<30312EC6AFC1FD30342DC0CCBFB5C0E72E687770>

Similar documents
2016 학년도약학대학면접문제해설 문제 2 아래의질문에 3-4분이내로답하시오. 표피성장인자수용체 (epidermal growth factor receptor, EGFR) 는수용체티로신인산화효소군 (receptor tyrosine kinases, RTKs) 의일종으로서세

°ø±â¾Ð±â±â


388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

<30312EC6AFC1FD30332DC0E5BCBABEC62E687770>

32

Wnt and other signalings

Chapter 26


ºÎÁ¤¸ÆV10N³»Áö

최근연구소식 Molecular and Cellular Biology News 최근의연구동향을이해할수있도록몇편의논문을요약하여하나의주제로소개합니다. TGF-β 신호전달경로의새로운조절기전 Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

특허청구의 범위 청구항 1 앵커(20)를 이용한 옹벽 시공에 사용되는 옹벽패널에 있어서, 단위패널형태의 판 형태로 구성되며, 내부 중앙부가 후방 하부를 향해 기울어지도록 돌출 형성되어, 전면이 오 목하게 들어가고 후면이 돌출된 결속부(11)를 형성하되, 이 결속부(11

7.ƯÁýb71ÎÀ¯È« š

(Microsoft PowerPoint - S13-3_\261\350\273\363\307\366 [\310\243\310\257 \270\360\265\345])

노영남

Jkbcs016(92-97).hwp

심장2.PDF

hwp


충북의대학술지 Chungbuk Med. J. Vol. 27. No. 1. 1~ Charcot-Marie-Tooth Disease 환자의마취 : 증례보고 신일동 1, 이진희 1, 박상희 1,2 * 책임저자 : 박상희, 충북청주시서원구충대로 1 번지, 충북대학교

미래의학 - 맞춤형의학 유전자가위


untitled

<30312EC6AFC1FD30322DBCADC7FDBCB12E687770>

Lumbar spine

Jksvs019(8-15).hwp

A 617

7월웹진

139~144 ¿À°ø¾àħ


44-4대지.07이영희532~

May 10~ Hotel Inter-Burgo Exco, Daegu Plenary lectures From metabolic syndrome to diabetes Meta-inflammation responsible for the progression fr

한국성인에서초기황반변성질환과 연관된위험요인연구

550호(01-09)

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

untitled

Connexin 26 의유전자변이 서론 재료및방법 대상 방법 Korean J Audiol Volume 5 December, 2001

<BBFDC8ADC7D02E687770>

(01) hwp

2.대상 및 범위(계속) 하천 하천 등급 하천명 연장 (km) 연장 (km) 시점 금회수립현황 종점 지방 하천 함안천 경남 함안군 여항면 내곡리 경남 함안군 함안면 함안천(국가)기점 검단천 경남 함안군 칠북면 검단리 칠원천 6.70

노인정신의학회보14-1호

Microsoft Word doc


2 A A Cs A C C A A B A B 15 A C 30 A B A C B. 1m 1m A. 1 C.1m P k A B u k GPS GPS GPS GPS 4 2

35 1 Journal of the Korean Society of Health Information and Health Statistics Volume 35, Number 1, 2010, pp ) 1) 2) 1) 1) Cadherin-1 (CDH1) po

Chapter 6. Nucleotides and Nucleic Acids 세포대사에서뉴클레오타이드 (nucleotide) 의기능은무엇인가? Objective 유전체학 (genomics) 과단백체학 (proteomics) 기본개념이해 재조합 DNA 기술 (recombin


Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

페링야간뇨소책자-내지-16

연구보고서화학물질노출에의한유전자돌연변이 ( 발암 ) 의조기확인 (II) - 실험동물을이용한고감도발암성확인기법의검증 - 임경택 김수진

Can032.hwp

(Establishment and Management of Proteomics Core Facility)

<30322EC6AFC1FD30342DC1A4B9AEC7F62E687770>


03-ÀÌÁ¦Çö

김범수


Genomics and Nursing Practice

연구분야 ( 코드 ) 과제번호 과제성격 ( 기초, 응용, 개발 ) 응용실용화대상여부비실용화 연구과제명 과제책임자 세부과제 지원목적과제프로그램공개가능여부공개 ( 공개, 비공개 ) ( 국문 ) 전장유전체유전자다형데이터를이용한표적유전자의발굴 ( 영문 ) Ide

<30382EC0C7C7D0B0ADC1C22E687770>

03이경미(237~248)ok

ºÎÁ¤¸ÆV10N³»Áö


(71) 출원인 나혜원 대구 달서구 도원동 1438 대곡사계절타운 나혜리 대구 달서구 도원동 1438 대곡사계절타운 (72) 발명자 나혜원 대구 달서구 도원동 1438 대곡사계절타운 나혜리 대구 달서구 도원동 1438 대

