Korean J. Plant Res. 27(2):174-182(2014) http://dx.doi.org/10.7732/kjpr.2014.27.2.174 Print ISSN 1226-3591 Online ISSN 2287-8203 Original Research Article 토양종류와광조건이희귀특산식물연화바위솔및울릉연화바위솔규격묘특성에미치는영향 이수광 1, 이동준 2, 김효연 1, 구자정 1 * 1 국립수목원산림자원보존과, 2 울릉군농업기술센터 Effects of Soil Type and Light Condition on Seedling Quality of Rare and Endemic Plants Orostachys iwarenge and Orostachys iwarenge for. magnus Su Gwang Lee 1, Dong Jun Lee 2, Hyo Yun Kim 1 and Ja Jung Ku 1 * 1 Plant Conservation Division, Korea National Arboretum, Pocheon 487-821, Korea 2 Ulleunggun Agricultural Technology Service Center, Ulleunggun 799-802, Korea Abstract - This study was carried out to investigated the effects of soil type and light condition on seedling quality of rare and endemic plants Orostachys iwarenge and Orostachys iwarenge for. magnus. The best seedling quality of O. iwarenge and O. iwarenge for. magnus seedling were shown in Klasmann soil at non-shading or LED (Red+Blue) condition, 50% shading or LED (Red+Blue) condition, respectively. Survival of O. iwarenge seedling was not influenced by the period of experiment but survival of O. iwarenge for. magnus seedling in sandy soil conditions decreased significantly. Results of correlation analysis of seedling quality and survival rate, indicated that O. iwarenge showed a correlation of 0.8 or more at plant height, leaf length and fresh weight. O. iwarenge for. magnus showed a correlation of 0.8 or more at plant height, leaf width and leaf length. Especially, seedling survival of O. iwarenge and O. iwarenge for. magnus showed a correlation of 0.8 or more at first seedling survival and second seedling survival. It was important to manage the early seedling stages of O. iwarenge and O. iwarenge for. magnus. Therefore, seedlings with plant height (over 2.5 4 cm ) and root length (over 3 5 cm ) were grown vigorously at 35 days after the seedling was transplanted in mid-april in Klasmann soil of 72 plug cell tray at LED (Red+Blue) conditions. Key words - Orostachys iwarenge, Orostachys iwarenge for. magnus, Plug seedling, Seedling growth, Light condition 서언 돌나물과 (Crassulaceae) 에속하는바위솔속 (Orostachys) 식물은국내에 12종이분포하며 (Lee, 2006), 독특한형태와다양한약리효능및강한생명력때문에여러분야에사용가능한유용자원식물이다. 바위솔속식물중에서도연화바위솔 (Orostachys iwarenge) 과울릉연화바위솔 (O. iwarenge for. magnus) 은꽃이연꽃을닮아연화바위솔이라불리며울릉연화바위솔은울릉도에서만자생하는특산식물로잎이넓은타원형이고수술이주황색인점이연화바위솔과의차이점이다 (Lee, 2006). * 교신저자 (E-mail) : jjku@forest.go.kr 연화바위솔은산림청 (Korea National Arboretum, 2009) 에서국제단위의취약종 (vulnerable, VU) 으로지정되어있으나, 특산식물울릉연화바위솔은아직까지제대로평가되지못하고있는실정이다. 게다가연화바위솔과울릉연화바위솔은주로암벽에드물게자생하지만관상가치와약리효능때문에무분별하게채취되고있다. 바위솔속식물은약용, 지피조경및실내분화용으로수요가급증함에따라증식및재배와관련된연구가주를이루어현재까지차광이생육에미치는영향 (Lee and Bang, 1998; Kim et al., 2003; Hong et al., 2006) 과분화재배를위한연구 (Chon et al., 2011; Jeong et al., 2012) 등이진행된바있다. 하지만대량생산을위한기초단계인규격묘생산과그특징을구명한연구는아직까지진행된바없이농가에서경험에의해수행되고있 c 본학회지의저작권은 ( 사 ) 한국자원식물학회지에있으며, 이의무단전재나복제를금합니다. This is an Open-Access article distributed under the terms of the Creative Commons -174- Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
