02본문

Size: px
Start display at page:

Download "02본문"

Transcription

1 87 특집 딥러닝기반방송미디어기술 CNN 과 RNN 의기초및응용연구 이은주 / 계명대학교 Ⅰ. 서론 2016 년 3월, 전세계적으로굉장히이슈가되는사건이있었다. 다름아닌, 구글딥마인드 (Deep Mind) 가개발한인공지능바둑프로그램인알파고 (AlphaGo) 와이세돌 9단의바둑대결에서컴퓨터가 4대 1이라는압승을거둔것이다. 이때, 일반대중들에게바둑에대한관심못지않게오래된패러다임으로생각되었던인공지능에대한관심이폭발적으로증가하게되었다 [1]. 이미컴퓨터에게사람의지능을닮아가게끔하는연구는끊임없이진행되었지만단순하게입력된정보를추론하고검색하는기계에불과했다. 이에반해알파고는다양한경우의수를추론하는것뿐만아니라스스로생각하고더나아가인간이생각할수있는지능의한계를뛰어넘을수있는강력한기술을실현한것이다. 이기술이바로딥러닝이다. 딥러닝은인간의두뇌와유사한사고방식을컴퓨터에적용하여홍수처럼쏟아지는데이터를분석하는인공지능기술을말한다. 많은개발자들이딥러닝기술을추천하는이유는디지털경제의확산으로학습가능한정보가방대해졌으며많은정보를실시간으로처리할수있는 GPU 병렬처리기술이발달되었고무엇보다네트워크구조가간단하면서도우수한성능을낼수있기때문이다. 딥러닝의핵심기술은입력데이터가고차원이고구조가복잡한경우전처리과정에서정보손실이될수있는정보를전체학습과정에포함시키면서입력데이터를직접학습하도록통합하는것이다. 이러한딥러닝기술은컴퓨터비전분야에서는영상인식 (Video Recognition), 객체추적 (Object Tracking), 자율주행자동차 (Self-driving Car) 플랫폼등이미다양한분야에적용되어실효성이입증되었다 년 1 월 87

2 88 특집 : 딥러닝기반방송미디어기술 따라서본논문에서는딥러닝을학습하고자하는연구자들을위해실시간영상처리를위한최근의딥러닝기술을소개하고효율적인딥러닝시스템에대한연구방향을제시하고자한다. 본논문의구성은다음과같다. Ⅱ장에서는딥러닝기술을대표하는전통적인 CNN(Convolutional Neural Network) 및 CNN의단점을개선한 RNN(Recurrent Neural Network) 의개념과구조에대해설명한다. Ⅲ장에서는딥러닝모델을이용한응용사례, 마지막으로 Ⅳ장에서는결론으로써향후연구방향을제시한다. Ⅱ. 딥러닝모델의구조 1. CNN의구조 CNN은이미지로부터고수준의추상화된특징을추출하거나질감정보를처리하는최적의방법으로써이미 2012년 ILSVRC(Imagenet Large Scale Visual Recognition Challenge) 에서기존알고리즘들을압도적으로제치고객체인식에대단히뛰어난성능이검증되었다 [2]. CNN은지역적수용필드 (Local Receptive Field), 가중치공유 (Shared Weight), 서브샘플링의세가지아이디어가적용되었다. 지역적수용필드, 공유가중치를반영하는컨벌루션계층과서브샘플링계층은여러층으로적재가가능하며마지막단계에서완전연결계층 (Fully-Connected Layer) 을통해분류수행하는계층모델이다. CNN 은벡터형태의입력데이터대신 2차원구조의입력이가능하므로신경망이영상을잘학습할수있도록최적화시킨알고리즘이다. 다음은 CNN의각 계층에대한설명이다. 첫번째, 컨벌루션계층은객체의위치나크기에영향을받지않고입력정보에서찾아내고자하는객체의에지나코너, 선의끝과같은특징을특징맵 (Feature Map) 에표현하기위한계층이다. 이계층의입력은원본영상이거나이전계층의출력즉특징맵이다. 다계층인공신경망과는달리인접한픽셀끼리의지역 (Local) 적특성을반영하고자 2차원배열형태의입력영상에 N N 크기의필터를슬라이딩윈도우방식으로컨벌루션연산을한다 [3]. 특징맵에서컨벌루션필터의가중치 (Weight) 는공유되어지고역전파 (Backpropagation) 를통해학습된다. 컨벌루션연산은영상내의모든픽셀에대해반복적으로처리하게되는데컨벌루션되는필터의개수가많아지면다양한종류의특징을추출할수도있다. 2차원입력영상에대해서 N N 크기의필터를모든가능한위치에서컨벌루션연산이수행될수있도록이동시키므로출력되는특징맵의크기는 ( 입력영상의크기 - 필터크기 +1) 이된다. < 그림 1> 은 3 3 필터를이용한컨벌루션연산과정을보여준다. (a) 수용필드 (b) 컨벌루션 (c) 출력 < 그림 1> 필터를이용한컨벌루션과정 (a) 지역적수용필드 (b) 컨벌루션 (c) 출력 컨벌루션필터링된값들은수식 (1) 과같이비선형변환함수인 Relu[4] 를이용하여활성화된다. 88 방송과미디어제 22 권 1 호