005송영일



슬라이드 제목 없음

석사논문.PDF

Microsoft PowerPoint - 발표자료(KSSiS 2016)

Kaes010.hwp

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

제5회 가톨릭대학교 의과대학 마취통증의학교실 심포지엄 Program 1 ANESTHESIA (Room 2층 대강당) >> Session 4 Updates on PNB Techniques PNB Techniques for shoulder surgery: continuou

2016 SPRING VOL. 45 intelligenceinformation identity FOCUS 04 DAN TALK ZOOM IN HUMAN Team Manual House NEW

50(2)-04.fm

02À±¼ø¿Á

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

untitled

ºÎÁ¤¸ÆÃÖÁ¾

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

Special Issue Rehabilitation of Running Injuries Ki Un Jang, M.D. Department of Rehabilitation Medicine Hallym University College of Medicine Hangang

뉴스지14호-칼라

12이문규

대상및방법 환자군및대조군선택 혈액채취 513

02신현화

제 9 도는 6제어항목의 세팅목표의 보기가 표시된 레이더 챠트(radar chart). 제 10 도는 제 6 도의 함수블럭(1C)에서 사용되는 각종 개성화 함수의 보기를 표시하는 테이블. 제 11a 도 제 11c 도까지는 각종 조건에 따라 제공되는 개성화함수의 변화의

A C O N T E N T S A-132

16(1)-3(국문)(p.40-45).fm

특허청구의 범위 청구항 1 횡방향으로 서로 이웃하는 제1 PC 패널과 제2 PC 패널이 횡방향으로 서로 접합되어 구축되는 건축구조물의 구조 벽체로서, 제1 PC 패널의 길이방향으로 하부측에는, 횡방향 측면이 상부측에서의 횡방향 측면보다 횡방향으로 더 돌출되어 있는 하부

본 발명은 중공코어 프리캐스트 슬래브 및 그 시공방법에 관한 것으로, 자세하게는 중공코어로 형성된 프리캐스트 슬래브 에 온돌을 일체로 구성한 슬래브 구조 및 그 시공방법에 관한 것이다. 이를 위한 온돌 일체형 중공코어 프리캐스트 슬래브는, 공장에서 제작되는 중공코어 프

DV690-N_KOR_ indd

72 순천향의과학 : 제14권 2호 2008 Fig.1. Key components of the rehabilitation evaluation of patients with the rheumatic diseases. The ICF provides a good frame

Jkafm093.hwp

untitled

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

untitled

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Transcription:

대한내과학회지 : 제 78 권제 1 호 2010 특집 (Special Review) - 폐고혈압 유전성폐동맥고혈압과관련된유전자연구 가천의과학대학교이길여암당뇨연구원 이영재 Genetics in heritable pulmonary arterial hypertension Young Jae Lee, Ph.D. Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea Pulmonary arterial hypertension is caused by vascular remodeling including muscularization of arteries, loss of small precapillary arteries, and formation of neointima and plexiform lesion, resulting in a progressive increase in pulmonary vascular resistance. About 70% of heritable pulmonary arterial hypertension and 10% to 40% of idiopathic pulmonary arterial hypertension patients possess mutations in bone morphogenetic protein receptor, type 2 (BMPR2), which is a type II receptor of TGF-β superfamily. Very rarely, mutations in another receptors of TGF-β superfamily, activin-like kinase-type 1 (ALK1) and endoglin (ENG) are found in pulmonary arterial hypertension patients with hereditary hemorrhagic telangiectasia. Genetic screening is useful to identify family members who are mutation carriers in heritable pulmonary arterial hypertension families. (Korean J Med 78:20-27, 2010) Key Words: Pulmonary arterial hypertension; BMPR2 receptor; ALK1 receptor, human; ENG receptor, human; Genetic screening 서론폐동맥고혈압 (pulmonary arterial hypertension) 은휴식상태의폐동맥혈압이평균 25 mmhg 이상으로정의되는희귀질환으로연간발병률이인구백만명당 2건정도로보고되고있으며 1,2) 원인을알수없는특발성폐동맥고혈압 (idiopathic pulmonary arterial hypertension), 원인유전자가밝혀졌거나가족력이알려진유전성폐동맥고혈압 (heritable pulmonary arterial hypertension), 약품이나독극물에노출되거나결합조직병 (connective tissue diseases), HIV 감염, 문맥고혈압 (portal hypertension), 선천심장병 (congenital heart disease), 주혈흡충증 (schistosomiasis), 만성용혈빈혈 (chronic hemolytic anemia) 등과연관된폐동맥고혈압으로구분된다 3). 폐동맥고혈압환자의폐혈관에서는모세혈관이전세동맥 (precapillary arteriole) 의유실, 말초동맥 (peripheral artery) 의근육동맥화 (muscularization), 근육동맥 (muscular artery) 의비대화 (medial hypertrophy), 신생혈관내막 (neointima) 형성, 그물모양병터 (plexiform lesion) 가관찰되며이는궁극적으로우심부전 (right heart failure) 을초래하여환자를사망에이르게한다 4). 폐동맥고혈압의가족력을가진가계의존재는이질환의유전적원인을찾게하였고, 세그룹에의해 transforming growth factor-β (TGF-β) superfamily의신호전달에관여하는수용체 (receptor) 의하나인 bone morphogenic protein receptor, type II (BMPR2) 유전자가유전성폐동맥고혈압을일으키는원인유전자로보고되었다 5-7). 이후같은 TGF-β superfamily 신호전달계에속하면서유전성출혈성모세혈관확장증 (hereditary hemorrhagic telangiectasia) 를유발하는것으로알려진 activin-like kinase-type 1 (ALK1) 과 endoglin (ENG) 의일부돌 - 20 -