토양종류와광조건이희귀특산식물연화바위솔및울릉연화바위솔규격묘특성에미치는영향 는실정이다. 유용자원식물의종자발아및규격묘생산연구는산업화를위해서반드시선행되어야하는필수조건이다 (Park et al., 2004). 특히규격묘생산을위해서는적절한배양토와환경 ( 광량, 온도및습도 ) 조건등이규격묘특성조사를바탕으로밝혀져야한다 (Choi et al., 1997). 희귀특산식물인연화바위솔과울릉연화바위솔의종보존을위한효율적인대량증식방법과고부가실생묘개발을위한규격묘생산연구가필요한시점이다. 따라서본연구는토양종류와광조건이연화바위솔과울릉연화바위솔규격묘특성에미치는영향을조사하기위해수행되었다. 재료및방법공시재료본연구에사용된종자는국립수목원유용식물증식센터 ( 경기도양평소재 ) 에식재된연화바위솔 (2009 년도제주도채집 ) 과울릉연화바위솔 (2009년도울릉도채집 ) 로부터 2013년 2월 1일에채취하여정선한뒤사용하기전까지 2 냉장보관하였다. 연화바위솔과울릉연화바위솔종자는크기 1 mm이하의미립종자로 (Kang et al., 2010) 상토 ( 바로커, 서울바이오, 한국 ) 를 4 cm높이로채운육묘상자 (33 48 8.5 cm ) 에 3월 12일흩뿌림파종하였고복토는하지않았다. 파종 30일후인 4월 12일에지상부 2 mm, 지하부 3 mm이상으로발아한건전한유묘를본연구의공시재료로사용하였으며, 토양종류를달리한트레이에이식하여차광정도와 LED 광질의광조건에따른생육반응을조사하였다. 설치하여적색과청색의혼합처리 (Red+Blue, 1:1, 7,500 lx, 110 µ mol m -2 s -1 ), 적색 (Red, 660 nm, 8,500 lx, 55 µ mol m -2 s -1 ), 청색 (Blue, 450 nm, 5,000 lx, 55 µ mol m -2 s -1 ) 등 3조건으로실시하였다. 광량 (lux, quantity of light) 은조도계 (INS Digital Lux Meter, Dx-100, Taipei) 와휴대용광합성측정장치 (LCi Portable Photosynthesis System, ADC, UK) 를이용하여구름없는맑은날오전 8시에서 10시사이 5반복으로측정하였다. 관수는 1일 2회 (08:00 시, 17:00 시 ) 를원칙으로하였으며, 실험기간중따로시비는않았다. 각처리당생육조사는초장, 엽수, 엽폭, 엽장, 근장, 지상부및지하부생체중 ( mg ) 등에대하여각처리당 3개체씩 3반복으로 5월 16일 ( 파종 64일후, 이식 34일후 ) 에측정하였다. 연화바위솔과울릉연화바위솔의처리별생존율은 5월 16일 ( 파종 64일후, 이식 34일후 ) 과 6월 3일 ( 파종 82일후, 이식 52일후 ) 2회에걸쳐조사하였다. 모든실험은경기도양평군용문면에위치한국립수목원유용식물증식센터온실내에서진행되었다. 통계처리연화바위솔, 울릉연화바위솔의생육특성 ( 초장, 엽수, 엽폭, 엽장, 근장, 지상부및지하부생체중 ) 과생존율 (5월 16일, 6월 3일 ) 의상관관계는 Pearson 의상관계수를이용하여분석하였다. 모든통계처리는 SPSS (ver. 12.0 Kor) 프로그램을사용하였다. 집단간변이분석은이원배치변량분석 (two-way ANOVA) 을통해실시하였으며, 유의성이있는경우 Duncan multiple range test (P=0.05) 로 2차검증을실시하였다. Pearson 의상관계수는상관분석의이변량상관계수를각각이용하였다. 토양종류및광조건에따른규격묘특성토양종류는클라스만 (potgrond H, Klasmann-Deilmann, Germany), 클라스만 + 마사토 (2:1, v/v), 마사토등 3조건으로처리하였으며, 유묘는토양이충진된 72구트레이의각셀마다한개체씩이식하여 24 묘씩 3반복으로처리하였다. 광조건은차광과 LED (light emitting diode) 를달리하여처리하였으며, 차광처리는농업용차광망 (50%, 80%) 을설치하여온실내대조구 (46,000 53,000 lx, 920 1,150 µ mol m -2 s -1, 실외 66,000 86,000 lx, 1,500 µ mol m -2 s -1 ), 50% 차광 (19,000 23,000 lx, 440 590 µ mol m -2 s -1 ), 80% 차광 (10,000 14,000 lx, 130 270 µ mol m -2 s -1 ) 등 3조건으로실시하였다. LED 처리는비닐온실내무차광처리조건에 LED 조명기기 (16h:8h, 명 : 암 ) 를 결과및고찰토양종류및광조건에따른규격묘특성연화바위솔의규격묘생육특성에토양종류와광조건이미치는영향을알아보기위해 34일간양묘하여생육특성을조사한결과는다음과같다 (Table 1, Fig. 1). 초장의생육은클라스만상토의무차광처리조건에서 42 mm로가장높게나타났으며, 엽장, 지상부생중량도비슷한경향을보였다. 엽수는클라스만상토의 80% 차광처리조건에서 13매로가장많았으며, 그다음으로클라스만상토의 LED 청색및혼합처리조건에서 12매정도로나타났다. 엽폭은마사토의 LED 혼합처리조건에서 14 mm로나타났으며, 그다음으로클라스만상토의무차광처리조건 -175-