3 CNN 과 RNN 의기초및응용연구 89 (1) 이때, x는컨벌루션연산을통해도출된출력값이며뉴런이선형적으로활성화되어큰값을가질수있게함으로써역전파를해도기울기 (Gradient) 가사라지지않도록한다. 두번째, 서브샘플링계층은입력픽셀을 2 2 크기의서브영역으로분할하고각서브영역에서픽셀의최댓값, 최솟값또는평균값을추출하여해당영역의한점으로매핑 (Mapping) 한다. 이것은뉴런이가장큰신호에반응하는것과유사하며노이즈감소및속도향상, 영상의분별력또한증가한다. < 그림 2> 는 2 2 필터를이용한 Max-Pooling 연산과정을보인다. 세번째, 완전연결계층은 CNN의마지막계층으로분류를위한과정을수행한다. 서브샘플링계층에서나온 1차원벡터특징들을이용해서영상을클래스별로분류를할때사용되는데, 일반적인다계층인공신경망의입력처럼각각하나씩매핑한다. < 그림 3> 은전통적인 CNN 구조이다. CNN을기반으로만들어진대표적딥러닝프레임워크 Caffe[6] 는현재가장대중적인딥러닝애플리케이션으로인정받고있으며사람이손으로쓴필기체숫자인성능테스트용데이터 MNIST(Mixed National Institute of Standards and Technology Database) 를학습시키고결과를테스트해볼수있도록리눅스혹은윈도우기반으로설계되었다. Caffe 기반알렉스넷 (AlexNet)[7] 은 ImageNet 에서 (a) 8 6 특징맵 < 그림 2> 2 2 필터를이용한 Max-Pooling 과정 (b) 2 2 max - pooling (c) 결과 < 그림 3> 전통적인 CNN 구조 [5] 2017 년 1 월 89

4 90 특집 : 딥러닝기반방송미디어기술 < 그림 4> RNN 의기본구조 [8] 정확도 84.7% 을기록하며 10여년동안깨지지않은기록 75% 대의벽을허물었다. 하지만 CNN의학습과정은순서가중요하지않은정보들이공통으로가지는특징들만관심이있기때문에실시간으로들어오는정보들의순서관계를처리할수없는문제점이있다. 이에과거및현재정보를기반으로미래정보를예측하는시계열특성을반영한 RNN[8] 딥러닝모델을소개하고자한다. 2. RNN의구조 RNN은어떤특정부분이반복되는구조를통해순서를학습하기에효과적인딥러닝기법이다.< 그림 4> 는은닉층 (Hidden layer) 에서자기자신으로의 W(Recurrent weight) 를가진기본구조로서 CNN과동일한방법으로데이터에서규칙적인패턴을인식하면서 W를통해과거의정보를통해현재의정보파악에도움을받는구조가될수있다. x t 는현재 time step t에서의입력값, s t 는메모리역할을하는은닉층으로써수식 (2) 와같이 s t-1 ( 이전 time step t) 와 x t 에의해계산된다. (2) 이때, f는비선형함수로서 tanh 나 ReLU 가사용된다. RNN의은닉층은입력된정보를통해계산된결과에대해서저장할수있는기능이있어짧은시퀀스를효과적으로처리할수있다. z t 는 time step t에서의출력값으로수식 (3) 에의해계산되어진다. (3) RNN은각 time step 마다가중치 U, V, W가공유되어지기때문에역전파알고리즘의변형인 Back-propagation Trough Time(BPTT) 을통해학습한다. RNN은각출력부분의기울기는현재 time step 이외에이전 time steps 에매우의존적이다. 많은수의뉴런유닛이나많은수의입력유닛이있는경우과거학습기능을통해반복적으로곱해지는가중치에의해에러값이 1보다클경우누적에러가기하급수적으로증가 (Gradient Exploding) 하거나, 1 보다작을경우누적에러가감소하여빠르게 0으로수렴 (Gradient Vanishing) 하는문제가발생할수 90 방송과미디어제 22 권 1 호

