환경친화적자동차 : 개발동향
자동차역사 1770: Nicolas Joseph Cugnot 증기기관자동차발명 The design of the Cugnot Steam Trolley (Jonathan Holguinisburg) (1769) Cugnot's steam wagon, the second (1771) version 1801: Richard Trevithick 런던시내에서시속 13km/h 로운행 A replica of Richard Trevithick's 1801 road locomotive 'Puffing Devil'
자동차역사 1828: Ányos Jedlik 최초의전기자동차발명 1838: Christian Friedrich Schönbein 수소연료전지원리발견 1859: Gaston Planté 납산전지발명 Electric vehicle model by Ányos Jedlik, the inventor of an early type of electric motor (1828, Hungary). German electric car, 1904, with the chauffeur on top Thomas Edison and an electric car in 1913 (courtesy of the National Museum of American History)
자동차역사 1876: Nikolaus Otto 4행정가솔린내연기관발명 1885: Siegfried Marcus 액체연료내연기관자동차발명 1885: Karl Benz 가솔린내연기관자동차발명 (1889: Gottlieb Daimler, Wilhelm Maybach) 1897: Rudolf Diesel 디젤엔진발명 Steam, electricity and petrol/gasoline-powered automobiles competed for decades, with petrol/gasoline internal combustion engines achieving dominance in the 1910s. 1870, Vienna, Austria: world's first gasolinerun vehicle, the 'first Marcus car' 1885-built Benz Patent Motorwagen, the first car to go into production with an internal combustion engine
자동차역사 Energy density is a term used for the amount of energy stored in a given system or region of space per unit volume. http://en.wikipedia.org/wiki/energy_density Power density (or volume power density or volume specific power) is the amount of power (time rate of energy transfer) per unit volume. http://en.wikipedia.org/wiki/power_density
자동차역사 각종에너지의출력밀도와에너지밀도비교 [2]
자동차역사 가솔린과납배터리의에너지비교 [3]
자동차역사 전기자동차의효율개선 [2]
자동차역사 CO 2 저감 [1] WTT(Well-To-Tank): 자원을채취하는데발생한 CO 2 량으로, 발전시에발생하는 CO 2 양을모두고려한수치 TTW(Tank-To-Wheel): 차량이발생하는 CO 2 WTW(Well-To-Wheel): 연료생산부터차량구동까지필요한에너지를생산할때발생하는 CO 2 양 참고 ) WELL-to-TANK Report, Version 2b, May 2006, http://www.co2star.eu/publications/well_to_tank_report_eu.pdf
자동차역사 CO 2 저감 [1] 현재우리나라의발전량중약 62% 에가까운전기가화석에너지를이용하여생성됨. 청정연료라여겨지는수력과원자력발전의비율은약 38%. 전기를발전하기위하여많은양의화석연료를사용하고있다.
자동차역사 기존차량과전기차량의 CO 2 비교 [1]
환경친화적자동차 환경친화적자동차 (eco-friendly, environmentally friendly, green) 연비개선, 배출가스저감 신재생에너지 신형파워트레인 (EV, FCEV, HEV, PHEV)
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012년 1월, 32-38. 1. 파워트레인기술가솔린엔진 MPI: Multi-Point Injection GDI: Gasoline Direct Injection Stratified GDI: 초희박 GDI CAI: Controlled Auto Ignition VVT: Variable Valve Timing VVL: Variable Valve Lift CVVL: Continuously VVL EHV: Electric Hydraulic Valve MEHV: Mechanical EHV CDA: Cylinder DeActivation, 가변기통정지 VCR: Variable Compression Ratio
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012 년 1 월, 32-38. 1. 파워트레인기술 디젤엔진 HCCI: Homogeneous Charge Compression Ignition RCCI: Reactivity Controlled Compression Ignition
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012 년 1 월, 32-38. 2. 차량기술
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012 년 1 월, 32-38. 2. 차량기술
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012 년 1 월, 32-38. 2. 차량기술
환경친화적자동차 : 연비개선, 배출가스저감 김광연, 연비향상을위한친환경기술동향, 오토저널 2012 년 1 월, 32-38. 2. 차량기술