韓資植誌 Korean J. Plant Res. 27(2) : 174~182(2014) Table 1. Effects of soil type and shading, LED light quality on the seedling quality of Orostachys iwarenge Soil type Light condition Plant height Leaf width Leaf length Root length Fresh weight ( mg /plant) No. of leaves ( mm ) ( mm ) ( mm ) ( mm ) Top Root Klasmann Control 42.4 ± 2.8a z 11.6 ± 0.5ab 12.2 ± 2.1 34.9 ± 0.9a 57.2 ± 5.6a 2,832 ± 530a 83 ± 28b Klasmann+Sand 22.2 ± 1.3d 9.6 ± 1.5bc 7.2 ± 3.1 18.1 ± 0.5c 40.2 ± 8.3c 762 ± 185d 93 ± 20b Sand 12.8 ± 0.3f 6.6 ± 1.1e 5.4 ± 0.8 9.9 ± 1.8e 36.8 ± 7.3cd 254 ± 102e 30 ± 26cd Klasmann 50% shading 32.3 ± 2.1c 11.3 ± 1.1ab 8.6 ± 0.8 21.8 ± 2.6b 37.1 ± 9.2cd 954 ± 56cd 23 ± 13d Klasmann+Sand 20.0 ± 1.4de 9.0 ± 1.0c 6.0 ± 0.6 13.1 ± 2.1de 28.8 ± 4.1e 323 ± 23e 5 ± 1e Sand 14.2 ± 1.4ef 9.0 ± 1.0c 7.0 ± 2.5 10.7 ± 2.1e 30.5 ± 2.1d 238 ± 34e 20 ± 8cd Klasmann 80% shading 31.2 ± 0.4c 13.3 ± 1.1a 8.7 ± 2.7 23.9 ± 2.1b 49.3 ± 3.5ab 1,247 ± 109c 73 ± 22b Klasmann+Sand 17.6 ± 2.3e 8.6 ± 1.1cd 6.2 ± 0.7 11.5 ± 1.1e 19.7 ± 6.1f 297 ± 69e 3 ± 2e Sand 16.2 ± 1.9e 8.6 ± 1.1cd 5.8 ± 0.3 9.9 ± 2.1e 35.1 ± 2.7d 228 ± 51e 23 ± 12cd Klasmann LED (Red+Blue) 30.8 ± 1.5c 12.0 ± 0.5ab 10.6 ± 2.5 15.0 ± 1.6d 53.2 ± 7.7ab 1,738 ± 186b 133 ± 12a Klasmann+Sand 29.3 ± 1.2c 10.0 ± 1.0b 9.2 ± 1.8 18.4 ± 2.7c 58.4 ± 2.9a 1,691 ± 257b 121 ± 15ab Sand 8.9 ± 1.8g 8.0 ± 0.5d 14.5 ± 1.6 6.8 ± 2.1f 37.8 ± 4.7cd 170 ± 130ef 22 ± 19cd Klasmann LED (Red) 25.5 ± 0.5cd 11.6 ± 0.6ab 8.4 ± 0.7 15.2 ± 2.0d 39.5 ± 2.5cd 874 ± 95d 40 ± 23c Klasmann+Sand 22.7 ± 1.6d 10.3 ± 1.5b 7.2 ± 0.8 13.3 ± 3.1de 41.6 ± 9.4c 836 ± 136d 59 ± 25c Sand 12.0 ± 1.1f 9.0 ± 1.0c 6.7 ± 2.1 7.9 ± 1.7ef 38.3 ± 4.9cd 147 ± 41f 17 ± 10d Klasmann LED (Blue) 35.9 ± 3.2b 12.3 ± 0.5ab 8.3 ± 0.3 19.6 ± 2.3bc 44.6 ± 4.5bc 1,021 ± 284c 42 ± 21c Klasmann+Sand 27.2 ± 2.1cd 9.6 ± 1.5bc 8.1 ± 1.1 15.9 ± 2.3d 40.3 ± 5.8c 802 ± 106d 54 ± 21c Sand 14.7 ± 0.4ef 8.3 ± 1.1d 6.4 ± 0.3 11.1 ± 3.4e 46.3 ± 3.9b 301 ± 26e 68 ± 11bc Significance Soil type (S) *** *** ns *** ** *** *** Light quality (L) *** ns ns *** *** *** *** (S) (L) *** ns ns *** ** *** *** z Mean separation within columns by Duncan s multiple range test at P = 0.05. ns Non significant. * Significant at the 5% level. ** Significant at the 1% level. *** Significant at the 0.1% level. 에서 12 mm로나타났다. 엽장과지상부생중량은클라스만상토의무차광처리조건에서각각 34 mm와 2,832 mg으로가장우수하였고, 다른처리조건에비해뚜렷한차이를보였다. 지하부생중량은클라스만상토의 LED 혼합처리조건에서 133 mg으로가장우수하였으며, 그다음으로 LED 적색처리조건에서 121 mg으로나타났다. 이러한결과로부터연화바위솔규격묘생산을위한상토는클라스만상토, 광조건은무차광처리혹은 LED 혼합처리가가장적합한것으로판단된다. 울릉연화바위솔의규격묘생육특성에토양종류와광조건이미치는영향을알아보기위해 34일간양묘하여생육특성을조사한결과는다음과같다 (Table 2, Fig. 2). 초장의생육은클라스만상토의무차광처리조건에서 31 mm로가장높게나타났으며, 엽폭과엽장도비슷한경향을보였다. 엽수는 LED 혼합처 리조건에서 13매로가장많았으며, 그다음으로클라스만상토의무차광처리조건에서 12매정도로나타났다. 엽폭과엽장은클라스만상토의무차광처리조건에서각각 15 mm와 24 mm로가장우수하였으며, 다른처리구에비해뚜렷한차이를보였다. 근장은클라스만 + 마사토의무차광처리조건에서 39 mm로가장길었으며, 그다음으로클라스만상토의 LED 청색처리조건에서 31 mm로나타났다. 지상부및지하부생중량은클라스만상토의 LED 혼합처리조건에서각각 659 mg과 36 mg으로가장우수하였으며, 다른조건에비해뚜렷한차이를보였다. 그다음으로클라스만상토의 50% 차광처리와 LED 청색처리조건에서각각 552 mg과 11 mg그리고 477 mg과 26 mg으로나타났다. 이러한결과로부터울릉연화바위솔규격묘생산을위한상토는클라스만상토, 광조건은 LED 혼합처리가가장적합한것으로판단된다. -176-