5 CNN 과 RNN 의기초및응용연구 91 있다. 이러한문제해결을위해서 LSTM(Long Short Term Memory)[9] 가제안되었다. LSTM 모델은 Ⅲ장 RNN의응용사례에서간단히기술한다. Ⅲ. 응용사례 CNN과같은딥러닝기술은대량의데이터를의미있는데이터의형태로표현하고학습하고자하는노력으로영상이나음성인식과같은다양한분야에적용되었다. 하지만이러한최신기술도고차원데이터에대한학습시간이많이소요되며과적합, 기울기감소에대한문제점들이발생한다. 이점을해결하기위하여 Ⅲ장에서는최소한의전처리를하도록설계된다계층퍼셉트론으로 BRF를결합하 여기울기감소문제및시간단축의효과를거둘수있는 RC-CNN[10] 을소개한다. < 그림 5> 는자율주행차량애플리케이션에서보행자의위험행동을인식하기위한경량의 RC-CNN 구조도이다. 보행자를인식하는대부분의방법들은모션 (Motion) 정보를이용한다. 하지만차량의진동, 차량의속도, 보행자의다양한형태로인해보행자의모션정보를정확하게추정하기어려우므로 걷기, 서기, 달리기 와같은정적이미지를보행자의의도를추적하기위한단서로삼는다. RC-CNN 은 1차컨벌루션계층 (C1), 1차서브샘플링계층 (S1), 2차컨벌루션계층 (C2), 2차서브샘플링계층 (S2), 공간피라미드풀링계층 (SPP1), BRF 계층으로구성된다. 전통적인 CNN과의차별화된 3가지를소개한다. < 그림 5> RC-CNN 네트워크구조 [10] 2017 년 1 월 91

6 92 특집 : 딥러닝기반방송미디어기술 (S2) 특징맵 (SPP1) 공간피라미드풀링게층 < 그림 6> SPP 를이용한출력특징벡터생성 [10] 첫번째, 전통적인 CNN은항상고정된크기가입력되어지는반면 RC-CNN 은지역및전역적공간특성을잘반영하여입력이미지의크기에구애받지않도록공간피라미드풀링 (Spatial Pyramid Pooling)[11] 방식을사용하여세분화된특징을추출한다. 두번째, 역전파학습알고리즘을사용하는대신반복학습과정을줄이고응용시스템에적합한최적의필터를생성하기위하여 GA(Genetic Algorithm) 필터뱅크업데이트를수행한다. 필터는 9개의값으로이루어져있으며 LeCun 등 [3] 이제시한방법과동일한방법인 9개의랜덤값으로부터최적의필터계수추정법을사용하였다. 먼저 0 255의범위를 9개의영역으로나눈다. 9개의영역에서임의의값을추출한후그값의음수와양수값을이용하여하나의필터값 (4쌍) 을구성한다. 같은방법으로 100번의필터생성과정을거쳐만들어진필터들중에서성능이우수한필터를선택한다. 전통적인 CNN의경우 End-to-End 방식의 오류역전파학습인반면제안된필터뱅크방식의학습은입력계층에서 GA 알고리즘으로생성된필터의값은단지마지막계층의부스티드랜덤포레스트를거쳐나온정확률 ( 적합도 ) 만을가지고학습여부를판단하게된다. 추가학습이필요할경우입력계층에서 GA 연산을통해이전에생성된필터값에서진화된필터로다시학습을진행하는작업을반복한다. 세번째, 추출된특징벡터를완전연결방식의멀티레이어퍼셉트론방식대신에랜덤특징을선출하여분류에적용하는 BRF(Boosted Random Forest)[12] 와결합하여처리속도를향상시키고성능을높이는알고리즘을적용하였다. C1 SPP1 의단계를거쳐특징벡터를생성하고각트리에값을입력시켜나온확률값들을 < 그림 7> 과같이누적하여최종분류클래스를결정하도록한다. RC-CNN 은전통적인 CNN에서고정된영상사이즈를입력받아야하는제약을넘어서다양한입력크기에도불구하고처리속도개선뿐만아니라 92 방송과미디어제 22 권 1 호