- Young Jae Lee. Genetics in pulmonary arterial hypertension - Figure 1. Canonical TGF-β signal transduction pathway. Human has 38 TGF-β superfamily ligands including TGF-βs, BMPs, GDFs, actvins, and inhibins. TGF-β superfamily ligands bind to the heterotetrameric receptor complexes of type II receptors (TGFBR2, BMPR2, ACVR2, ACVR2B, AMHR2) and type I receptors (ALK1-7). Type III receptors (betaglycan, endoglin) can modulate their binding. Upon binding their ligands, type II receptors phosphorylate the type I receptors which, in turn, activate downstream R-SMAD proteins. Activated R-SMADs form heteromeric complexes with Co-SMAD (SMAD4) and enter into the nucleus, where they interact with diverse transcriptional factors (TF) to regulate the expression of target genes. I-SMAD proteins inhibit TGF-β signaling downstream of type I receptors. 연변이가폐동맥고혈압을유발한다는것이 2001년과 2004년에각각보고되었다 8,9). 매우드문 ALK1과 ENG 유전자의돌연변이에의한경우를제외하면 BMPR2가가장널리알려진유전성폐동맥고혈압의원인유전자로, 전체폐동맥고혈압환자의약 6% 정도를차지하는유전성폐동맥고혈압환자의약 70% 에서 BMPR2 유전자의돌연변이가발견되었고, 연구에따라차이는있지만약 10~40% 범위의특발성폐동맥고혈압환자에서 BMPR2 유전자의돌연변이가발견되었다 10-17). BMPR2 유전자의돌연변이에따른폐동맥고혈압의평생위험도 (lifetime risk) 가 10~20% 정도로낮고자연돌연변이 (spontaneous mutation) 에의한발생을감안한다면보고된것보다높은특발성폐동맥고혈압환자가 BMPR2 유전자의 돌연변이를가지고있을것으로추정된다 18). BMPR2 유전자의돌연변이를지닌유전성폐동맥고혈압환자에서보이는낮은평생위험도로보아이질환을유발하기위해서는알려진 BMPR2 등의돌연변이외에도다른유전적, 환경적요인이관여할것으로추정되며이에따라기존에알려진유전자들외에다른유전적요인을찾기위한많은연구가수행되고있으며일부연관유전자들이보고되고있다 18). TGF-β superfamily 신호전달계지금까지확인된유전성폐동맥고혈압의원인유전자들 (BMPR2, ALK1, ENG) 은모두 TGF-β superfamily 신호전달계 - 21 -