토양종류와광조건이희귀특산식물연화바위솔및울릉연화바위솔규격묘특성에미치는영향 Table 2. Effects of soil type and shading, LED light quality on the seedling quality of O. iwarenge for. magnus Soil Type Light condition Plant height Leaf width Leaf length Root length Fresh weight ( mg /plant) No. of leaves ( mm ) ( mm ) ( mm ) ( mm ) Top Root Klasmann Control 31.8 ± 3.5a z 12.3 ± 1.5a 15.8 ± 1.7a 24.1 ± 0.7a 25.7 ± 5.7bc 284 ± 61cd 6 ± 1cd Klasmann+Sand 24.2 ± 1.5b 7.0 ± 0.2e 10.6 ± 0.3b 19.2 ± 1.6b 39.2 ± 9.1a 222 ± 45cd 3 ± 2cd Sand 14.2 ± 4.4cd 6.6 ± 0.5ef 3.5 ± 0.2f 7.0 ± 1.2f 23.6 ± 4.4c 61 ± 15ef 10 ± 2c Klasmann 50% shading 26.1 ± 2.7b 9.6 ± 1.1bc 7.8 ± 1.5c 21.4 ± 1.9a 25.7 ± 10.1bc 552 ± 223a 11 ± 3c Klasmann+Sand 17.4 ± 0.3c 8.3 ± 0.5d 4.1 ± 0.5ef 11.1 ± 1.6e 12.6 ± 5.2e 181 ± 27d 4 ± 2cd Sand 10.8 ± 2.9de 8.0 ± 0.5d 5.1 ± 2.6e 8.2 ± 3.1ef 18.7 ± 9.3cd 63 ± 9ef 2 ± 1cd Klasmann 80% shading 20.3 ± 4.3bc 9.0 ± 1.7c 6.6 ± 0.3de 14.2 ± 2.8d 11.9 ± 2.2e 243 ± 65cd 1 ± 1cd Klasmann+Sand 12.7 ± 1.7d 9.3 ± 1.1c 4.2 ± 0.4ef 9.1 ± 0.9e 10.5 ± 6.4f 325 ± 125c 1 ± 1cd Sand 8.3 ± 0.6e 7.0 ± 1.7e 3.3 ± 0.5f 6.0 ± 0.9fg 12.8 ± 5.6e 38 ± 13f 2 ± 2cd Klasmann LED (Red+Blue) 24.7 ± 2.3b 13.6 ± 1.5a 8.1 ± 0.6c 20.1 ± 1.8ab 30.8 ± 2.9ab 659 ± 96a 36 ± 11a Klasmann+Sand 13.2 ± 1.8cd 8.6 ± 1.1cd 5.7 ± 0.7e 10.2 ± 1.2e 24.0 ± 1.5bc 190 ± 44d 11 ± 7c Sand 5.3 ± 1.8f 6.6 ± 1.1ef 2.2 ± 0.4g 3.5 ± 1.1g 8.3 ± 4.7g 22 ± 14f 9 ± 1cd Klasmann LED (Red) 15.0 ± 3.3cd 10.0 ± 0.5bc 5.4 ± 0.9e 11.2 ± 3.5e 18.0 ± 2.7cd 188 ± 81d 5 ± 2cd Klasmann+Sand 12.3 ± 0.5d 9.3 ± 1.2c 5.2 ± 0.1e 9.6 ± 1.1e 14.6 ± 1.8de 106 ± 13de 5 ± 1cd Sand 7.8 ± 0.2e 7.6 ± 0.5e 4.2 ± 0.7ef 6.9 ± 2.6fg 21.0 ± 6.1c 64 ± 14ef 5 ± 4cd Klasmann LED (Blue) 23.3 ± 4.9b 10.3 ± 0.6b 6.9 ± 0.3de 16.7 ± 1.4c 31.4 ± 7.1a 477 ± 174ab 26 ± 8b Klasmann+Sand 12.7 ± 5.1d 8.6 ± 1.2cd 5.6 ± 0.5e 10.1 ± 1.3e 20.7 ± 1.2c 155 ± 74de 3 ± 2cd Sand 7.1 ± 0.2e 6.0 ± 1.2f 3.8 ± 0.8f 5.0 ± 1.3fg 15.5 ± 9.5d 40 ± 15f 2 ± 2cd Significance Soil type (S) *** *** *** *** ** *** *** Light quality (L) *** ns *** *** *** ns *** (S) (L) ns *** *** *** * * *** z Mean separation within columns by Duncan s multiple range test at P = 0.05. ns Non significant. * Significant at the 5% level. ** Significant at the 1% level. *** Significant at the 0.1% level. 연화바위솔과울릉연화바위솔은돌나물과바위솔속내의근연관계에있기때문에동일한환경요인 ( 토양 : 클라스만, 광조건 : LED 혼합 ) 에서우수한생육특성을보였으나규격묘생육특징은종에따라큰차이를보였다 (Table 1, 2). 이는연화바위솔과울릉연화바위솔이근연관계에있더라도모수가적응한자생지의지리 환경차이 (Sinjushin and Akopian, 2011) 때문인것으로사료된다. 토양종류와광조건에따른연화바위솔생육특성의 ANOVA 분석결과, 토양종류는엽폭을제외한대부분의생육특성에서고도의유의성이인정되었으며광조건및토양과광조건의상호작용또한엽수와엽폭을제외한대부분의생육특성에서유의성이인정되었다 (Table 1). 