라지는것입니다. 잠깐, 위식을알아야하는가? 뭐알면좋지만굳이안알아도됩니다. 하지만이건아셔야합니다. 위식에서변수는 µ 랑 σ입니다. 따라서정규곡선은전적으로이두변수에의해결정이된다는사실입니다 참고로정규곡선식에서 e는 를나타내는무리수입니다. 모르셔도됩니다 손호성 14 노트 2

15 그림 6: 평균값은같지만표준편차는다른경우의정규곡선 이정규분포가통계학에서굉장히중요한이유는다음과같습니다. 실제우리가접하는자료의분포가정규곡선의모양을갖고있는경우가많습니다 ( 예, 학생성적, 키, 몸무게 ). 여러가지확률변수 ( 예, 동전던지기 ) 의결과가정규곡선의형태를띄는경우가많습니다. 제일중요한점은우리가연구할때하는통계적추론 ( 소위말하는 p값계산하는것 ) 이이정규곡선에기반해서이루어진다는사실입니다. 물론실제자료를보면정규분포의형태를띄지않는자료도많습니다. 그림 7에 2010 년기준미국의가구소득의분포를그려봤습니다. 그림 7을보면자료의분포가정규곡선을띄지는않습니다. 오히려왼쪽으로많이치우쳐져있음을알수있습니다. 소득수준이전형적으로정규분포를띄지않는변수입니다. 이외에도주택가격같은것도정규분포를띄지않는변수라고할수있겠습니다. D.3. 표준화 (Standardization) 두개의정규분포를비교해야할때가있습니다. 예를들어보도록하겠습니다. 수능점수에대한자료가있다고칩시다. 변수 X를수능성적이라고하고이수능성적의평균과표준편차를계산해보니 300과 50으로계산되었습니다. 그리고 X의분포를보니정규분포였습니다. 이럴때우리는 X N(300, 50) 이렇게표시합니다. 즉 X라는변수의평균은 300 손호성 15 노트 2

16 2017년 4월 5월 한국보건사회연구원 통계학 및 계량경제학의 기초 및 응용 그림 7: 2010년 실제 미국 가구소득 분포 이고 표준편차는 50, 그리고 분포의 모양은 정규분포라는 것입니다(대문자 N 은 Normal 에서 첫글자 N 을 따온 것입니다). 그리고 토익 점수에 대한 자료가 있다고 칩시다. 토익 점수는 Z라고 합시다. 근데 조사를 해보니 Z N (700, 70)입니다. 즉 토익 점수의 평균은 700점이고 표준편차는 70점 그리고 분포의 모양은 정규분포입니다. 자 이런 상태에서 이 두 자료의 표준편차를 토대로 수능성적의 변동폭이 토익점수보다 작다고 얘기할 수 있을 까요? 그렇게 결론을 내릴 수는 없습니다. 왜냐하면 두 변수의 척도가 다르기 때문입니다. 수능성적은 만점이 400점이고 토익은 990점입니다. 그래서 단순히 비교하면 안됩니다. 이 런 경우에 사용할 수 있는 방법이 이 두 변수의 각각의 관측치의 값들을 표준화해서 z점수 (z-score)을 계산하고 비교를 하는 것입니다. Definition 8 z점수(z-score): 만약 xi 가 평균이 µ이고 표준편차가 σ인 분포인 자료 중에 하나의 관측치 값이라고 한다면, 이 xi 를 표준화한 값(z)은 z = (xi µ)/σ를 통해서 계산할 수 있고, 이 표준화된 값을 z점수라고 합니다. z점수는 xi 가 평균으로부터 몇 표준편차만큼 떨어져 있는지를 나타냅니다. 예를 들어보 도록 하겠습니다. 김경래 학생의 수능성적은 350점입니다. 반면 토익성적은 840점입니다. 자 이 상태에서 김경래 학생의 토익점수가 수능점수보다 높으니까 토익을 수능보다 잘 봤다고 할 수 있을까요? 그렇게 결론을 내릴 수는 없습니다. 왜냐하면 두 시험은 척도가 다르고, 다른 학생과의 비교를 하지 않으면 김경래 학생의 토익점수 혹은 수능점수가 높은 건지 낮은 건지 알 수가 없기 때문입니다. 그래서 이럴 때 z점수를 활용해서 결론을 내리게 됩니다. 손호성 16 노트 2