환경친화적자동차 : 연비개선, 배출가스저감 자동차연비향상기술, 오토저널 2012년 1월 연비향상을위한친환경기술동향 자동차엔진의연비향상기술개발동향 VTMS(Vehicle Thermal Management System) 를이용한차량연비개선 배기열회수시스템기술동향 자동차타이어기술, 오토저널 2011 년 9 월
환경친화적자동차 : 연비개선, 배출가스저감 이기형, 자동차엔진기술동향, 오토저널 2008 년 8 월, pp. 26-35. 가솔린엔진 1) 가솔린직접분사엔진 2) 가변밸브기구 3) 가변압축비엔진 4) 가변배기량 ( 실린더 ) 엔진 디젤엔진 1) 예혼합압축착화연소기술 2) 고압연료분사기술 3) 과급기술 4) 배기가스재순환기술 5) 4밸브연소실형상최적화
환경친화적자동차 : 신재생에너지 신재생에너지 (Renewable Energy) 오토저널 2010 년 8 월호 바이오디젤 (Biodiesel): 유채유, 대두유, 팜유, 코코넛유, 자트로파, 우지, 생성기름, 폐식용유 바이오에탄올 (Bioethanol): 사탕수수, 옥수수, 고구마, 카사바, 볏짚 바이오부탄올 (Biobutanol): 다양한종류의탄수화물을발효시켜제조 DME (Dimethyl Ether): 천연가스나석탄등의합성가스로부터메탄올의탈수반응으로제조 GTL (Gas-to-Liquids): 천연가스를상온에서액체로합성 수소연소리니어동력발전시스템
환경친화적자동차 : 신형파워트레인 EV (Electric Vehicle), FEV (Full Electric Vehicle) BEV (Battery Electric Vehicle): rechargeable battery packs PEV (Plug-in Electric Vehicle): from any external source of electricity such as wall sockets http://en.wikipedia.org/wiki/plug-in_electric_vehicle FCEV (Fuel Cell Electric Vehicle) http://en.wikipedia.org/wik i/fuel_cell
환경친화적자동차 : 신형파워트레인 Architecture of BEV http://en.wikipedia.org/wiki/tesla_model_s
환경친화적자동차 : 신형파워트레인 Architecture of BEV http://en.wikipedia.org/wiki/tesla_model_s
환경친화적자동차 : 신형파워트레인 Architecture of BEV http://en.wikipedia.org/wiki/tesla_model_s Tesla Model S charging at the Supercharger network station in Delaware, United States.
환경친화적자동차 : 신형파워트레인 Architecture of BEV http://en.wikipedia.org/wiki/tesla_model_s
환경친화적자동차 : 신형파워트레인 Architecture of BEV http://en.wikipedia.org/wiki/tesla_model_s
환경친화적자동차 : 신형파워트레인 Architecture of BEV Tesla-Battery-Cell-18650 Battery swapping http://en.wikipedia.org/wiki/tesla_model_s
Architectures of FCEVs [5]
Architectures of FCEVs [5] Ballard Energy : How a Fuel Cell Works http://youtu.be/qbk1sdculpm
환경친화적자동차 : 신형파워트레인 HEV (Hybrid Electric Vehicle) SAE J1715: 두종류또는그이상의에너지저장장치와이들에적합한에너지변환기로구성된자동차. 이때, 에너지변환기들은선택적으로함께, 또는각각별도로분리된상태로자동차를구동한다. IEC/TC69: 자동차용으로적합한, 두종류의서로다른에너지저장원및에너지변환기를구동목적에사용한자동차 KS R 0121-412: 추진을위해두종류이상의다른동력원 (RESS, 연료, 전지, 모터, 엔진등 ) 을갖는자동차. 이때, RESS(Rechargeable Energy Storage System). 두종류또는그이상의동력원을사용하는자동차, 또는동력원으로내연기관과 전동기를함께사용하는자동차. 김재휘, 1-1. 하이브리드자동차의정의및도입배경, 하이브리드전기자동차, 도서출판골든벨, 2014 년 8 월.
환경친화적자동차 : 신형파워트레인 HEV (Hybrid Electric Vehicle) 도입배경 1) 유해배출가스특히, 이산화탄소배출량의저감 2) 주행역동성및주행안락성의개선 3) 전기자동차로가는중간단계로서의하이브리드자동차 김재휘, 1-1. 하이브리드자동차의정의및도입배경, 하이브리드전기자동차, 도서출판골든벨, 2014 년 8 월.
환경친화적자동차 : 신형파워트레인 HEV (Hybrid Electric Vehicle) Parallel Hybrid PHEV (Plug-in Parallel Hybrid EV) Series Hybrid Power-split or series-parallel hybrid http://en.wikipedia.org/wiki/parallel_hybrid#parallel_hybrid
Architectures of HEVs [5] ICE-assisted EV that aims to extend the driving range comparable with that of conventional vehicle. Electric-assisted ICEV for achieving both lower emissions and fuel consumption.
환경친화적자동차 : 신형파워트레인 Hybrid Vehicle Operation Modes Typical modes for a parallel hybrid configuration. http://en.wikipedia.org/wiki/parallel_hybrid#parallel_hybrid
환경친화적자동차 : 신형파워트레인 HEV 의동작원리 http://kr.blog.yahoo.co m/buzz22c/2655 Idling Stop 엔진효율 ( 저속, 고속시저효율극복 엔진용량축소및배기가스저감 ) 회생제동 (Regenerative Braking) 박심수, 신형파워트레인의현황과전망, 오토저널 2008 년 8 월, pp. 43-54.