그리고토양종류와광조건에따른울릉연화바위솔생육특성의 ANOVA 분석결과, 토양종류는 모든생육특성에서고도의유의성이인정되었으며광조건은엽수와지상부를제외한생육특성에서유의성이인정되었다 (Table 2). 토양종류와광조건의상호작용또한엽수와엽폭을제외한대부분의생육특성에서유의성이인정되었다. 연화바위솔과울릉연화바위솔은주로절벽바위의척박한토양 ( 주로마사토 ) 에자생하는것으로알려져있으나초기생육특성을조사한결과, 두종모두마사토보다클라스만상토에서월등히우수한경향을보였다 (Table 1, 2). 클라스만상토는PH 6.0의유묘육성용상토로구조적안정성이있으며, 통기성, 배수력과보수력이우수하여표면이쉽게마르지않는장점 (Klasmann-Deilmann GmbH, 2013) 으로전문실험용으로단용및혼용하여사용되고있다 (Park et al., 2007; Son et al., 2011). 특히연화바위솔과울릉연화바위솔처럼암석지에서자 -177-
韓資植誌 Korean J. Plant Res. 27(2) : 174~182(2014) Light Control Soil 50% shading LED (Red:Blue, 1:1) 80% shading LED (Red) LED (Blue) Klasmann Klasmann :Sand (2:1, v/v) Sand Fig. 1. Effects of soil type and shading, LED light quality on the seedling growth of O. iwarenge. Light Control Soil 50% shading LED (Red:Blue, 1:1) 80% shading LED (Red) LED (Blue) Klasmann Klasmann :Sand (2:1, v/v) Sand Fig. 2. Effects of soil type and shading, LED light quality on the seedling growth of O. iwarenge for. magnus. 생하는 가시오갈피의 유묘 출현율과 생육 특성이 클라스만 상 화바위솔 분화재배시 52% 차광처리조건에서 지상부 생육특성 토에서 가장 우수하다는 보고(Li et al., 2003)와 본 연구결과가 인 초장, 유묘 폭 및 런너 개수가 우수한 결과를 보고하여(Jeong 일치하였다. et al., 2012), 본 연구결과와 유사한 경향을 나타내어 울릉연화 광 조건 중 차광조건에 따른 실험결과 연화바위솔은 무차광 처리조건에서 생육특성이 우수하였고, 울릉연화바위솔은 50% 바위솔은 연화바위솔과는 달리 반음지식물의 특성을 가졌기 때 문으로 판단된다. 차광처리조건에서 지상부 생중량이 우수하였다. 한편, 울릉연 - 178 - 광 조건 중 LED 처리에 따른 실험결과 연화바위솔과 울릉연
토양종류와광조건이희귀특산식물연화바위솔및울릉연화바위솔규격묘특성에미치는영향 화바위솔모두 LED 혼합처리조건에서가장우수한지하부생중량을나타내었고, 지상부생육특성또한양호한결과를나타냈다. 이러한결과는다육식물인월토이 (Kalanchoe tomentosa), 미니염좌 (Crassula portulacea), 청솔 (Sedum corynephyllum) 에서도적색과청색 LED 혼합처리조건에서우수한생육을보고한결과 (Song and Song, 2012) 와본연구결과가일치하였다. 인공광원으로서 LED 처리는과거에사용했던백열등에비해수명이 10 30배길고, 열이발생하지않으며, 전기에너지로부터광전 환효율이 90% 로효율적이며, 식물생산량과상품성을향상시킬수있는특징때문에널리이용되고있다 (Bang and Kim, 2012). 특히 LED 처리시유효성분함량이향상되는것과같이 (Son et al., 2012) 향후연화바위솔과울릉연화바위솔을대상으로 LED 처리에따른유효성분함량을분석하는연구도필요한것으로사료된다. 본연구에서는클라스만상토와 LED 혼합처리조건에서생육시킨연화바위솔과울릉연화바위솔규격묘의생육특성표준편 Table 3. Effects of soil type and shading, LED light quality on the survival rate of seedlings of O. iwarenge and O. iwarenge for. magnus Survival rate of O. iwarenge (%) Survival rate of O. iwarenge for. magnus (%) Soil type Light condition May 16 June 03 May 16 June 03 Klasmann Control 100 100 94.4 ab z 93.0 ab Klasmann+Sand 98.6 98.6 79.1 c 77.7 bc Sand 95.8 95.8 75.0 cd 59.7 d Klasmann 50% shading 98.6 97.2 84.7 abc 75.0 cd Klasmann+Sand 100 100 70.8 cd 69.4 cd Sand 98.6 98.6 63.8 de 59.7 d Klasmann 80% shading 98.6 98.6 79.1 c 70.8 cd Klasmann+Sand 97.2 97.2 73.6 cd 69.4 cd Sand 100 100 51.3 e 36.1 e Klasmann LED (Red+Blue) 100 100 97.2 a 94.4 a Klasmann+Sand 100 100 84.7 abc 83.3 abc Sand 100 100 73.6 cd 69.4 cd Klasmann LED (Red) 100 98.6 80.5 bc 72.2 cd Klasmann+Sand 100 100 83.3 abc 77.7 bc Sand 97.2 95.8 73.6 cd 70.1 cd Klasmann LED (Blue) 100 100 94.4 ab 91.6 ab Klasmann+Sand 100 100 72.2 cd 69.4 cd Sand 100 100 75.0 cd 68.1 cd Significance Soil type (S) * ns *** *** Light quality (L) ns ns *** *** (S) (L) ns ns ns * z Mean separation within columns by Duncan s multiple range test at P = 0.05. ns Non significant. * Significant at the 5% level. ** Significant at the 1% level. *** Significant at the 0.1% level. -179-