- 대한내과학회지 : 제 78 권제 1 호통권제 593 호 2010-1 2 3 45 67 8 9 10 11 12 13 (A) Genomic Structure of BMPR2 SP LBD TM KD CD (B) Protein Structure of BMPR2 Figure 2. Genomic structure (A) and protein structure (B) of BMPR2. Human BMPR2 gene consists of 13 exons encoding 1,038 amino acids. SP, signal peptide; LBD, ligand-binding domain; TM, single transmembrane domain; KD, serine/threonine kinase domain; CD, cytoplasmic domain. 에속한다 ( 그림 1). 사람에서 38개의리간드 (ligand) 가속해있는 TGF-β superfamily 는세포의성장, 분화, 이동, 사멸, extracellular matrix의형성등생명현상전반에걸쳐다양한기능을수행한다 19). TGF-β superfamily 는 TGF-βs (TGF-β1, TGF-β2, TGF-β3), BMPs, growth differentiation factors (GDFs), activins, inhibins 등의소그룹으로나뉜다. 이사이토카인 (cytokines) 들은세포막에존재하는두종류 (type I과 type II) 의 serine/threonine 키나아제 (kinase) 수용체들에결합하여세포내로신호를전달한다. Type I 수용체에는 7개의수용체 (ALK1-7) 가속하고 type II 수용체에는 5개의수용체 (TGFBR2, BMPR2, ACVR2, ACVR2B, AMHR2) 가속한다 19). TGF-β superfamily 리간드와 type I, type II 수용체들간의결합은 type III 수용체 (TGFBR3, ENG 등 ) 에의해조절되기도하며리간드와수용체의결합은항상활성화되어있는 type II 수용체의 serine/threonine 키나아제도메인 (domain) 으로하여금 type I 수용체의인산화를유도하고인산화에의해활성화된 type I 수용체는세포질내에서전달자역할을하는 SMAD 단백질들 (SMAD1-8) 을인산화시켜핵내로신호를전달하게한다 19). SMAD 단백질들은크게 receptor regulated SMAD (R-SMAD), common mediator SMAD (Co-SMAD), Inhibitor SMAD (I-SMAD) 의세그룹으로나뉘는데 R-SMAD 는 type I 수용체에의한인산화를통해활성화된후, Co-SMAD (SMAD4) 와결합하여핵내로이동해목표하는유전자들의전사 (transcription) 를조절한다. I-SMAD (SMAD6, SMAD7) 는 SMAD 단백질들에의한신호전달을방해하는역할을하는것으로알려져있다 19). 리간드-수용체의신호를직접받는 R-SMAD는신호를주는리간드와수용체에따라크게 SMAD1/5/8 그룹과 SMAD2/3 그룹으로나뉜다. BMP 와 GDF 소그룹에속하는리간드는주로 SMAD1, SMAD5, SMAD8을활성화시키고 TGF-β와 activin, inhivin 그룹에속하는리간드는 SMAD2, SMAD3를활성화시킨다 19). 하지만혈관내피세포 (endothelial cell) 에서는 TGF-β 리간드가 SMAD 1/5/8을활성화시킨다는보고처럼 TGF-β 신호전달계가반 드시이러한전달과정을따르지는않는다 20). 또한 SMAD 단백질들을통하는이러한전형적인신호전달계외에도 TGF-β superfamily 와 mitogen activated kinase (MAPK) (p38mapk, ERK1/2) 혹은 Phosphoinositide 3-kinases (PI3K) 등의다른신호전달계와의상호작용이밝혀지면서이와관련된많은연구가진행되고있다 21-23). 유전성폐동맥고혈압원인유전자들과돌연변이 1. BMPR2 BMPR2 유전자는총 13개의 exon으로구성되어있으며여기서만들어지는 1,038개의아미노산으로구성된단백질은다른 type II TGF-β 수용체들처럼신호펩타이드 (signal peptide), 리간드결합도메인 (ligand-binding domain), single transmembrane domain, serine/threonine 키나아제도메인및세포질도메인 (cytoplasmic domain) 으로이루어져있다 ( 그림 2). BMPR2 단백질이가지는한가지구조적특징은다른 type II TGF-β 수용체들과는달리전체단백질의절반정도를구성하는매우긴세포질도메인을가지는것이다. BMP 리간드는 BMPR2 단백질의 dimer 와 ALK1 (ACVL1), ALK3 (BMPR1A) 혹은 ALK6 (BMPR1B) 의 type I 단백질들의 dimer 로이루어진 heterotetrameric 수용체와결합을하고이는 SMAD1/5/8 혹은 p38 MAPK 등을통해핵내로신호를전달하게된다 19,23). 폐동맥고혈압환자의유전자검사결과가축적됨에따라지금까지 298 종류의돌연변이가폐동맥고혈압환자의 BMPR2 유전자검사결과밝혀졌다 18). 이들돌연변이는아미노산을코드하는코돈 (codon) 이유전자암호해독 (translation) 을종결하는종료코돈 (termination codon) 으로바뀌는 nonsense mutation, 다른종류의아미노산을코드하게되는 missense mutation, 한개혹은두개의뉴클레오타이드 (nucleotide) 삽입 (insertion) 및결손 (deletion) 에의한 frame-shift mutation, 스플라이싱과정에필요한뉴클레어타이드의돌연변이 - 22 -