7 CNN 과 RNN 의기초및응용연구 93 < 그림 7> 보행자위험행동분류를위한테스트과정 [10] SPP와의융합으로인한견고한인식이가능함을알수있었다. 다음으로소개할응용사례는 Sharma 등 [13] 이제안한행동인식을위한 Recurrent Model 이다. 실제사람은객체를인식할때배경을포함한모든정보를사용하여인식하는것이아니라자신이관심 (Attention) 있는부분을시간흐름에따라포커싱하면서그 sequence 들을종합하여결론내리는것을알수있다. 이논문은 CNN처럼전체이미지를한번에처리하지않고각 time step 마다관심있는영역을감지하여처리한다. < 그림 8> 은시각적관심 (Visual Attention) 을이용한 RNN 구조도이다. < 그림 8>(a) 의결과는수식 (4) 의 soft attention(l t,i ) 과 CNN 메커니즘에의해생성된 X T 큐브 (D개의특징맵 ) 에의해현재 time step t의입력 (X t ) 이된다 ( 수식 (5) 참조 ). Input value Output score per class >> average x t y 1 y 2 y 10 l t # of feature map K l 2 l 3 X t K D soft attention X 1 X 2 X 30 l 2 X l 2 l 1 X 10 2 X 10 (a) Soft attention (b) Recurrent Model < 그림 8> Recurrent 네트워크구조 [13] 2017 년 1 월 93

8 94 특집 : 딥러닝기반방송미디어기술 (4) (5) 전통적인 RNN과차별화된점은은닉층이 LSTM(Long Short Term Memory) 으로구성되어있다. LSTM 의핵심은셀상태 (Cell State) 에있다. 셀은여러개의게이트 (Gate) 라는요소를활용하여정보를불러오거나정보를기억하거나더이상필요없는기억된정보의제거기능을통하여선택적정보수집및유지가가능하다. 각게이트가갖는가중치는이전모델의은닉층과같은원리로역전파알고리즘을통한학습이이루어진다. < 그림 8>(b) 의마지막 LSTM 을통해나온출력값 l 2 중하나는다음 time step 의입력으로나머지하나는 softmax 를적용하여현재 time step 의클래스별스코어를계산한다. 최종적으로관심행동예측은모든 time step 을거쳐나온확률값의평균을이용하여최종행동예측을하게된다. Ⅳ. 결론 본논문은최근들어인식및예측분야에서많은각광을받고있는딥러닝모델 CNN(Convolutional Neural Network) 과 RNN(Recurrent Neural Network) 알고리즘을자세히살펴보았다. 특히, 무인자동차에서보행자의위험행동을인식하는데 CNN을실시간으로사용할수있도록구현하였으며또한데이터에서규칙적인패턴을인식하면서 Recurrent weight 를통해현재의정보파악에도움을받는구조로써공간적특성뿐만아니라시계열특성을고려하기위한관심 (Attention) 기반 RNN 구조에대해알아보았다. 관심 (Attention) 기반 RNN 모델은아주오랜시간으로부터의장기보존여부및정보메모라이징문제를야기했던전통적인 RNN 의대안으로 LSTM (Long Short Term Memory) 모델을사용하고있다. 현재 Window 버전 Caffe 를활용하여보행자의위험행동을예측하는방법으로기존의 RC-CNN 의공간적특성과 LSTM 의 RNN 화를통한시간적특성을접목하여 time step 마다출력된확률값의결합으로더높은성능향상을위한연구가진행중에있다. 94 방송과미디어제 22 권 1 호

9 CNN 과 RNN 의기초및응용연구 95 참고문헌 참고문헌 [1] 연합뉴스, < 알파고충격 >1인공지능, 마침내인간을넘어서다, 00AKR html, [2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al, Imagenet large scale visual recognition challenge, International Journal of Computer Vision, Vol 15, No 3, pp , [3] P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convolutional networks, Proc. of The International Joint Conference on Neural Networks, pp , July, [4] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier networks, Proc. of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pp , [5] Y. LeCun, et al, Gradient-based learning applied to document recognition, Proc. of the IEEE, [6] Y. ia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et al, Caffe: Convolutional architecture for fast feature embedding, Proc. of The International Conference on Multimedia, pp , November, [7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classication with deep convolutional neural networks, In Proc. Neural Information Processing System, [8] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, Vol 61, pp , [9] M. Baccouche, et al, Sequential deep learning for human action recognition. International Workshop on Human Behavior Understanding. pp , [10] E. J. Lee, B. C. Ko, J. Y. Nam, Recognizing pedestrian s unsafe behaviors in far-infrared imagery at night, Infrared Physics & Technology, Vol 76, pp , [11] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 37, No 9, pp , [12] Y. Mishina, M. Tsuchiya, H. Fujiyoshi, Boosted Random Fores, Proc. of the International Conference on Computer Vision Theory and Applications, pp , January, [13] S. Sharma, R. Kiros, R. Salakhutdinov, Action recognition using visual attention, arxiv preprint arxiv: , 필자소개 이은주 년 : 계명대학교컴퓨터공학과졸업 ( 공학사 ) 년 : 계명대학교대학원컴퓨터공학과졸업 ( 공학석사 ) 년 : 계명대학교대학원컴퓨터공학과졸업 ( 공학박사 ) 년 9 월 ~ 현재 : 계명대학교산업기술연구소연구원 - 주관심분야 : 컴퓨터비전및패턴인식 2017 년 1 월 95