17 2017년 4월 5월 한국보건사회연구원 통계학 및 계량경제학의 기초 및 응용 김경래 학생의 수능점수와 토익점수 각각을 z점수로 환산해 보도록 하겠습니다. 수능 점수의 z점수는 z = (xi µ)/σ = ( )/50 = 1입니다. 반면 토익점수의 z점수는 z = ( )/70 = 2입니다. 즉 김경래 학생의 수능점수는 수능점수 분포에서 평균보다 약 1 표준편차만큼 더 위에 위치해 있습니다. 그리고 토익점수는 토익점수 분포에서 평균 보다 약 2 표준편차만큼 더 위에 위치해 있습니다. 즉 김경래 학생은 토익을 훨씬 더 잘 본 것입니다. 이 예에서 알 수 있듯이 서로 다른 자료의 값들을 비교할 때 z점수가 굉장히 유용합 니다. 여기서 한 가지 중요한 사실을 알아야 합니다. 어떤 변수가 정규분포를 따를 때, 각각의 관측치 값들을 표준화하면 그 표준화한 값들의 분포는 평균이 0이고 표준편차는 1인 정규분포가 된다는 사실입니다. Definition 9 표준정규분포(Standard Normal Distribution): 표준정규분포는 평균이 0이고 표준편차가 1인 정규분포를 지칭하는 것입니다. 즉 변수 X가 표준정규분포를 따르면 우리는 X N (0, 1)이라고 씁니다. 만약 변수 X N (µ, σ)이면 변수 X의 각각의 관측치 값들을 표준 화한 변수 Z = (X µ)/σ는 Z N (0, 1)가 됩니다. D.4. 표준정규분포를 이용해서 확률(비율) 계산하는 방법 밀도곡선의 어떤 구간에서의 넓이가 의미하는 것은 어떤 관측치가 그 구간에 속하는 확률 혹은 그 구간에 있는 관측치의 비율이라고 말씀드렸습니다. 정규곡선 혹은 정규분포 또한 밀도곡선이기 때문에 정규분포의 넓이 또한 확률 혹은 비율을 나타냅니다. D.4절에서는 정규분포 하에서의 넓이값을 구하는 방법을 배우도록 하겠습니다. 구체적인 예를 통해서 한 번 그 방법을 배워보겠습니다. 여러분 MENSA라는 단체를 아시나요? 좀 위화감을 조성하는 단체이긴 합니다만 이 MENSA라는 단체는 한 마디로 IQ가 높은 사람들의 모임입니다. 이 MENSA라는 단체에 가입을 하려면 IQ 점수가 130점 이상이 되어야 한답니다. 제 고1 때의 IQ 점수는 104점이였던 걸로 기억합니다. 전 이 단 체에 가입을 못하는 거죠. 어쨌든 이 IQ 점수가 전형적인 정규분포를 따르는 변수입니다. 전수조사를 통해 계산된 것은 아니지만 이 IQ 점수(X)는 X N (100, 15)를 따른다고 합 니다. 그럼 이런 질문을 할 수 있습니다. 도대체 MENSA에 가입하려면 본인의 IQ 점수가 상위 몇 퍼센트에 속해야 하는 걸까요? 정규분포의 면적을 구하면 우리는 이 문제에 답을 할 수가 있습니다. 그림 8에 우리가 구해야 하는 면적이 표시되어 있습니다. 즉 정규분포에서 130 이상인 지점부터 오른쪽 끝까지의 구간의 면적을 구하면 됩니다. 저 면적을 어떻게 구할까요? 손호성 17 노트 2

18 그림 8: IQ 점수의분포 정확하게구하기위해서는우리는다음과같은적분식을활용해야합니다. 130 f(x)dx = 130 ( 1 x µ 1 σ 2π e 2 σ ) 2 dx. 당연히저적분식을풀수있어야하는건아닙니다. 뭐하러풉니까저식을. 그럼어떻게면적을구할까요? 바로표준정규분포표를활용하는겁니다. 우선 IQ 점수를표준화합니다. 그림 9를통해 IQ 점수를표준화하면표준정규분포가됨을알수있습니다. 130 점을표준화해볼까요? X N(100, 15) 이기때문에 130을표준화하면 ( )/15 = 2 가됩니다. 100점을표준화하면 ( )/15 = 0이됩니다. 이런식으로모든 IQ 점수를표준화하면결국표준화한 IQ 점수 Z는 Z N(0, 1) 을따르게되는겁니다. 자그럼그림 9를보면결국우리가구해야하는면적은표준정규분포에서 2 이상이되는구간의면적입니다. 이를구하기위해사용하는것이표준정규분포표입니다. 대개통계학교재부록에이표가수록되어있습니다. 여기에는그일부만수록하였습니다 ( 그림 10). 보시면우리가구해야하는면적은 2 이상이되는구간의면적이므로표에서 z가 2일때의노란색부분입니다. 표는이 z가어떤특정한값을가질때초록색면적이얼마나되는지알려주고있습니다. 그럼노란색부분의값을구하기위해서는어떻게해야할까요? 제가앞서모든밀도곡선에공통적으로적용되는특성이있다고말씀드렸습니다. 즉밀도곡선의전체넓이는항상 1이라는점입니다. 그럼노란색부분의넓이를구하기위 손호성 18 노트 2

19 그림 9: 표준화한 IQ 점수의분포 해서는 1 에서초록색부분의넓이를빼면되는것입니다. IQ 점수 130 점의표준화값은 2 점이므로그림 10 을통해초록색부분의면적이 인것을알수있습니다. 4 따라서 노란색부분의넓이는 = 인것을알수있습니다. 따라서 MENSA 에가입하기위해서는본인의 IQ 점수가상위 2.28% 에들어야한다는 것입니다. 참뭐하지않습니까? 위화감을조성하는것도아니고원... 어쨌든이 2.28% 라는 확률은다음의두가지조건하에도출이된것입니다. 1. IQ 점수가정규분포를따름. 4 그림 10 에서첫번째열은 z 값의첫번째소수점까지를나타내고첫번째행은 z 값의두번째소수점을나타냅니다. 즉확률을찾을때는먼저첫번째열을보고그리고나서첫번째행을보면됩니다. 손호성 19 노트 2

