06국306.fm

Similar documents
국706.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

국8410.fm

국9209.fm

44(3)-16.fm

43(5)-11.fm

10(3)-02(013).fm

국705.fm

12.077~081(A12_이종국).fm

10(3)-10.fm

06국305.fm

44(5)-10.fm

한1009.recover.fm

45(3)-07(박석주).fm

포천시시설관리공단 내규 제 24호 포천시시설관리공단 인사규정 시행내규 일부개정(안) 포천시시설관리공단 인사규정 시행내규 일부를 다음과 같이 개정 한다. 제17조(기간제근로자의 무기계약직 임용) 1 기간제근로자 관리규정 제16조 를 제19조 로 한다. 제20조(인사기록)

국816.fm

44(2)-08.fm

국8411.fm

43(6)-07.fm

44(2)-06.fm

PDF

44(2)-05.fm

44(2)-02.fm

10(3)-06(021).fm

untitled

국707.fm

14.531~539(08-037).fm

나사식볼밸브.indd

44(5)-03.fm

44(4)-06.fm

국906.fm

43(4)-08.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Microsoft Word - Shield form gasket.doc

14.fm

Microsoft Word _kor.doc

(최준우).fm

ePapyrus PDF Document

Lumbar spine

국9308.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Microsoft Word - KSR2013A320

44(2)-11.fm

00....

Microsoft Word _건설업_2Q12preview.doc

16(3)-08.fm

Microsoft Word - KSR2012A038.doc

DBPIA-NURIMEDIA

개최요강

제3장 21세기 제조업의 특징

본문.PDF

fm

국9409.fm

Coriolis.hwp

( )국11110.fm

Æ÷Àå½Ã¼³94š

Microsoft Word - KSR2012A172.doc

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

차례.hwp

<BAB0C3A5BABBB9AE2E687770>

121_중등RPM-1상_01해(01~10)ok

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

Áß2±âÇØ(01~56)

45(2)-02(최대근).fm

Æ÷Àå82š

DBPIA-NURIMEDIA

국8412.fm

???? 1

고등학교 수학 요약노트 - 확률과 통계

특허청구의 범위 청구항 1 청구항 2 청구항 3 청구항 4 청구항 5 물과 암모니아수와 헥산 산과 히드라진 수화수용액을 포함하는 환원액을 조정하는 조액( 調 液 )공정과, 질산은 수용액을 상기 환원액에 첨가하여 반응시키는 은 반응공정과, 상기 은 반응공정의 생성물을 회

Microsoft Word - KSR2013A291

<C7A5C1F620BEE7BDC4>

Microsoft Word - KSR2013A299

PDF

26(2)-04(손정국).fm

A 001~A 036

°ø±â¾Ð±â±â

12권2호내지합침


587.eps

KAERIAR hwp

늘푸른세상4월-136호

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

00-1CD....

Microsoft Word - KSR2012A103.doc

PJTROHMPCJPS.hwp

09È«¼®¿µ 5~152s

43(4)-06.fm

Microsoft Word - KSR2013A303

Á¦¸ñ¾øÀ½

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

19(1) 02.fm

45(3)-15(유승곤).fm

Microsoft Word - KSR2012A009.doc

베이나이트 함유 이상조직강에 관한 연구

디지털포렌식학회 논문양식

Microsoft Word - KSR2012A132.doc

82-01.fm

Microsoft Word - IT부품정보.doc

Transcription:

Carbon Science Vol. 6, No. 3 September 2005 pp. 181-187 Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite Jongmin Choi, Taejin Kim, Minsoo Hyun, Donghyun Peck, Sangkyung Kim, Byungrok Lee, Jongsoo Park* and Doohwan Jung Korea Institute of Energy Research, Daejeon 305-343, Korea *Seung Lim Carbon Metal Co., Ltd. 737-2 Wonsi-dong, Danwon-Gu, Ansan, Gyeonggi-do, Korea Ì e-mail: doohwan@kier.re.kr (Received April 25, 2005; Accepted September 16, 2005) Abstract Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~200 C and pressure of 200~300 kg/cm 2. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of 160 C and pressure of 300 kg/cm 2. These properties were close to the DOE reference criteria as bulk resistance of 13 mωcm and tensile strength of 515 kg/cm 2. Keywords : DMFC, Bipolar plate, CNT, Fuel cell, Nanocomposite 1. l rv l v vr r l v r p rp r rp q p [1]. q r v ql rv p r m p q m, l p rp qrp p r np p rol p ep p p [2]. rv p p nafion q r vp pl kyp k p p, carbon paper, carbon plate, p p (bipolar plate) lv (Fig. 1). p p l rv l l p orv pp d p v r r l l p p q dp r, r vr~ p [3-6]. l p orv l l dˆp e qtp p p p q ql rv r~ dˆ rs np k 60% p p v l [7] rso pp n tn. l p p r, r r l pl l r plm. l ~p rso p p dˆ k 20% t[8]p r rp k, r r, r pnp r kr l p qrp v p [9]. l l ˆm l rvn l p p p r r r p o r r s rp o l lp, l s l CNT(carbon nanotube) r vr 3~7 wt% ~ l ~ m k l, r r r p m. 2. Fig. 1. Schematic view of the single cell assembly

182 J. M. Choi et al. / Carbon Science Vol. 6, No. 3 (2005) 181-187 Table 1. Specification of TIMREX KS 6 graphite Item Content Item Content Ash 0.1% max Crystallite height 60 nm Typical size (D50) 3.4 μm 0.335- Interlayer distance BET 20 m 2 /g 0.336 nm Table 2. Specification of epoxy matrix Flexural strength Tg (with hardner) Melting point Absorptivity (85 o C, 85%RH, 100 hr) 162 MPa 113 o C 75~85 o C 0.16 < Table 3. Mixing ratio of bipolar plate composite Item Compositi on (wt%) Graphite Carbon nanotube Epoxy Hardner Sum 73~77 3~7 13.8 6.2 100 e l n l(graphite)p Timcal p p 3.4 μm, r 20 m 2 /gp TIMREX KS6 n mp p Table 1. ~p r r p o l n multi-wall carbon nanotube(mwcnt)[10] v 20 nm, p 10~50 μm op ILJIN Nanotech p r p pn m. l l n p (matrix) l l e v rr r d F p n mp p Table 2m. l e v pr p rm vr triphenyl phoshine ~ m. ~p e rr l p qp pv v o l r vr ~ m. p p p s p Table 3 p, ~p r p o l lp 73~77 wt%, r r p o MWCNT ~7 wt%, l e 13.8 wt%, r 6.2 wt% pnl vr rrlr ~ m. Fig. 2. Experimental process for bipolar plate. 150 rpm, 24e m. d p s l 80 o C, 24e s, r vr v d p l e attrition milll 150 rpm, 12e k Ž e l p l. e e l m e p l r ~ 2 mm s rp o pr l m (dm 2 o C/min) 140~200 o C, k p 200~300 kgf/cm 2 l 20 ov l p p ~ e p r q m. 2.2.2. r rs p p ~ e rqp pk r pn, 5.0 cm(l)ë2.5 cm(w)ë0.2 cm(t) r l e, t 5 j r l, (Kyeongdo, 20ton), l (SATO SEIKI / Model D), r r (milliohm meter HP 4338A) ~rr (bulk resistivity) p r mp, r p m. o ~ r t p m t r r p e 1/100 mm, 1/1000 g v r l e (1) m. (g/cm 3 ) = ------------------------------------------------------------- M( g) (1) T( cm) W( cm) L( cm) x 2.2.1. p p rs p p p rs rp Fig. 2m p, Table 3p l attrition millp pn l d e p m. p lˆml l e, r vr n l lˆml eˆ CNT ~ l Fig. 3. Test of three point flexural strength.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite 183 ~rr (mωcm) = --------------------------------------------------------------- (4) 3. y» p T( cm) W( cm) R( mω) L( cm) Fig. 4. Schematic of the test assembly for interfacial contact resistance. rp k e (KYEONGDO/597051016) n l 3rr š(three point bending)p r mp, e p Fig. 3. p l vr p m e p k 16:1 r. e p rqp rq t [11]l o ~p e p l e (2)l m. (kgf/cm 2 3 P( kgf) L( cm) ) = ------------------------------------------------ (2) 2 W( cm) t 2 ( cm) e p rr (interfacial contact resistance) rp Fig. 4l ˆ m p ee m. p p e p p r l p r p 4rr r ep Davies' [12]l p milliohm meter (HP 4338A) ky Žl r (1A) tl r~ rk (V) r m. r q p Ž p rl mp Ž e pl p Toray p p l r vv [13] n l Žl k p r rp v eˆ l p rr p e (3) m. Fig. 6p 300 kgf/cm 2 p k l m 140, 160, 180, 200 o C e p n, ~ CNTp s l l t p. l m p CNTp p m p ~p ˆ p. Fig. 7p Fig. 6 p s l rs ~ Fig. 6. Density of bipolar plate with different CNT content and with different molding temperature at curing condition of 300 kgf/cm 2. T( cm) W( cm) V( V) rr (mωcm 2 ) = --------------------------------------------------------- (3) I( A) rs p p p ~r r p Fig. 5m p p r mp Micro OHM Meter(SOKEN / DAC-MR- IS) pn l r p r l e (4) m. Fig. 5. Schematic of the test assembly for bulk resistance. Fig. 7. Shore of bipolar plate with different CNT content and with different molding temperature at curing condition of 300 kgf/cm 2.