- 이영재. 폐동맥고혈압과관련된유전자연구 - 로스플라이싱에이상이생기는 splice-site mutation, 넓은범위에서게놈 DNA의중복혹은결손 (gene duplication/deletion mutation) 등으로나뉠수있다. 이중대부분의돌연변이 (203 종류 /298종류) 가유전자암호해독과정에서완전한 BMPR2 단백질이만들어지기전에조기종료 (premature termination) 되는 nonsense mutation (85/298), frame-shift mutation (73/298), splice-site mutation (26/298), gene duplication/deletion mutation (19/298) 이며나머지가 missene muation 이다 18). 돌연변이는 BMPR2 유전자의모든 exon에서관찰되는데 serine/threonine 키나아제도메인에서가장많은돌연변이가관찰되고그외에리간드결합도메인과세포질도메인에서도다수의돌연변이가보고되었다 11,18). 유전자암호해독의조기종료와는달리 missense mutation은전체 BMPR2 단백질을코드하는 1,038개의아미노산중하나의아미노산만이바뀌는경우가대부분이므로바뀐아미노산에의해 BMPR2 단백질의기능에이상이있는경우에만 BMPR2 유전자의돌연변이로구분된다. Serine/threonine 키나아제도메인과리간드결합도메인에 80% 이상의 missense mutation이집중되어있는것으로보아이두도메인이 BMPR2 단백질의기능에중요한역할을하는것을알수있다 11,18). 이두도메인에비해수는적지만 7개의 missense mutation이세포질도메인에서발견되는데이도메인에서의 missense mutation은 SMAD 단백질을통한전형적인 TGF-β 신호전달계의과정과는무관하고대신에 p38mapk 를항상활성화시키거나 dynein light chain Tctex-type 1D (Dynlt1b) 의인산화를방해하는등의과정을통해폐동맥고혈압을유발하는것으로추정된다 24,25). 2. ALK1, ENG BMPR2 유전자의돌연변이가유전적요인에의한폐동맥고혈압의가장큰원인이지만, 이외에도유전성출혈성모세혈관확장증의원인유전자로알려진 ALK1 및 ENG의돌연변이도역시폐동맥고혈압을유발하는것으로보고되었다 8,9,18,26-28). ALK1 유전자의돌연변이중에서 16종류의돌연변이가폐동맥고혈압환자에서발견되었으며이들중 3종류를제외하면모두 serine/threonine 키나아제도메인에서발견되었다 18). 또한, ALK1 유전자에서발견되는폐동맥고혈압과관련된 16종류의돌연변이들중 13종류의돌연변이는폐동맥고혈압과일관되게연관된다 18). ENG의경우리간드결합도메인에서발견된 4종류의돌연변이가폐동맥고혈압과연관되어있다 9,18,26-28). 이들유전자의돌연변이로유발되는대부분의폐동맥고혈압은유전성출혈성모세혈관확장증을동 반하지만매우예외적으로유전성출혈성모세혈관확장증의증상없이폐동맥고혈압증상만을보이는경우가 ALK1 유전자의돌연변이를지닌환자에서보고되었다 26,28,29). 혈관벽이두꺼워지는폐동맥고혈압의혈관이상과혈관벽이얇아지는특징을보이는유전성출혈성모세혈관확장증의혈관이상은서로상반되는것처럼보이지만원인유전자들이모두 TGF-β 신호전달계특히, BMP 소그룹의신호전달계에관련된유전자들이고유전성출혈성모세혈관확장증의또다른원인유전자가 SMAD4인것으로보아혈관형성과유지에관련된이들 BMP 신호전달계의역할에연구가집중되고있다 30,31). BMP 신호전달계와폐동맥고혈압 BMP 리간드그룹은 TGF-β superfamily 에속하는여러하위그룹의사이토카인들중에서가장큰그룹으로혈관내피세포에서는 BMP2, BMP4, BMP6, BMP9, BMP10 이, 혈관민무늬근육세포 (vascular smooth muscle cell) 에서는 BMP2, BMP4, BMP6, BMP7 이역할을하는것으로알려졌다 19,32). 폐동맥의혈관내피세포에서는유전성폐동맥고혈압의원인이되는 BMPR2, ALK1, ENG 모두가다량발현되고있으며이들은주로 BMP9 과 BMP10, 특히 BMP9 의신호를전달하여 SMAD1/5/8을인산화시키고혈관내피세포의증식및세포자멸사 (apoptosis) 를억제하는것으로알려졌다 33,34). 실제로 BMPR2 돌연변이를가지고있는환자의혈관에서는 BMPR2 의발현이현저히감소되어있으며 35) 이러한감소정도는 BMPR2 돌연변이를가진한대립유전자 (allele) 로인한감소보다심하기에또다른유전적혹은환경적요인이관여하는것으로생각되어 second hit 가설이제기되었다 36,37). 또한, BMPR2 돌연변이가찾아지지않은특발성폐동맥고혈압환자의혈관에서도역시 BMPR2 발현감소가관찰되었다 36). 이러한 BMPR2 의감소는혈관내피세포의세포자멸사를촉진하여모세혈관이전세동맥을잃게하거나이러한세포자멸사에저항할수있는혈관내피세포들의비정상적인증식으로인한그물모양병터의형성을유도하는것으로추정된다 4). 비록혈관내피세포보다는발현양이적지만혈관내피세포에서만특이적으로발현되는 ALK1, ENG와는달리 BMPR2는혈관민무늬근육세포에서도발현되며 BMP2 및 BMP4 의신호를전달하여혈관민무늬근육세포의증식을억제한다. 그러므로 BMPR2가감소된혈관계에서는혈관내피세포의세포자멸사가증가하여혈관내피세포막에이상이생 - 23 -