20 그림 10: 표준정규분포표 2. 전세계사람들의 IQ 점수의평균이 100점이고표준편차는 15임. 이두조건을만족하지않으면위에서계산한 2.28% 는맞다고볼수없습니다. 가장중요한사실을말씀을드리면서이를끝맺으려고합니다. 방금계산한 2.28% 를두가지방식으로해석할수있습니다. 반드시알고계셔야합니다. 1. MENSA에가입할자격이되는사람의비율은 2.28% 다. 2. 만약임의 (random) 로어떤사람을택했을때, 그사람의 IQ 점수가 130점이상일확률은 2.28% 다. 손호성 20 노트 2

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ 수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.

More information

... —....—

...   —....— 통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

152*220

152*220 152*220 2011.2.16 5:53 PM ` 3 여는 글 교육주체들을 위한 교육 교양지 신경림 잠시 휴간했던 우리교육 을 비록 계간으로이지만 다시 내게 되었다는 소식을 들으니 우 선 반갑다. 하지만 월간으로 계속할 수 없다는 현실이 못내 아쉽다. 솔직히 나는 우리교 육 의 부지런한 독자는 못 되었다. 하지만 비록 어깨너머로 읽으면서도 이런 잡지는 우 리

More information

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의 제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배

More information

10. ..

10. .. 점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm

More information

... —... ..—

...   —... ..— 통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :

More information

와플-4년-2호-본문-15.ps

와플-4년-2호-본문-15.ps 1 2 1+2 + = = 1 1 1 +2 =(1+2)+& + *=+ = + 8 2 + = = =1 6 6 6 6 6 2 2 1 1 1 + =(1+)+& + *=+ =+1 = 2 6 1 21 1 + = + = = 1 1 1 + 1-1 1 1 + 6 6 0 1 + 1 + = = + 7 7 2 1 2 1 + =(+ )+& + *= + = 2-1 2 +2 9 9 2

More information

통계학입문

통계학입문 통계학입문 ( 기초통계학 ) 1. 1 개요 통계학 (statistics) 관심의대상에대해관련된자료를수집하고그 자료를요약, 정리하여이로부터불확실한사실에 대한결론이나일반적인규칙성을추구하는학문 Statistic : 통계치, 통계량 CH 1-2 1. 1 개요 통계학 (statistics) 기술통계학 (descriptive stat) 수집된자료의정리및요약방법을다룸

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

Microsoft PowerPoint - chap04-연산자.pptx

Microsoft PowerPoint - chap04-연산자.pptx int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); } 1 학습목표 수식의 개념과 연산자, 피연산자에 대해서 알아본다. C의 를 알아본다. 연산자의 우선 순위와 결합 방향에

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

»êÇÐ-150È£

»êÇÐ-150È£ Korea Sanhak Foundation News VOL. 150 * 2011. 12. 30 논단 이슈별 CSR 활동이 기업 충성도에 미치는 영향 : 국가별 및 산업별 비교분석 최 지 호 전남대 경영학부 교수 Ⅰ. 서론 Ⅰ. 서론 Ⅱ. 문헌 고찰 및 가설 개발 2. 1. 호혜성의 원리에 기초한 기업의 사회적 투자에 대한 소

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

750 1,500 35

750 1,500 35 data@opensurvey.co.kr 750 1,500 35 Contents Part 1. Part 2. 1. 2. 3. , 1.,, 2. skip 1 ( ) : 2 ( ) : 10~40 (, PC, ) 1 : 70 2 : 560 1 : 2015. 8. 25~26 2 : 2015. 9. 1 4 10~40 (, PC, ) 500 50.0 50.0 14.3 28.6

More information

LaTeX. [width=1em]Rlogo.jpg Sublime Text. ..

LaTeX. [width=1em]Rlogo.jpg Sublime Text. .. L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

Microsoft PowerPoint - MonthlyInsighT-2018_9월%20v1[1]

Microsoft PowerPoint - MonthlyInsighT-2018_9월%20v1[1] * 넋두리 * 저는주식을잘한다고생각합니다. 정확하게는주식감각이있다는것이맞겠죠? 예전에애널리스트가개인주식을할수있었을때수익률은엄청났었습니다 @^^@. IT 먼쓸리가 4주년이되었습니다. 2014년 9월부터시작하였으니지난달로만 4년이되었습니다. 4년간누적수익률이최선호주는 +116.0%, 차선호주는 -29.9% 입니다. 롱-숏으로계산하면 +145.9% 이니나쁘지않은숫자입니다.