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA (JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, 2015 11 (JBE Vol. 20, No. 6, November 2015) http://dx.doi.org/10.5909/jbe.2015.20.6.938 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a),

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

Reinforcement Learning & AlphaGo

Reinforcement Learning & AlphaGo Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

다중 곡면 검출 및 추적을 이용한 증강현실 책

다중 곡면 검출 및 추적을 이용한 증강현실 책 1 딥러닝기반성별및연령대 추정을통한맞춤형광고솔루션 20101588 조준희 20131461 신혜인 2 개요 연구배경 맞춤형광고의필요성 성별및연령별주요관심사에적합한광고의필요성증가 제한된환경에서개인정보획득의한계 맞춤형광고의어려움 영상정보기반개인정보추정 연구목표 딥러닝기반사용자맞춤형광고솔루션구현 얼굴영상을이용한성별및연령대추정 성별및연령대를통합네트워크로학습하여추정정확도향상

More information

PowerPoint Presentation

PowerPoint Presentation 기계학습을통한 시계열데이터분석및 금융시장예측응용 울산과학기술원 전기전자컴퓨터공학부최재식 얼굴인식 Facebook 의얼굴인식기 (DeepFace) 가사람과비슷한인식성능을보임 문제 : 사진에서연애인의이름을맞추기 사람의인식율 : 97.5% vs DeepFace 의인식률 : 97.35% (2014 년 3 월 ) 물체인식 ImageNet (http://image-net.org):

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

6 : (Gicheol Kim et al.: Object Tracking Method using Deep Learing and Kalman Filter) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May 2019) http

6 : (Gicheol Kim et al.: Object Tracking Method using Deep Learing and Kalman Filter) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May 2019) http (Regular Paper) 24 3, 2019 5 (JBE Vol. 24, No. 3, May 2019) https://doi.org/10.5909/jbe.2019.24.3.495 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a), b), b), b), a) Object Tracking Method using

More information

02본문

02본문 46 특집 : 딥러닝기반방송미디어기술 특집 딥러닝기반방송미디어기술 딥러닝기반의음성 / 오디오기술 Speech/Audio Processing based on Deep Learning 이영한 / KETI Ⅰ. 서론 인간의두뇌를모델링하는뉴럴네트워크연구는 1940 년대신경세포의모델링부터시작하여현재까지다양한기술이축적되어왔다. 특히 backpropagation 이제안된이후에

More information

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB0FBB3EBC1D8>

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB0FBB3EBC1D8> 딥러닝기술동향 - CNN 과 RNN 을중심으로 - 곽노준박성헌 * 김대식 * 서울대학교교수서울대학교박사과정 * 본고에서는딥러닝의여러가지분야중최근영상인식분야에서기존방법들보다월등한성능을보이고있는컨볼루션신경망 (Convolutional Neural Networks: CNN) 과음성인식이나자연어처리등에적용되어뛰어난성능을보이는순환신경망 (Recurrent Neural

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 딥러닝소개 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University (C) 2007-2018, SNU Biointelligence Lab, http://bi.snu.ac.kr/ 1 Playground (playground.tensorflow.org)

More information

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 ( 보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,

More information

1-1-basic-43p

1-1-basic-43p A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing

More information

표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 지도교수장병탁 이논문을공학학사학위논문으로제출함 년 12 월 21 일 서울대학교공과대학컴퓨터공학부한동식 2016 년 2 월

표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 지도교수장병탁 이논문을공학학사학위논문으로제출함 년 12 월 21 일 서울대학교공과대학컴퓨터공학부한동식 2016 년 2 월 표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 Experimental Analyses on Generalized Discriminability of Deep Convolutional Image Features using Representational Learning 서울대학교공과대학컴퓨터공학부한동식 표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

RNN & NLP Application

RNN & NLP Application RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term

More information

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 (   ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각 JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.