韓資植誌 Korean J. Plant Res. 27(2) : 174~182(2014) Table 4. Correlation coefficients among seedling quality and survival rate of O. iwarenge Characteristics Plant height Plant height 1 No. of leaves Leaf width Leaf length Root length Fresh weight (Top) Fresh weight (Root) Survival rate (5.16) Survival rate (6.03) No. of leaves 0.752** 1 Leaf width 0.186 0.186 1 Leaf length 0.860** 0.635** 0.214 1 Root length 0.516** 0.444** 0.097 0.486** 1 Fresh weight (Top) 0.860** 0.614** 0.253 0.804** 0.625** 1 Fresh weight (Root) 0.479** 0.337* 0.211 0.357** 0.640** 0.673** 1 Survival rate (5.16) 0.303* 0.373** 0.241 0.229 0.156 0.286* 0.167 1 Survival rate (6.03) 0.242 0.249 0.179 0.168 0.110 0.174* 0.237 0.823** 1 * Significant at the 5% level. ** Significant at the 1% level. Table 5. Correlation coefficients among seedling quality and survival rate of O. iwarenge for. magnus Characteristics Plant height Plant height 1 No. of leaves Leaf width Leaf length Root length Fresh weight (Top) Fresh weight (Root) Survival rate (5.16) Survival rate (6.03) No. of leaves 0.603** 1 Leaf width 0.836** 0.545** 1 Leaf length 0.949** 0.634** 0.871** 1 Root length 0.510** 0.252 0.505** 0.582** 1 Fresh weight (Top) 0.678** 0.645** 0.443** 0.697** 0.458** 1 Fresh weight (Root) 0.436** 0.581** 0.211 0.434** 0.507** 0.622** 1 Survival rate (5.16) 0.571** 0.571** 0.523** 0.622** 0.386** 0.554** 0.536** 1 Survival rate (6.03) 0.523** 0.562** 0.543** 0.593** 0.393** 0.494** 0.497** 0.861** 1 ** Significant at the 1% level. 차가다른조건과비슷하거나적게나타나실험조건중에서가장균일한규격묘를생산한것으로판단된다 (Table 1, 2; Fig. 1, 2). 묘균일도는규격묘의우수한생육특성과함께산업화의필수단계로균일한묘를생산하여야생산단가가높아지고, 정식이용이하며기계화작업이가능하다 (Kim et al., 1999). 현재균일한규격묘생산을위해플러그셀트레이육묘가적극활용되고있으며공간활용도가높고묘목의뿌리피해를최소화하며빠른이식이가능하기때문이다 (Kumar et al., 2009; Park et al., 2012). 이에비해전통적으로사용되는양묘판에뿌려발아시킨후하나씩뽑아서이식하는방식은뿌리피해가많아그만큼성장도느리고병충해에취약해져결국양질의규격묘를생산하는데단점으로작용된다 (Kumar et al., 2009). 따라서 LED 혼합처리는연화바위솔과울릉연화바위솔뿐만아니라기타바위솔속식물의우수규격묘생산에적극활용될수있을것 으로기대된다. 연화바위솔의각조건별생존율은 5월 16일 ( 파종 64일후, 이식 34일후 ) 과 6월 3일 ( 파종 82일후, 이식 52일후 ) 에 95 100% 의생존율로각조건에따른유의성을보이지않았으나울릉연화바위솔의각조건별생존율은 36 94% 로통계적으로유의적인차이를나타냈다 (Table 3). 특히육묘기간이 50일이지나면서마사토에서육묘한울릉연화바위솔의생존율이급격히감소하였다. 하지만클라스만토양의무차광처리, LED 적색과청색혼합및청색조건에서 90% 이상의우수한생존율을보여본조건이규격묘생산에최적조건으로판단되었으며추후재배를위한기초정보로의활용도가능할것으로생각된다. 연화바위솔과울릉연화바위솔의생육특성과생존율모두정의상관관계를보였다 (Table 4, 5). 연화바위솔초장은엽장및생체중 ( 지상부 ) 과의상관관계가 0.8 이상으로나타났으며, 엽 -180-