More information

Microsoft PowerPoint - MonthlyInsighT-2018_5월_v1[1].pptx

Microsoft PowerPoint - MonthlyInsighT-2018_5월_v1[1].pptx * 넋두리 * 올해 4월은잊지못할것같습니다. 남북정상회담이있었으니까요. 다양한시각에서보시는분들도있지만주식시장은이미움직이고있는것같습니다. 퀀트담당후배는통일전후독일에서주가움직임변화가컸던산업에대한조사요청에정신이없습니다. IT나바이오보다는확실히투자자관심이쏠린것같습니다. 실제로어떻게될지 앞으로옥석이가려지겠죠? 업무적으로도기억에남을것같습니다. 같이일하던두명의후배가애널리스트로서첫보고서를냈습니다.

More information

Microsoft PowerPoint _Monthly InsighT 19년 1월.pptx

Microsoft PowerPoint _Monthly InsighT 19년 1월.pptx 2019년 1월 Monthly InsighT 우려보다는 용기가 필요한 2019년 박원재 02-3774-1426 william.park@miraeasset.com 김영건 02-3774-1583 younggun.kim.a@miraeasset.com 김철중 02-3774-1464 chuljoong.kim@miraeasset.com * 넋두리 * 드디어 2019년황금돼지해가밝았습니다.

More information

<5BB0EDB3ADB5B55D32303131B3E2B4EBBAF12DB0ED312D312DC1DFB0A32DC0B6C7D5B0FAC7D02D28312E28322920BAF2B9F0B0FA20BFF8C0DAC0C720C7FCBCBA2D3031292D3135B9AEC7D72E687770>

<5BB0EDB3ADB5B55D32303131B3E2B4EBBAF12DB0ED312D312DC1DFB0A32DC0B6C7D5B0FAC7D02D28312E28322920BAF2B9F0B0FA20BFF8C0DAC0C720C7FCBCBA2D3031292D3135B9AEC7D72E687770> 고1 융합 과학 2011년도 1학기 중간고사 대비 다음 글을 읽고 물음에 답하시오. 1 빅뱅 우주론에서 수소와 헬륨 의 형성에 대한 설명으로 옳은 것을 보기에서 모두 고른 것은? 4 서술형 다음 그림은 수소와 헬륨의 동위 원 소의 을 모형으로 나타낸 것이. 우주에서 생성된 수소와 헬륨 의 질량비 는 약 3:1 이. (+)전하를 띠는 양성자와 전기적 중성인 중성자

More information

741034.hwp

741034.hwp iv v vi vii viii ix x xi 61 62 63 64 에 피 소 드 2 시도 임금은 곧 신하들을 불러모아 나라 일을 맡기고 이집트로 갔습니다. 하 산을 만난 임금은 그 동안 있었던 일을 말했어요. 원하시는 대로 일곱 번째 다이아몬드 아가씨를

More information

확률과통계 강의자료-1.hwp

확률과통계 강의자료-1.hwp 1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때

More information

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >

More information

..(..) (..) - statistics

..(..) (..) - statistics 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

40043333.hwp

40043333.hwp 1 2 3 4 5 128.491 156.559 12 23 34 45 안녕하십니까? 본 설문은 설악산과 금강산 관광연계 개발에 관한 보다 실질적인 방향을 제시하고자 만들어졌습니다. 귀하께서 해주신 답변은 학문적인 연구에 도움이 될 뿐 아니라 더 나아가 다가오는 21세기 한국관광 발전에 많은 기여를 할 것입니다.

More information

정부3.0 국민디자인단 운영을 통해 국민과의 소통과 참여로 정책을 함께 만들 수 있었고 그 결과 국민 눈높이에 맞는 다양한 정책 개선안을 도출하며 정책의 완성도를 제고할 수 있었습니다. 또한 서비스디자인 방법론을 각 기관별 정부3.0 과제에 적용하여 국민 관점의 서비스 설계, 정책고객 확대 등 공직사회에 큰 반향을 유도하여 공무원의 일하는 방식을 변화시키고

More information

제 12강 함수수열의 평등수렴

제 12강 함수수열의 평등수렴 제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.

More information

Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3

Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Example 3.1 Files 3.2 Source code 3.3 Exploit flow

More information

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는 제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

통계학입문

통계학입문 확률및통계특강 세부사항 교수님 성함 : 김홍기 연락처 : 821-5433 E-mail : honggiekim@cnu.ac.kr 교재 : 통계학입문 ( 정익사 / 김주한외 ) 강의자료 ppt 파일은정보통계학과홈페이지 -> 대학원 -> 수업자료 또는사이버캠퍼스자료실 이사이트에서기출문제도얻을수있습니다. 중간고사 (closed book) : 45%, 기말고사 (open

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

소규모 비즈니스를 위한 플레이북 여기서 다룰 내용은 다음과 같습니다. 1. YouTube 소개 2. YouTube에서 비즈니스를 위한 채널 만들기 3. 눈길을 끄는 동영상 만들기 4. 고객의 액션 유도하기 5. 비즈니스에 중요한 잠재고객에게 더 많이 도달하기

소규모 비즈니스를 위한 플레이북 여기서 다룰 내용은 다음과 같습니다. 1. YouTube 소개 2. YouTube에서 비즈니스를 위한 채널 만들기 3. 눈길을 끄는 동영상 만들기 4. 고객의 액션 유도하기 5. 비즈니스에 중요한 잠재고객에게 더 많이 도달하기 소규모 비즈니스를 위한 YouTube 플레이북 YouTube에서 호소력 있는 동영상으로 고객과 소통하기 소규모 비즈니스를 위한 플레이북 여기서 다룰 내용은 다음과 같습니다. 1. YouTube 소개 2. YouTube에서 비즈니스를 위한 채널 만들기 3. 눈길을 끄는 동영상 만들기 4. 고객의 액션 유도하기 5. 비즈니스에 중요한 잠재고객에게 더 많이 도달하기

More information

!