More information

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE 2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019)   ISSN 2287- (Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition

More information

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning

딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning 딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning 집필기관및참여인원 : 소프트웨어정책연구소 안성원 추형석 전남대학교 김수형 목 차 제 1 장서론 2 제2장단일퍼셉트론 2 제1절구조 2 제2절기능 3 제3절학습원리 5 제4절단층퍼셉트론 8 제3장다층퍼셉트론

More information

Microsoft PowerPoint - Java7.pptx

Microsoft PowerPoint - Java7.pptx HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)

More information

(JBE Vol. 22, No. 2, March 2017) (Special Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 2, March 2017) (Special Paper) 22 2, (JBE Vol. 22, No. 2, March 2017)   ISSN (Special Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.162 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Convolutional Neural Network a), b), a), a), Facial

More information

04 Çмú_±â¼ú±â»ç

04 Çмú_±â¼ú±â»ç 42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.

More information

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J (Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound

More information

Microsoft PowerPoint - e pptx

Microsoft PowerPoint - e pptx Import/Export Data Using VBA Objectives Referencing Excel Cells in VBA Importing Data from Excel to VBA Using VBA to Modify Contents of Cells 새서브프로시저작성하기 프로시저실행하고결과확인하기 VBA 코드이해하기 Referencing Excel Cells

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 1 2 3 3-1 3-2 3-3 Large-scale data 개요기계학습기반자료분석기술교통분석에기계학습적용사례 1 CNN 을활용한대중교통수요예측 2 RNN 을활용한공로통행속도예측 3 DQN 을이용한최적교통신호제어 4 시연 Large-Scale Data 기술요소 전수자료 이력자료누적 ( 자료를지우지않음 ) Hadoop HDFS MapReduce 병렬 DBMS

More information

방송공학회논문지 제18권 제2호

방송공학회논문지 제18권 제2호 방송공학회논문지 제 20권 6호 (2015년 11월) 특집논문 : 2015년 하계학술대회 좌장추천 우수논문 프레넬 회절을 이용한 디지털 홀로그램 암호화 알고리즘 새로운 광적응 효과 모델을 이용한 정교한 영상 화질 측정 민방위 경보 방송에 대한 정보 수용자 인식 연구 UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석 홍보동영상 제작 서비스를

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198

시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198 SURVEY AND RESEARCH 02 딥러닝의현재와미래 Ⅰ. 서론 Ⅱ. 딥러닝을이용한채권회수율예측 Ⅲ. 알파고, 알파고제로, 알파제로 Ⅳ. 결론 김동현 * 한국주택금융공사정보전산부팀장 2017년말에딥마인드에서개발한알파제로는딥러닝을이용한강화학습을통해바둑의기본규칙만을입력받고스스로바둑을둬가며학습하여불과 3일만에수천년간쌓아올린인간의바둑지식을터득했고인간이미처생각하지못한새로운전략도발견했다.

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Nov.; 26(11), 985991. http://dx.doi.org/10.5515/kjkiees.2015.26.11.985 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA TV 드라마비디오스토리분석딥러닝기술 Deep Learning Technologies for Analysis of TV Drama Video Stories 저자 (Authors) 남장군, 김진화, 김병희, 장병탁 출처 (Source) 방송과미디어 22(1), 2017.1, 12-23 (12 pages) Broadcasting and Media Magazine

More information

Slide 1

Slide 1 딥러닝 (Deep Learning) 2016 04 29 변경원 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가? Agenda 4. 딥러닝은어떤역할을하는가? 5. 딥러닝은어떻게만들어야하는가? 6. GPU 의역할 7. 딥러닝의기여 8. AlphaGo 와 GPU 2 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가?

More information

PowerPoint Presentation

PowerPoint Presentation Class - Property Jo, Heeseung 목차 section 1 클래스의일반구조 section 2 클래스선언 section 3 객체의생성 section 4 멤버변수 4-1 객체변수 4-2 클래스변수 4-3 종단 (final) 변수 4-4 멤버변수접근방법 section 5 멤버변수접근한정자 5-1 public 5-2 private 5-3 한정자없음

More information

2 : CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, (JBE

2 : CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, (JBE 2: CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.315

More information

PowerPoint Presentation

PowerPoint Presentation 4 장. 신경망 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 4.2-4.3 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학

More information

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019 4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, 2019 5 (JBE Vol. 24, No. 3, May 2019) https://doi.org/10.5909/jbe.2019.24.3.387 ISSN 2287-9137

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝 기계학습개론 / 딥러닝강의노트, 서울대학교컴퓨터공학부장병탁, Copyright 2013-2016 3 장 : 딥러닝모델과모델복잡도이론 3.1 딥러닝개념 3.2 딥러닝의혁신점 3.3 딥러닝아키텍쳐 3.4 모델복잡도이론과정규화 3.5 딥러닝모델의비교 3.1 딥러닝개념 30 년전에는인공지능의기초연구분야에속하던머신러닝이최근구글, 애플, 삼성등글로벌기업들이앞다투어확보하려는핵심산업기술로발전하고있다.