토양종류와광조건이희귀특산식물연화바위솔및울릉연화바위솔규격묘특성에미치는영향 장또한생체중 ( 지상부 ) 과상관관계가 0.8 이상으로나타났다 (Table 4). 특히유묘이식 34일후초기생존율 (5월 16일생존율 ) 은이식 52일후생존율 (6월 3일생존율 ) 과의상관관계가 0.8 이상으로높게나타났다. 울릉연화바위솔의초장은엽폭, 엽장과의상관관계가 0.8 이상으로나타났으며, 특히초장은엽장과의상관관계가 0.95 가까이나타나매우높은상관관계를보였다 (Table 5). 엽폭또한엽장과의상관관계가 0.8 이상으로나타났다. 유묘이식 34일후초기생존율 (5월 16일생존율 ) 은연화바위솔과마찬가지로이식 52일후생존율 (6월 3일생존율 ) 과의상관관계가 0.8 이상으로높게나타났다. 또한유묘이식 52일후생존율은초장, 엽수, 엽폭, 엽장및생체중 ( 지상부 ) 등과의상관관계가 0.5에가까워지상부와어느정도상관이있는것으로나타났다. 따라서울릉연화바위솔은초기생존율관리가규격묘증식에가장중요한요소로작용하고있음을확인할수있었으며, 지상부생육특성또한생존율에영향을미치는것으로나타났다. 지금까지연화바위솔과울릉연화바위솔의재배연구 (Lee and Bang, 1998; Jeong et al., 2012) 는실험전유묘크기와특성이구체적으로제시되지않아어느조건에서얼마나성장하였는지분석이불가능하였다. 다만바위솔의경우 Jeon (2006) 이유묘의조건을엽수로계산하여 대 18매, 중 13매, 소 8매로제시하였고, 본연구에서도연화바위솔과울릉연화바위솔의엽수는지상부생육특성에 0.6 의상관관계를보여어느정도상관이있는것으로인정되었다. 하지만엽수는지하부생육특성에연화바위솔 0.3 0.4, 울릉연화바위솔은 0.2 0.5 의상관관계를보여거의상관이없는것으로인정되어연화바위솔과울릉연화바위솔의엽수가유묘의전체생육특성을대표한다고볼수어렵다고판단된다 (Table 4, 5). 적요본연구는희귀식물연화바위솔과희귀특산식물울릉연화바위솔의종보존을위해양질의규격묘생산방법을구명하고자토양종류와광조건이규격묘생산에미치는영향을살펴보았다. 그결과연화바위솔과울릉연화바위솔모두클라스만토양에서우수한생육특성을나타냈다. 광조건에따른연화바위솔의생육특성은무차광처리와적색과청색 LED 혼합처리조건에서우수한생육특성을보였으며, 울릉연화바위솔은 LED 혼합처리조건과 50% 차광처리조건에서우수한생육특성을나타냈다. 울릉연화바위솔은기간이경과함에따라마사토에서생존 율이통계적으로유의성있게감소하였다. 각각의생육특성과생존율간의상관분석결과연화바위솔은초장과엽장, 지상부생체중사이에 0.8 이상의상관관계를나타냈다. 울릉연화바위솔도초장과엽폭, 엽장사이에 0.8 이상의상관관계를보였으며, 초장과지상부생체중사이에 0.65 이상의상관관계를나타내초장이지상부생육특성을대표한다는것을알수있었다. 특히연화바위솔과울릉연화바위솔모두 1차측정생존율과 2차측정생존율사이에 0.8 이상의상관관계를보여초기유묘초장과생존율관리가양질의규격묘획득에가장높은영향을미치는것으로나타났다. 따라서연화바위솔과울릉연화바위솔을 3 월중순에파종하여 30일후지상부 2 mm, 지하부 3 mm이상되는유묘를클라스만상토가충진된 72구트레이에이식하고적색과청색의 LED 혼합처리조건에 35일간육묘하면초장과근장이각각 2.5 4 cm, 3 5 cm이상되고엽수가 11매이상되는규격묘를생산할수있는것으로나타났다. References Bang, G.W. and Y.H. Kim. 2012. LED for plant growth regulators for the study of light on the device. J. Dig. Pol. and Man. 10:267-272 (in Korean). Choi, J.M., J.W. Ahn, J.H. Ku and Y.B. Lee. 1997. Effect of medium composition on physical properties of soil and seedling growth of red-pepper in plug system. J. Kor. Soc. Hort. Sci. 38:618-624 (in Korean). Chon, Y.S., S.W. Lee, K.J. Jeong, S.H. Ha, J.H. Bae and J.G. Yun. 2011. Growth and quality affected by light intensity, potting media and fertilization level in potted Orostachys Nungyu bawisol. J. Bio-Envir. Control. 20:357-364 (in Korean). Hong, D.O., C.W. Lee, H.Y. Kim, J.H. Kang, Y.S. Ryu and S.C. Shin. 2006. Shading effect on growth and flowering of Orostachys japonicus A. Berger. Korean J. Medical Crop Sci. 14:239-243 (in Korean). Jeon, S.H. 2006. Growth and flowering of Orostachys japonicus A. Berger by controlling daylengths, different temperatures and transplanted seedling sizes. MS Thesis, Gyeongsang National University, Korea. p. 5 (in Korean). Jeong, K.J., Y.S. Chon, K.O. Choi, S.H. Ha and J.G. Yun. 2012. Proper light intensity, potting media, and fertilization level for potted Orostachys iwarenge for. magnus. Korean J. Hor. Sci. Technol. 30:357-362 (in Korean). Kang, J.H., K.J. Jeong, K.O. Choi, Y.S. Chon and J.G. Yun. -181-