- The Korean Journal of Medicine: Vol. 78, No. 1, 2010 - 기고이로인해증식억제에문제가생긴혈관민무늬근육세포들이성장인자 (growth factor) 에노출되어비정상적인말초동맥의근육동맥화, 근육동맥의비대화등이일어난다는가설이제시되었다 36). 폐동맥고혈압의동물모델 BMP신호전달계의이상이폐동맥고혈압을일으키는기전을세포수준이아닌 in vivo 상태에서조사하기위해몇가지동물모델이만들어졌다. 두대립유전자를모두불능화시킨 homozygous BMPR2 (BMPR2 -/- ) 생쥐는배아의초기발생과혈관형성의이상으로죽고 38) 폐동맥고혈압환자처럼한대립유전자만을불능화시킨 heterozygous BMPR2 (BMPR2 +/- ) 생쥐는정상생쥐와차이를보이지않지만 39) 폐에서 interleukin-1를과발현시키거나 40) 세로토닌 (serotonin) 을주입했을때 39) 정상대조군에비해높은빈도로폐고혈압증상을보였다. 유전적요인을조사하기위해우리는 BMPR2 유전자를혈관내피세포특이적으로불능화시킬수있는생쥐를이용하였다 41). 이결과정상대조군에서는우심실수축기압 (right ventricular systolic pressure) 이모두 30 mmhg 이하인데비해 BMPR2의한대립유전자가혈관내피세포에서불능화된경우 20%, 두대립유전자모두가불능화된경우는 39% 의생쥐에서 30 mmhg 이상의비정상적인우심실수축기압이관찰되었으며이러한이상수축기압을보이는생쥐에서만우실비대, 말초동맥의비대화및근육동맥화증상을볼수있었다. 이러한동물모델을이용한실험들은 BMPR2 유전자의돌연변이에따른폐동맥고혈압의평생위험도가 10~20% 정도로낮은것과더불어 BMPR2 유전자의돌연변이를지닌사람에서폐동맥고혈압이유발되기위해서는또다른유전적혹은환경적요인이필요하다는 second-hit 가설을지지하는결과이다. 폐동맥고혈압연관유전자확실한유전성폐동맥고혈압을보이는가계의유전자검사에서기존에알려진원인유전자인 BMPR2, ALK1, ENG의돌연변이가밝혀지지않은것은 promoter 혹은 enhancer 부위처럼이들유전자들에대한유전자검사범위를넘어선위치에서의돌연변이가능성을제외하더라도다른원인유전자혹은 modifier 유전자의존재를배제할수없게하며실제로여러후보유전자들이조사되고있다. 폐동맥민무늬근육 세포에서막전위 (membrane potential), 혈관긴장도 (vascular tone), 증식, 세포자멸사등에관여하는 potassium voltagegated channel, shaker-related subfamily, member 5 (KCNA5) 42), 폐혈관수축및민무늬근육세포의증식에관여하는 serotonin의수송체인 solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 (SLC6A4) 43-45), 혈관확장및항응집제로서의기능을지닌 prostacyclin의생합성과정에필요한 prostaglandin I2 (prostacyclin) synthase (PTGIS) 46), angiotensin I을혈관수축기능을하는 angiotensin II로만드는 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 (ACE) 47,48), R-SMAD 의하나인 SMAD8 49) 등이그예이다. 유전자검사및유전상담 1. 유전자검사방법폐동맥고혈압의원인유전자로알려진 BMPR2, ALK1, ENG의유전자검사는 BMPR2에대해우선적으로실시되며유전성출혈성모세혈관확장증의증세가보일경우 ALK1과 ENG 유전자에대한검사를실시하게된다. 검사방법은대상유전자의 exon과스플라이싱 (splincing) 과정에필요한 exon 주변의 splice-site를포함하는게놈 DNA (genomic DNA) 를중합효소연쇄반응 (Polymerase Chain Reaction, PCR) 을이용하여증폭하고직접적인유전자염기서열분석을통해돌연변이를찾아낸다. 이러한방법으로찾아낼수없는넓은범위의유전자중복및결손 (gene duplication/deletion mutation) 은 melting curve analysis, denaturing high-performance liquid chromatography, Southern blotting, multiplex ligation-dependent probe amplification (MLPA) 50) 등의방법으로찾아낸다. 이들방법중 MLPA 방법은한번의실험으로 BMPR2, ALK1, ENG 세유전자의 exon 부위가얼마나샘플내에존재하는지를알수있어정상인의샘플과환자의샘플을비교함으로써넓은범의의유전자결함을알수있어 exon에대한염기서열분석으로돌연변이를찾지못한경우의초기스크리닝방법으로많이사용되고있다. 2. 유전상담대상으로하는유전병의유전형과질환사이에높은상관관계가있고유전검사에의한유전병의조기발견이질환의치료에많은도움을주는경우유전자검사와환자와의유전상담 (genetic counseling) 은매우효과적이다. 하지만폐동맥고혈압환자의경우 13개의 exon으로구성된매우긴 - 24 -