! ! !"!# $# %! %" %#& %' %(& "! "% "# "( #$& #%& ##& #'&!"#$%&'(%)%&*+'$%,-#. ' (%%%!"#$&'(%%% / 0%%%!"#$&'(%%% 1 2%%%!"#$&'(%%% +* ++%%%!"#$&'(%%% +& +3%%%!"#$&'(%%% +' +(%%%!"#$&'(%%% +/ +0%%%!"#$&'(%%%

More information

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > . 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과

More information

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt

More information

......-....4300.~5...03...

......-....4300.~5...03... 덕수리-내지(6장~8장)최종 2007.8.3 5:43 PM 페이지 168 in I 덕수리 민속지 I 만 아니라 마당에서도 직접 출입이 가능하도록 되어있다. 이러한 장팡뒤의 구조는 본래적인 형태라 고 할 수는 없으나, 사회가 점차 개방화되어가는 과정을 통해 폐쇄적인 안뒤공간에 위치하던 장항 의 위치가 개방적이고 기능적인 방향으로 이동해가는 것이 아닌가 추론되어진다.

More information

아이콘의 정의 본 사용자 설명서에서는 다음 아이콘을 사용합니다. 참고 참고는 발생할 수 있는 상황에 대처하는 방법을 알려 주거나 다른 기능과 함께 작동하는 방법에 대한 요령을 제공합니다. 상표 Brother 로고는 Brother Industries, Ltd.의 등록 상

아이콘의 정의 본 사용자 설명서에서는 다음 아이콘을 사용합니다. 참고 참고는 발생할 수 있는 상황에 대처하는 방법을 알려 주거나 다른 기능과 함께 작동하는 방법에 대한 요령을 제공합니다. 상표 Brother 로고는 Brother Industries, Ltd.의 등록 상 Android 용 Brother Image Viewer 설명서 버전 0 KOR 아이콘의 정의 본 사용자 설명서에서는 다음 아이콘을 사용합니다. 참고 참고는 발생할 수 있는 상황에 대처하는 방법을 알려 주거나 다른 기능과 함께 작동하는 방법에 대한 요령을 제공합니다. 상표 Brother 로고는 Brother Industries, Ltd.의 등록 상표입니다. Android는

More information

i - ii - iii - 1 - 연도 보험급여 총계 (A) 장해급여 유족급여 일시금연금일시금연금 연금계 (B) 연금비중 (B/A, %) 기타 급여 1) 1998 14,511 3,377 979 1,657 30 1,009 7.0 8,467 1999 12,742 2,318 1,120 1,539 38 1,158 9.1 7,727 2000 14,563 2,237 1,367

More information

[NO_11] 의과대학 소식지_OK(P)

[NO_11] 의과대학 소식지_OK(P) 진 의학 지식과 매칭이 되어, 인류의 의학지식의 수준을 높 여가는 것이다. 하지만 딥러닝은 블랙박스와 같은 속성을 가지고 있어서, 우리는 단지 결과만을 알 수 있기 때문에 이런 식의 의학지 식의 확장으로 이어지기는 힘들 수 있다는 것을 의미한다. 이것은 실제로 의학에서는 인공지능을 사용하게 될 때 여러 가지 문제를 만들 수 있다. 뿐만 아니라, 인간이 이해

More information

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물 저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37 21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각

More information

모수검정과비모수검정 제 6 강 지리통계학

모수검정과비모수검정 제 6 강 지리통계학 모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

도약종합 강의목표 -토익 700점이상의점수를목표로합니다. -토익점수 500점정도의학생들이 6주동안의수업으로 점향상시킵니다. 강의대상다음과같은분들에게가장적합합니다. -현재토익점수 500점에서 600점대이신분들에게가장좋습니다. -정기토익을 2-3번본적이있으신분

도약종합 강의목표 -토익 700점이상의점수를목표로합니다. -토익점수 500점정도의학생들이 6주동안의수업으로 점향상시킵니다. 강의대상다음과같은분들에게가장적합합니다. -현재토익점수 500점에서 600점대이신분들에게가장좋습니다. -정기토익을 2-3번본적이있으신분 도약종합 -토익 700점이상의점수를목표로합니다. -토익점수 500점정도의학생들이 6주동안의수업으로 100-200점향상시킵니다. -정기토익을 2-3번본적이있으신분. -수업도많이들어봤고, 문제도많이풀었지만문법정리가제대로되지않은분. 강의특징수업시간에토익과관련없는사적인잡담으로시간낭비하지않는수업입니다. LC : 파트별집중정리한문제풀이로유형을익혀나가는수업입니다. RC