韓資植誌 Korean J. Plant Res. 27(2) : 174~182(2014) 2010. Morphological characteristics and germination as affected by low temperature and GA in Orostachys Jirisan and Jejuyeonhwa seeds, Korea native plant. Korean J. Hor. Sci. Technol. 28:913-920 (in Korean). Kim, S.K., B.Y. Ryu and C.H. Lee. 2003. Effect of shading on growth characteristics of several Orostachys species native to Korea. J. Korean Inst. Inte. Land. Archi. 5:1-9 (in Korean). Kim, Y.B., Y.H. Hwang and W.K. Shin. 1999. Effects of root container size and seedling age on growth and yield of tomato. J. Kor. Soc. Hort. Sci. 40:163-165 (in Korean). Klasmann-Deilmann GmbH. 2013. Easy Growing. Geeste, Germany. pp. 2-14. Korea National Arboretum. 2009. Rare Plants, Data Book of Korea. Geobook, Gyeonggi, Korea. p. 191 (in Korean). Kumar, G.N.M., F.E. Larsen and K.A. Schekel. 2009. Propagating Plants from Seed. A pacific northwest extension publication. Washington State University. USA. pp. 5-12. Lee, J.S. and K.J. Bang. 1998. Effect of daylength and light intensity on the growth and flowering of Orostachys iwarenge. J. Kor. Soc. Hort. Sci. 39:83-85 (in Korean). Lee, Y.N. 2006. New Korean Illustrated Plant Book 1. Kyohaksa, Seoul, Korea. pp. 490-494 (in Korean). Li, C.H., J.D. Lim, M.J. Kim and C.Y. Yu. 2003. Effects of GA 3 on seed germination and seedling survival rate of Acanthopanax senticosus Maxim. Korean J. Medical Crop Sci. 11:207-211 (in Korean). Park, S.Y., S.I. Kim and J.H. Jeong. 2004. Effect of compositions of media on growth of plug seedlings in several Korean native wild herbaceous plants. Flower Res J. 12:247-253 (in Korean). Park, I.S., G.J. Lee, D.S. Kim, S.J. Chung, J.B. Kim, H.S. Song, D.H. Goo and S.Y. Kang. 2007. Mutation breeding of a spray Chrysanthemum Argus by gamma-ray irradiation and tissue culture. Flower Res J. 15:52-57 (in Korean). Park, J.H., S.H. Kim, H.R. Son, W.C. Jang and J.C. Kim. 2012. Comparison of growth and constituent of Ostericum praeteritum Kitag. by seedling cultivation methods. Korean J. Plant Res. 25:586-590 (in Korean). Sinjushin, A.A. and J.A. Akopian. 2011. On seedling structure in Pisum L., Lathyrus L. and Vavilovia Fed. (Fabeae: Fabaceae). Wulfenia 18:81-93. Son, K.H., J.H. Park, D.I. Kim and M.M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hor. Sci. Technol. 30:664-672 (in Korean). Son, M.S., J.Y. Song and B.R. Jeong. 2011. Environment in apartment verandas at three floors, and change in growth of selected ornamental plants under simulated light intensities. Korean J. Agric. Life Sci. 45:43-51 (in Korean). Song, C.Y. and E.K. Song. 2012. Effects of indoor position and LED on growth of two grafted cacti and one succulent planted in a pot. Flower Res J. 20:64-70 (in Korean). (Received 21 January 2014 ; Revised 16 March 2014 ; Accepted 31 March 2014) -182-