184 J. M. Choi et al. / Carbon Science Vol. 6, No. 3 (2005) 181-187 p l ˆ p l m p m CNTp p p p l p v m. Fig. 6l lt v CNTp v l t v m m p v l vp v v p kv. Fig. 7l ˆ l p v CNTp p v, CNTp r nm p CNT μm p lpq pl matrix l p l v p. H.C. Kuan[14]p ~ v p r p k r kr, r r rp l m p p pp, l l p p l t ppp p pl. Fig. 8(a) k 200 kgf/cm l m 2 140, 160, 180 200 C eˆ CNTp ~ p o 3~7 w% r rp e p n k CNT ~ l p lt p. m p n vp o p v l l pq, v CNT p p l v p q p lr pq p p p. CNTp p v v p pp, m 200 o C, k 200 kgf/cm l rq p p e p CNT 2 3 wt% ~ n 430 kgf/cm p lt 2 pp, 7 wt%p CNT ~ n 525 kgf/cm v m 2. p CNTp p v CNTp r p q p p l ppp p. v p vm o p p k e r eˆ p k r p [15]. Fig. 8(b) p CNTp m s l k p 300 kgf/cm v eˆ np l t 2 p. 200 kgf/cm p k l m p p p l t p 2 p p v p ˆ l. p k p v CNTm v p p v l s CNT ~ ~ rs p p. v k p, vp o p m l l pq pl v p q p lr pq v m r p p k p.» p p p ~ e carbon paperp pl r r p n p k (loading pressure)l r r m. Fig. 9 k 200 kgf/cm 2, CNT p 7 wt%p m 160, 180 200Ë n p k l rr ˆ pp, m 160 o Cp n q p Fig. 8. Flexural strength of composites according to CNT content and curing condition. (a) Curing pressure at 200 kgf/cm 2. (b) Curing pressure at 300 kgf/cm 2 Fig. 9. Interfacial contact resistivity of bipolar plate with 7 wt% CNT contents and with different molding temperature at curing condition of 200 kgf/cm 2