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞 줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면

More information

Vision Mission 15 174 121881 T 0269004400 F 0269004499 170 5 121140 T 0221264091 F 0221264044 4 112 203 425807 T 0314020442 F 0314020140 899 402061 T

Vision Mission 15 174 121881 T 0269004400 F 0269004499 170 5 121140 T 0221264091 F 0221264044 4 112 203 425807 T 0314020442 F 0314020140 899 402061 T 2014 Vol.130 Zoom In People Vision Mission 15 174 121881 T 0269004400 F 0269004499 170 5 121140 T 0221264091 F 0221264044 4 112 203 425807 T 0314020442 F 0314020140 899 402061 T 0324341391 F 0324391391

More information

제 5강 리만적분

제 5강 리만적분 제 5 강리만적분 리만적분 정의 : 두실수, 가 을만족핚다고가정하자.. 만일 P [, ] 이고 P 가두끝점, 을모두포함하는유핚집합일때, P 을 [, ] 의분핛 (prtitio) 이라고핚다. 주로 P { x x x } 로나타낸다.. 분핛 P { x x x } 의노름을다음과같이정의핚다. P x x x. 3. [, ] 의두분핛 P 와 Q 에대하여만일 P Q이면 Q

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

untitled

untitled R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해

More information

슬라이드 제목 없음

슬라이드 제목 없음 계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

4-Ç×°ø¿ìÁÖÀ̾߱â¨ç(30-39)

4-Ç×°ø¿ìÁÖÀ̾߱â¨ç(30-39) 항공우주 이야기 항공기에 숨어 있는 과학 및 비밀장치 항공기에는 비행 중에 발생하는 현상을 효율적으로 이용하기 위해 과 학이 스며들어 있다. 특별히 관심을 갖고 관찰하지 않으면 쉽게 발견할 수 없지만, 유심히 살펴보면 객실 창문에 아주 작은 구멍이 있고, 주 날 개를 보면 뒷전(trailing edge) 부분이 꺾어져 있다. 또 비행기 전체 형 상을 보면 수직꼬리날개가

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

<C1DF29BCF6C7D020315FB1B3BBE7BFEB20C1F6B5B5BCAD2E706466>

<C1DF29BCF6C7D020315FB1B3BBE7BFEB20C1F6B5B5BCAD2E706466> 84 85 86 87 88 89 1 12 1 1 2 + + + 11=60 9 19 21 + + + 19 17 13 11=60 + 5 7 + 5 + 10 + 8 + 4+ 6 + 3=48 1 2 90 1 13 1 91 2 3 14 1 2 92 4 1 2 15 2 3 4 93 1 5 2 6 1 2 1 16 6 5 94 1 1 22 33 55 1 2 3 4 5 6

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

05 ƯÁý

05 ƯÁý Special Issue 04 / 46 VOL. 46 NO. 4 2013. 4 47 Special Issue 04 / 48 VOL. 46 NO. 4 2013. 4 49 S pecial Issue 04 / IHP 7단계 연구사업 구분 1970년대 1980년대 1990년대 2000년대 연최대 강우량 침수면적 인명피해 재산피해 그림 4. 시군구별 연 최대 강우량과

More information

<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770>

<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770> IT OOKOOK 87 이론, 실습, 시뮬레이션 디지털논리회로 ( 개정 3 판 ) (Problem Solutions of hapter 7) . 반감산기와전감산기를설계 반감산기반감산기는한비트의 2진수 에서 를빼는회로이며, 두수의차 (difference, ) 와빌림수 (barrow, ) 를계산하는뺄셈회로이다. 에서 를뺄수없으면윗자리에서빌려와빼야하며, 이때빌려오는수는윗자리에서가져오므로

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번 친절한하영쌤의 수학 A형 약점체크집중공략오답률 Best 5 정복 하기! - 보충문제 행렬 2015학년도대학수학능력시험 9월모의평가 19번두이차정사각행렬 가 를만족시킬때, < 보기 > 에서옳은것만을있는대로고른것은? ( 단, 는단위행렬이고, 는영행렬이다.) [4점] < 보기 > ㄱ. 의역행렬이존재한다. ㄴ. ㄷ. 2015학년도대학수학능력시험 6월모의평가 19번두이차정사각행렬

More information

효진: 노래를 좋아하는 분들은 많지만, 콘서트까지 가시는 분들은 많이 없잖아요. 석진: 네. 그런데 외국인들은 나이 상관없이 모든 연령대가 다 같이 가서 막 열광하고... 석진: 지 드래곤 봤어?, 대성 봤어?, 승리 봤어? 막 이렇게 열광적으로 좋아하더라고요. 역시.