More information

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht (Special Paper) 21 6, 2016 11 (JBE Vol. 21, No. 6, November 2016) http://dx.doi.org/10.5909/jbe.2016.21.6.913 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Visual Object Tracking by Using Multiple

More information

Pattern Recognition

Pattern Recognition 딥러닝이해및미디어응용 아주대학교구형일 인공지능 / 기계학습 / 딥러닝 AI 에관한 4 개의관점 Humanly Rationally Thinking Thinking Humanly Thinking Rationally Acting Acting Humanly Acting Rationally Acting Humanly 사람처럼일하는 / 행동하는기계 인공지능은사람에의해서수행될때지능이필요한일을수행하는기계를만드는기술이다.

More information

42.hwp

42.hwp Asia-pacific Journal of 김대현 Multimedia Services Convergent with Art, Humanities, and Sociology Vol.6, No.5, May (2016), pp. 435-444 http://dx.doi.org/10.14257/ajmahs.2016.05.22 딥러닝 신경망모형을 이용한 실시간 교통정보수집

More information

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019)   ISSN (JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.564 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Integral Regression

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

융합WEEKTIP data_up

융합WEEKTIP data_up 2016 MAY vol.19 19 융합 인지과학 연구동향 이아름 융합연구정책센터 발행일 2016. 05. 09. 발행처 융합정책연구센터 융합 2016 MAY vol.19 인지과학 연구동향 이아름 융합연구정책센터 선정 배경 최근 구글의 인공지능 프로그램인 알파고가 이세돌 9단과의 바둑대결에서 압승을 거둔 이후 전세계적으로 인공지능에 대한 관심이 증대 - 인간

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB1E2BFEBB0C9>

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB1E2BFEBB0C9> 기획시리즈 주간기술동향 2016. 3. 9. 인공지능과심층학습의연구동향 기용걸 도로교통공단교통과학연구원부수석연구원 kiyongkul@koroad.or.kr 1. 서론 2. 심층학습의발전과정 3. 심층망의문제점 4. 심층망을위한학습기법 5. 심층학습의응용 6. 결론및시사점 1. 서론마이너리티리포트와같은공상과학영화에서미래에는자동차가스스로운전하고사람들은그냥편안히앉아있는모습을종종보게된다.

More information

02(848-853) SAV12-19.hwp

02(848-853) SAV12-19.hwp 848 정보과학회논문지 : 소프트웨어 및 응용 제 39 권 제 11 호(2012.11) 3차원 객체인식을 위한 보완적 특징점 기반 기술자 (Complementary Feature-point-based Descriptors for 3D Object Recognition) 장영균 김 주 환 문 승 건 (Youngkyoon Jang) (Ju-Whan Kim) (Seung

More information

PowerPoint Presentation

PowerPoint Presentation 철도궤도결함탐지를위한영역기반및픽셀기반딥러닝기법적용사례 Detection of track defects by region- and pixel-based deep learning approaches 한국철도기술연구원 / 첨단궤도토목본부황성호선임연구원 2015 The MathWorks, Inc. 1 목차 1. 회사및발표자소개 2. 철도및궤도소개 3. 프로젝트개요

More information

Figure 4.2 컨볼루션 (C) 과서브샘플링 (S) 그림 4.3 은컨볼루션의아이디어를설명하고있다. 완전연결층, 지역연결층과비교하여컨볼루션층이어떻게다른지를설명한다. 완전연결층은이웃한층의뉴런간에연결선이존재하는데, 하나의층에있는모든뉴런과이웃한층에있는모든뉴런이연결된다. 즉

Figure 4.2 컨볼루션 (C) 과서브샘플링 (S) 그림 4.3 은컨볼루션의아이디어를설명하고있다. 완전연결층, 지역연결층과비교하여컨볼루션층이어떻게다른지를설명한다. 완전연결층은이웃한층의뉴런간에연결선이존재하는데, 하나의층에있는모든뉴런과이웃한층에있는모든뉴런이연결된다. 즉 기계학습개론 / 딥러닝강의노트, 서울대학교컴퓨터공학부장병탁, Copyright 2013-2016 4 장 : 컨볼루션신경망 4.1 CNN 구조 4.2 AlexNet 4.3 DeepFace 4.4 GooLeNet 4.1 CNN 구조 컨볼루션신경망 (Convolutional Neural Networks, CNN) 은영상처리를위해고안된특수한연결구조를가진다층신경망이다