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite 185 Fig. 10. Interfacial contact resistivity of bipolar plate with 7 wt% CNT content and with different molding pressure at 160 o C. r p ˆ l. p m l rs ~ p k p p nl p rr p ˆ pp, 50 kgf/cm p l rr p tl 2 50 kgf/cm p l rr p 2 m m. p rs ~ l rvn p p n r r p ˆ o orv e 50 kgf/ cm p p dˆ ~ k p n p 2 p., l m p m p p rr p lt p p l vp l e v r rp rl p, ml l CNT pq p p pl pq l rl vp v Žp v l r p v p lv p. Fig. 10p CNT 7 wt%, m 160 o C s l, k 200 300 kgf/cm p n p k l rr 2 p lt p. 300 kgf/cm l k e p 2 200 kgf/cm e l r p q 2 ˆ. p p m l k p p lpqp p v vp Œ vp v p ~p r p p lv. Fig. 11p k 300 kgf/cm 2, k m 160Ël CNT p 0~7 w% v eˆ rs ~p p k l rr p l t p. l l t m p CNTp p v rr p p ˆ p, p CNTp p r r l p kv. Fig. 12 m l CNT ~rr p ˆ p. l ˆ m p CNT v l ~rr Fig. 9p rr o ˆ p. m 160 Cl o CNT v l q p p ˆ l. e l k US DOE p 10 mωcm[16]l v v pl Fig. 11. Interfacial contact resistivity of bipolar plate with different CNT content at curing conditions of 160 o C and 300 kgf/ cm 2. Fig. 12. Bulk resistivity of bipolar plate with different CNT content at conditions of curing 160 o C and 300 kgf/cm 2. r ~rr (13 mωcm)p lp pl. k m 140 o C er l e m 160~180 o C p, r p v po l s v p v p l n, ~p t p p p lv. m 180 o C p l ˆ r v v p v p n l pq l v Žp p lr r o v, r r l rl p v l qn p ˆ. e s p CNT ~ o l ~p r r rss p k 300 kgf/cm 2, m 160 o C s pl.

186 J. M. Choi et al. / Carbon Science Vol. 6, No. 3 (2005) 181-187 Fig. 13. SEM image of the fractured surface bipolar plate. Fig. 13p CNT ~ ˆ ~p SEM p. Fig. 13(a) rrlr ~ v kp np, Fig. 13(b) rrlr ~ np. r rlr ~ v kp n p CNTp p p. r rlr ~ n Ž lpql CNT v ˆ l t p. k 20 nm p CNT l pqm v pl l p ˆ l t p. prp ~p r r v l rrp l p p m p. lpqm CNT v l q p rr r r l e pv p, rrlrp ~ p v p rp v l v l np t, r r n l rvn p p ~ rs np t p r l. ps l CNT ~ 25% ~r r 13 mωcm p p ~ rq pl. 4. l l ˆm l rvn l p p ~p r r r p o l, 3~7 wt% ~ m. k 200~300 kgf/cm 2, m 140~200 o C ol k l ~ p p p p p m. 1) CNT p v, m k p v v l. 2) r r r r k s p k 300 kgf/cm 2, m 160 o C m 3) rs ~p ~rr p 13 mωcm DOE tl r mp, CNT 7 wt% ~ e r ~ 25% l References [1] Steele, B. C. H.; Heinzel, A. Nature 2001, 345, 414. [2] Srinvasan, S. J. of The Electrochemical Society 1989, 41, 136. [3] Heinzel, A.; Mahlendorf, F.; Niemzig, O.; Kreuz, C. J. of Power Sources 2004, 131, 35-40. [4] Stewart, Jr.; Robert, C. 1987, US Patent 4,670,300. [5] Uemura, T.; Murakami, S. 1988, US Patent 4,737,421. [6] Busick, D.; Wilson, M. 2001, US Patent 6,248,467. [7] Davies, D. P.; Adcock, P. L.; Turpin, M.; Rowen, S. J. J. of Applied Electrochem 2000, 30, 101.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite 187 [8] Kirchain, I. B-O. R.; Roth, R. J. of Power Sources 2002, 109, 71. [9] Scholta, J.; Rohland, B.; Trapp, V.; Focken, U. J. Power Sources 1999, 84, 231. [10] Tanaka, K.; Yamabe, T.; Fukui, K. The Science and Technology of Carbon Natubes, Vol. 1, ed. ELSEVIER SCI- ENCE Ltd, Oxford, 1997, 2. [11] nlr k e, l KS L 1601, l t, 1991. [12] Davies, D. P.; Adcock, P. L.; Turpin, M.; Rowen, S. J. J. of Applied Electrochem 2000, 30, 102. [13] Hentall, P. L.; Lakeman, J. B.; Mepsted, G. O.; Moore, J. M. J. Power Sources 1999, 80, 235. [14] Kuan, H.-C. et al. J. of Power Source 2001, 134, 14. [15] Zafar Iqbal. et al. 2003, US Patent 6,572,997. [16] David, H. et al. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report, 2003, IV-197. [17] David, H. et al. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report, 2003, IV- 200.