효진: 노래를 좋아하는 분들은 많지만, 콘서트까지 가시는 분들은 많이 없잖아요. 석진: 네. 그런데 외국인들은 나이 상관없이 모든 연령대가 다 같이 가서 막 열광하고... 석진: 지 드래곤 봤어?, 대성 봤어?, 승리 봤어? 막 이렇게 열광적으로 좋아하더라고요. 역시. 석진: 안녕하세요. 효진 씨. 효진: 안녕하세요. 석진: 안녕하세요. 여러분. 효진: 오늘 주제는 한류예요. 오빠. 석진: 네. 한류. 저희 청취자분들이 정말 좋아할 것 같아요. 효진: 맞아요. 한류 열풍이 대단하잖아요. 석진: 네. 효진: 오빠는 한류 하면은 뭐가 먼저 떠올라요? 석진: 저는 이거 봤을 때 정말 충격 받았어요. 효진: 뭐요? 석진: 프랑스에서

More information

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다 이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

PowerPoint Presentation

PowerPoint Presentation 09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical

More information

ÆÞ¹÷-Æîħ¸é.PDF

ÆÞ¹÷-Æîħ¸é.PDF H.E.L.P. Vol. SUMMER Vol. WINTER 2015. vol 53 Pearl S. Buck Foundation Korea 4 Pearl S. Buck Foundation Korea 5 Pearl S. Buck Foundation Korea 프로그램 세계문화유산 걷기대회 Walk Together 탐방길곳곳에서기다리고있는조별미션활동! 남한산성 탐방길에는

More information

¾ç¼ºÄÀ-2

¾ç¼ºÄÀ-2 양성평등 캠퍼스 문화 조성을 위하여... 고려대학교 양성평등센터 는 2001년 6월에 제정된 성희롱 및 성폭력 예방과 처리에 관한 규정 에 의거하여 같은 해 7월에 설치된 성희롱및성폭력상담소 를 2006년 10월 개칭한 것입니다. 양성평등 센터 로의 개칭은 교내에서 발생하는 성피해에 대한 즉각적인 대응과 상담 제공뿐만 아니라 상호 존중을 바탕으로 한 양성평등

More information

- 2 -

- 2 - - 1 - - 2 - - - - 4 - - 5 - - 6 - - 7 - - 8 - 4) 민원담당공무원 대상 설문조사의 결과와 함의 국민신문고가 업무와 통합된 지식경영시스템으로 실제 운영되고 있는지, 국민신문 고의 효율 알 성 제고 등 성과향상에 기여한다고 평가할 수 있는지를 치 메 국민신문고를 접해본 중앙부처 및 지방자 였 조사를 시행하 였 해 진행하 월 다.

More information

¿©¼ºÀαÇ24È£

¿©¼ºÀαÇ24È£ Contents ㅣ반딧불이ㅣ뒤엉켜 버린 삶, 세월이 흘러도 풀 수 없는.. 실타래 벌써 3년째 시간은 흘러가고 있네요. 저는 서울에서 엄마의 갑작스런 죽음 때문에 가족들과 제주로 내려오게 되었답 니다. 몸과 마음이 지쳐있었고 우울증에 시달리며, 엄마의 죽음을 잊으려고 하였습 니다. 그러다 여기서 고향 분들을 만나게 되었고 그 분들의

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

새로운 지점에서 단이 시작하는 경우 기둥코로 시작하라고 표시합니다. 기둥코(standing stitch)로 시작하는 방법은 YouTube 에서 찾아볼 수 있습니다. 특수 용어 팝콘뜨기: 1 코에 한길긴뜨기 5 코, 바늘을 빼고 첫번째 한길긴뜨기코의 앞에서 바늘을 넣은

새로운 지점에서 단이 시작하는 경우 기둥코로 시작하라고 표시합니다. 기둥코(standing stitch)로 시작하는 방법은 YouTube 에서 찾아볼 수 있습니다. 특수 용어 팝콘뜨기: 1 코에 한길긴뜨기 5 코, 바늘을 빼고 첫번째 한길긴뜨기코의 앞에서 바늘을 넣은 Desire Copyright: Helen Shrimpton, 2016. All rights reserved. By: Helen at www.crystalsandcrochet.com 12 인치 모티브 worsted/aran(10ply), 5mm 바늘 사용 약 10인치 Double Knitting(8ply), 4mm 바늘 사용 미국식 용어를 사용합니다. 약어

More information

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770>

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770> 통계적가설검증의절차와문제점그리고대안 서울대학교심리학과, 인지과학협동과정교수조사연구편집위원장조사연구학회이사서울대사회과학대학교무부학장역임 주요연구 : Self-efficacy in information security : Its influence on end users information security practice behavior When fit indices

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

CT083001C

CT083001C 발행인 : 송재룡 / 편집장 : 박혜영 / 편집부장 : 송영은 경희대학교 대학원보사 1986년 2월 3일 창간 02447 서울특별시 동대문구 경희대로 26 전화(02)961-0139 팩스(02)966-0902 2016. 09. 01(목요일) vol. 216 www.khugnews.co.kr The Graduate School News 인터뷰 안창모 경기대학교