- Young Jae Lee. Genetics in pulmonary arterial hypertension - BMPR2 유전자를조사해야하는기술적인문제를포함해서돌연변이를가지더라도 10~20% 의낮은발병률을보이고돌연변이를가진것을미리알게되더라도실질적으로폐동맥고혈압의발생을막을방법이없는이질환의특성상유전자검사와유전상담에어려움이있다. 하지만아직발병하지않은가계원에대해지속적인폐동맥고혈압검사가필요한유전성폐동맥고혈압을지닌가계의경우유전자검사를통해돌연변이를가지지않은가계구성원을이검사에서제외할수있는장점이있다. 또한특발성폐동맥고혈압환자에서의유전자검사는 BMPR2 혹은다른원인유전자의돌연변이에의한폐동맥고혈압의가능성을검사할수있어가계구성원의폐동맥고혈압조기진단에도움을줄수있다. 유전자검사가지니는여러장점에도불구하고검사의결과는가계구성원들간에많은정신적문제를야기할수있으므로유전상담은많은주의를필요로한다. 중심단어 : 폐동맥고혈압 ; BMPR2; ALK1; ENG; 유전자검사 REFERENCES 1) Gaine SP, Rubin LJ. Primary pulmonary hypertension. Lancet 352:719-725, 1998 2) Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173:1023-1030, 2006 3) Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43-54, 2009 4) Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118:2372-2379, 2008 5) Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-ii gene. Am J Hum Genet 67:737-744, 2000 6) International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81-84, 2000 7) Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips JA 3rd, Loyd JE. Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345:319-324, 2001 8) Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, Humbert M, Nichols WC, Morrell NW, Berg J, Manes A, McGaughran J, Pauciulo M, Wheeler L. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 345:325-334, 2001 9) Chaouat A, Coulet F, Favre C, Simonneau G, Weitzenblum E, Soubrier F, Humbert M. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59:446-448, 2004 10) Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 107:216-223, 1987 11) Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Gruenig E, Janssen B, Koehler R, Seeger W, Eickelberg O, Olschewski H, Elliott CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewczyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Kyotani S, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW, Trembath RC. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27:121-132, 2006 12) Cogan JD, Vnencak-Jones CL, Phillips JA 3rd, Lane KB, Wheeler LA, Robbins IM, Garrison G, Hedges LK, Loyd JE. Gross BMPR2 gene rearrangements constitute a new cause for primary pulmonary hypertension. Genet Med 7:169-174, 2005 13) Aldred MA, Vijayakrishnan J, James V, Soubrier F, Gomez-Sanchez MA, Martensson G, Galie N, Manes A, Corris P, Simonneau G, Humbert M, Morrell NW, Trembath RC. BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat 27:212-213, 2006 14) Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 37:741-745, 2000 15) Souza R, Humbert M, Sztrymf B, Jaïs X, Yaïci A, Le Pavec J, Parent F, Hervé P, Soubrier F, Sitbon O, Simonneau G. Pulmonary arterial hypertension associated with fenfluramine exposure: report of 109 cases. Eur Respir J 31:343-348, 2008 16) Aldred MA, Machado RD, James V, Morrell NW, Trembath RC. - 25 -