Categories of HEVs [5] According to the level of electric power and the function of the electric motor, HEVs can be classified into following categories. Motor Power Architecture Energy saving Example Micro hybrid 2.5kW @ 12V Parallel only for start and stop 5-10% C3 Citroen micro hybrid Mild hybrid 10-20kW @ 100-200V Parallel 20-30% Honda Civic and Honda Insight Full hybrid 50kW @ 200-300V Series-parallel or complex 30-50% Synergy: Toyota Prius Power: Toyota Highlander
Categories of HEVs: Honda [5] Three stage i-vtec(variable Valve Timing and Lift Electronic Control ) and VCM (Variable Cylinder Management), which permits deactivation of all four cylinders when cruising at moderate speed to run on electric power only Integrated Motor Assist (IMA) http://en.wikipedia.org/wiki/integrated_motor_assist
Categories of HEVs: Honda [5] Honda Hybrid http://youtu.be/xmdkc8sevwc
Categories of HEVs: Toyota [5]
Categories of HEVs: Toyota [5] To accomplish this, Toyota has designed a parallel hybrid powertrain, called the Toyota Hybrid System (THS), that adds some of the benefits of a series hybrid [6]. http://green.autoblog.com/2008/05/09/another-dayanother-award-for-the-prius-green-engine-of-the-ye/
Categories of HEVs: Toyota [5] The Prius mainly relies on two features to optimize efficiency and reduce emissions: Its engine only runs at an efficient speed and load - In order to reduce emissions, the Prius can accelerate to a speed of about 15 mph (24 kph) before switching on the gasoline engine. The engine only starts once the vehicle has passed a certain speed. And once the engine starts, it operates in a narrow speed band. It uses a unique power split device - Gasoline engines can be tuned to run most efficiently in certain speed and load ranges. The power split device on the Prius allows the engine to stay in its most efficient load and speed range most of the time.
Categories of HEVs: Toyota [5] Toyota Hybrid System 2 http://youtu.be/evz-c8fvrp4
Categories of HEVs: Toyota [5] 2010 Toyota Prius-III - Toyota Hybrid System http://youtu.be/cfp2aokwqva
Categories of HEVs: PHEV [5] Plug-in HEV Prius Plug-in Hybrid - Video 3 http://youtu.be/gkqzbelc-ze
Characteristics of BEVs, HEVs, and FCEVs [5]
Advantages of Electrification [7] 1. Higher end-to-end efficiency 2. Energy diversity 3. Clean, silent, and highly efficient 4. Fewer parts, and far fewer moving parts
Advantages of Electrification [7] Energy Diversity
Advantages of Electrification [7] Energy Diversity It allows localities to take advantage of their particular energy opportunities in providing mobility rather than depending on importing oil from distant and often insecure sources. By integrating many source types, locations, and supply routes, this diversity provides energy security and domestic employment.
Key Technologies [5] 1. Propulsion Motor PM (permanent magnet) synchronous or PM brushless motor Induction motor SRM (switched reluctance motor)
Key Technologies [5] 2. Power Converters Rectifier Inverter DC/DC converter
Key Technologies [5] 3. Hybrid Control Technology Energy management control Drivability control
Key Technologies [5] It is important to ensure that these three major components will operate within their optimum operation region.
Key Technologies [5] 4. Battery and Ultracapacitors Battery Ultracapacitor Fuel Cell Charging - 화학에너지 Charging - 정전기 Generation - 화학에너지 Lead acid battery Nickel-metal hydride battery Lithium-ion battery
환경친화적자동차관련추가자료 그린카의당면기술과과제, 오토저널 2011년 3월 그린카개발동향 그린카구동용전력전자부품 그린카산업의기반, 그린네트워크 전기차구매행태를고려한수요창출방안과과제 Plug-in HEV 시스템기술, 오토저널 2011년 10월 플러그인하이브리드전기자동차시장및기술동향 플러그인하이브리드전기자동차의개념과개발동향 플러그인하이브리드전기장동차배터리시스템개발 플러그인하이브리드전기자동차의구동시스템기술동향
현대자동차 HEV
현대자동차 HEV Hyundai Sonata Hybrid tech explained http://youtu.be/rydo7tg-krg
참고자료 1. 한국자동차공학회미래기획위원회, 2030 년자동차기술전망, 사단법인한국자동차공학회, 2010 년 12 월 1 일. 2. 유춘, 임성일, 김종율, 김영일, 하이브리드카, 도서출판골든벨, 2010 년 4 월 15 일. 3. 박한웅, 전기자동차, 도서출판아진, 2008 년 9 월 10 일. 4. GB 기획센터, What s 전기자동차속이보인다, 도서출판골든벨, 2011 년 1 월 10 일. 5. C. C. Chan, The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles, Proceedings of The IEEE, Vol. 95, No. 4, April 2007, pp. 704-718. 6. Karim Nice, Julia Layton, How Hybrid Cars Work, http://auto.howstuffworks.com/hybrid-car6.htm 7. William J. Mitchell, et al., Reinventing the Automobile: Personal Urban Mobility for the 21 st Century, The MIT Press, 2010.