More information

SIGIL 완벽입문

SIGIL 완벽입문 누구나 만드는 전자책 SIGIL 을 이용해 전자책을 만들기 EPUB 전자책이 가지는 단점 EPUB이라는 포맷과 제일 많이 비교되는 포맷은 PDF라는 포맷 입니다. EPUB이 나오기 전까지 전 세계에서 가장 많이 사용되던 전자책 포맷이고, 아직도 많이 사 용되기 때문이기도 한며, 또한 PDF는 종이책 출력을 위해서도 사용되기 때문에 종이책 VS

More information

지도상 유의점 m 학생들이 어려워하는 낱말이 있으므로 자세히 설명해주도록 한다. m 버튼을 무리하게 조작하면 고장이 날 위험이 있으므로 수업 시작 부분에서 주의를 준다. m 활동지를 보고 어려워하는 학생에게는 영상자료를 접속하도록 안내한다. 평가 평가 유형 자기 평가

지도상 유의점 m 학생들이 어려워하는 낱말이 있으므로 자세히 설명해주도록 한다. m 버튼을 무리하게 조작하면 고장이 날 위험이 있으므로 수업 시작 부분에서 주의를 준다. m 활동지를 보고 어려워하는 학생에게는 영상자료를 접속하도록 안내한다. 평가 평가 유형 자기 평가 수업주제 경찰 출동! (버튼, LED, 버저 사용하기) 9 / 12 차시 수업의 주제와 목표 본 수업에서는 이전 차시에 배웠던 블록들의 기능을 복합적으로 활용한다. 스위치 기능을 가진 버튼을 활용하여 LED와 버저를 동시에 작동시키도록 한다. 각 블록들을 함께 사용하는 프로젝트를 통해 각각의 기능을 익히고 보다 다양한 활용 방법을 구상할 수 있다. 교수 학습

More information

BY-FDP-4-70.hwp

BY-FDP-4-70.hwp RS-232, RS485 FND Display Module BY-FDP-4-70-XX (Rev 1.0) - 1 - 1. 개요. 본 Display Module은 RS-232, RS-485 겸용입니다. Power : DC24V, DC12V( 주문사양). Max Current : 0.6A 숫자크기 : 58mm(FND Size : 70x47mm 4 개) RS-232,

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Verilog: Finite State Machines CSED311 Lab03 Joonsung Kim, joonsung90@postech.ac.kr Finite State Machines Digital system design 시간에배운것과같습니다. Moore / Mealy machines Verilog 를이용해서어떻게구현할까? 2 Finite State

More information

*) α ρ : 0.7 0.5 0.5 0.7 0.5 0.5-1 - 1 - - 0.7 (**) 0.5 0.5-1 - (**) Max i e i Max 1 =150 kg e 1 = 50 g xxx.050 kg xxx.050 kg xxx.05 kg xxx.05 kg Max 2=300 kg

More information

untitled

untitled Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f

More information

Microsoft Word - windows server 2003 수동설치_non pro support_.doc

Microsoft Word - windows server 2003 수동설치_non pro support_.doc Windows Server 2003 수동 설치 가이드 INDEX 운영체제 설치 준비과정 1 드라이버를 위한 플로피 디스크 작성 2 드라이버를 위한 USB 메모리 작성 7 운영체제 설치 과정 14 Boot Sequence 변경 14 컨트롤러 드라이버 수동 설치 15 운영체제 설치 17 운영체제 설치 준비 과정 Windows Server 2003 에는 기본적으로

More information

移대떎濡앹떆??0??2?쇰궡吏€-?

移대떎濡앹떆??0??2?쇰궡吏€-? WON HEUNG C O N T E N T S Happy House Wide Area Traffic Wonheung Bogeumjari Plan Landscape Plan Green City Wonheung 002 004 006 008 010 Unit Plan 74 A 012 Unit Plan 74 CH 014 Unit Plan 84 A 016 Unit Plan

More information

SBR-100S User Manual

SBR-100S User Manual ( 1 / 24 ) SBR-100S 모델에대한 SSID( 네트워크이름 ) 변경하는방법을안내해드립니다. 아래안내사항은제품의초기설정값을기준으로작성되어있습니다. 1. SSID 이란? SSID 는 Service Set Identifier 의약자로무선랜을통해젂송되는모든패킷의헤더에존재하는고유식별자이다. 무선랜클라이언트가무선랜 AP 에접속할때각무선랜을다른무선랜과구붂하기위해사용됩니다.

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

<4D6963726F736F667420506F776572506F696E74202D20283135313132372931312EBCADBAF1BDBABDC3BCB3C0C720C0D4C1F6BCB1C1A4205BC8A3C8AF20B8F0B5E55D>

<4D6963726F736F667420506F776572506F696E74202D20283135313132372931312EBCADBAF1BDBABDC3BCB3C0C720C0D4C1F6BCB1C1A4205BC8A3C8AF20B8F0B5E55D> 서비스기업 운영관리론 Start Your Global Business With Asadal 1 서비스 시설의 입지선정 서강대학교 경영대학 경영전문대학원 교수 서창적 서비스 시설의 유형 Start Your Global Business With Asadal 2 준제조형 서비스 목표 : 네트워크의 물류비용의 최소화 예) 창고, 콜센터 배달 서비스 목표 : 지리적

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,

More information