- 대한내과학회지 : 제 78 권제 1 호통권제 593 호 2010 - Characterization of the BMPR2 5'-untranslated region and a novel mutation in pulmonary hypertension. Am J Respir Crit Care Med 176:819-824, 2007 17) Machado RD, Koehler R, Glissmeyer E, Veal C, Suntharalingam J, Kim M, Carlquist J, Town M, Elliott CG, Hoeper M, Fijalkowska A, Kurzyna M, Thomson JR, Gibbs SR, Wilkins MR, Seeger W, Morrell NW, Gruenig E, Trembath RC, Janssen B. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am J Respir Crit Care Med 173:793-797, 2006 18) Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA 3rd, Soubrier F, Trembath RC, Chung WK. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54:S32-42, 2009 19) Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23:787-823, 2002 20) Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12:817-828, 2003 21) Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses. J Cell Biochem 102:593-608, 2007 22) Hassel S, Eichner A, Yakymovych M, Hellman U, Knaus P, Souchelnytskyi S. Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4:1346-1358, 2004 23) Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053-1063, 2005 24) Machado RD, Rudarakanchana N, Atkinson C, Flanagan JA, Harrison R, Morrell NW, Trembath RC. Functional interaction between BMPR-II and Tctex-1, a light chain of Dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum Mol Genet 12:3277-3286, 2003 25) Rudarakanchana N, Flanagan JA, Chen H, Upton PD, Machado R, Patel D, Trembath RC, Morrell NW. Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet 11:1517-1525, 2002 26) Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, Elliott CG, Robbins IM, Olschewski H, McLaughlin V, Gruenig E, Kermeen F, Halme M, Räisänen-Sokolowski A, Laitinen T, Morrell NW, Trembath RC. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet 40:865-871, 2003 27) Mache CJ, Gamillscheg A, Popper HH, Haworth SG. Early-life pulmonary arterial hypertension with subsequent development of diffuse pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia type 1. Thorax 63:85-86, 2008 28) Harrison RE, Berger R, Haworth SG, Tulloh R, Mache CJ, Morrell NW, Aldred MA, Trembath RC. Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111:435-441, 2005 29) Fujiwara M, Yagi H, Matsuoka R, Akimoto K, Furutani M, Imamura S, Uehara R, Nakayama T, Takao A, Nakazawa M, Saji T. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ J 72:127-133, 2008 30) Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852-859, 2004 31) Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, Pyeritz RE, Marchuk DA. SMAD4 mutations found in unselected HHT patients. J Med Genet 43:793-797, 2006 32) Upton PD, Morrell NW. TGF-beta and BMPR-II pharmacology--implications for pulmonary vascular diseases. Curr Opin Pharmacol 9:274-280, 2009 33) David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953-1961, 2007 34) Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209-217, 2006 35) Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672-1678, 2002 36) Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20-31, 2009 37) Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J. Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292:L1473-1479, 2007 38) Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda - 26 -

- 이영재. 폐동맥고혈압과관련된유전자연구 - T, Miyazono K. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249-258, 2000 39) Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, Southwood M, James V, Trembath RC, Morrell NW. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818-827, 2006 40) Song Y, Jones JE, Beppu H, Keaney JF, Jr., Loscalzo J, Zhang YY. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553-562, 2005 41) Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722-730, 2008 42) Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, Nicholson A, Rana BK, Channick RN, Rubin LJ, O'connor DT, Yuan JX. Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837-1853, 2007 43) Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simonneau G, Dartevelle P, Hamon M, Adnot S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 108:1141-1150, 2001 44) Koehler R, Olschewski H, Hoeper M, Janssen B, Grunig E. Serotonin transporter gene polymorphism in a cohort of German patients with idiopathic pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Chest 128:619S, 2005 45) Willers ED, Newman JH, Loyd JE, Robbins IM, Wheeler LA, Prince MA, Stanton KC, Cogan JA, Runo JR, Byrne D, Humbert M, Simonneau G, Sztrymf B, Morse JA, Knowles JA, Roberts KE, McElroy JJ, Barst RJ, Phillips JA 3rd. Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 173:798-802, 2006 46) Amano S, Tatsumi K, Tanabe N, Kasahara Y, Kurosu K, Takiguchi Y, Kasuya Y, Kimura S, Kuriyama T. Polymorphism of the promoter region of prostacyclin synthase gene in chronic thromboembolic pulmonary hypertension. Respirology 9:184-189, 2004 47) Abraham WT, Raynolds MV, Badesch DB, Wynne KM, Groves BM, Roden RL, Robertson AD, Lowes BD, Zisman LS, Voelkel NF, Bristow MR, Perryman MB. Angiotensin-converting enzyme DD genotype in patients with primary pulmonary hypertension: increased frequency and association with preserved haemodynamics. J Renin Angiotensin Aldosterone Syst 4:27-30, 2003 48) Aldashev AA, Sarybaev AS, Sydykov AS, Kalmyrzaev BB, Kim EV, Mamanova LB, Maripov R, Kojonazarov BK, Mirrakhimov MM, Wilkins MR, Morrell NW. Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. Am J Respir Crit Care Med 166:1396-1402, 2002 49) Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46:331-337, 2009 50) Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57, 2002-27 -