More information

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp Vol.7, No.11, November (2017), pp. 71-79 http://dx.doi.org/10.14257/ajmahs.2017.11.59 이기종컴퓨팅을활용한환율예측뉴럴네트워크구현 한성현 1), 이광엽 2) Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous

More information

기획특집 4 I 머신러닝알고리즘을이용한부동산가치산정에관한소고 Ⅱ. 인공지능의정의와주요분야 1956년여름개최된다트머스학술회의 (Dartmouth Conference) 를통해인공지능이라는용어가널리알려지고, 인공지능이새로운연구분야로서확립되게된다. 인공지능이라는용어를처음고안한

기획특집 4 I 머신러닝알고리즘을이용한부동산가치산정에관한소고 Ⅱ. 인공지능의정의와주요분야 1956년여름개최된다트머스학술회의 (Dartmouth Conference) 를통해인공지능이라는용어가널리알려지고, 인공지능이새로운연구분야로서확립되게된다. 인공지능이라는용어를처음고안한 머신러닝알고리즘을이용한부동산가치산정에관한소고 심재헌부연구위원한국감정원 KAB 부동산연구원연구개발실 Ⅰ. 들어가며 2016년상반기대한민국의가장큰화두는바둑대결로널리알려진 AlphaGo 1) 와인공지능 (artificial intelligence) 이었다. 수많은경우의수를가진복잡한바둑경기만큼은아직까지인공지능기술이인간을상대로우위를점하기어렵다는일반적인예상과상반된결과가나오자,

More information

논문제출양식

논문제출양식 DenseNet 을이용한 P2P 소셜대출에서상환예측 김지윤, 조성배 Department of Computer Science, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea Tel: +82-2-2123-3877, Fax: +82-2-365-2579, E-mail: jiyoon_kim@yonsei.ac.kr,

More information

PowerPoint Presentation

PowerPoint Presentation public class SumTest { public static void main(string a1[]) { int a, b, sum; a = Integer.parseInt(a1[0]); b = Integer.parseInt(a1[1]); sum = a + b ; // 두수를더하는부분입니다 System.out.println(" 두수의합은 " + sum +

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter 1. 머신러닝개요 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 김준호, 이상우 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

More information

09( ) CPLV16-04.hwp

09( ) CPLV16-04.hwp ISSN 2383-6318(Print) / ISSN 2383-6326(Online) KIISE Transactions on Computing Practices, Vol. 22, No. 11, pp. 619-624, 2016. 11 http://dx.doi.org/10.5626/ktcp.2016.22.11.619 장소정보를학습한딥하이퍼넷기반 TV 드라마소셜네트워크분석

More information

박선영무선충전-내지

박선영무선충전-내지 2013 Wireless Charge and NFC Technology Trend and Market Analysis 05 13 19 29 35 45 55 63 67 06 07 08 09 10 11 14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 36 37 38 39 40

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

Microsoft PowerPoint - 11주차_Android_GoogleMap.ppt [호환 모드]

Microsoft PowerPoint - 11주차_Android_GoogleMap.ppt [호환 모드] Google Map View 구현 학습목표 교육목표 Google Map View 구현 Google Map 지원 Emulator 생성 Google Map API Key 위도 / 경도구하기 위도 / 경도에따른 Google Map View 구현 Zoom Controller 구현 Google Map View (1) () Google g Map View 기능 Google

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018) ISSN

(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018)   ISSN (JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, 2018 7 (JBE Vol. 23, No. 4, July 2018) https://doi.org/10.5909/jbe.2018.23.4.484 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Uniform Motion

More information

290 정보과학회컴퓨팅의실제논문지제 24 권제 6 호 ( ) 1. 서론음성인식시스템은모바일디바이스의보편화로음성데이터에대한접근과확보가용이해짐에따라지난몇년간크게발전하였다. 화자식별 (Speaker Identification) 은개인성도의음성학적특징을모델링하고분류

290 정보과학회컴퓨팅의실제논문지제 24 권제 6 호 ( ) 1. 서론음성인식시스템은모바일디바이스의보편화로음성데이터에대한접근과확보가용이해짐에따라지난몇년간크게발전하였다. 화자식별 (Speaker Identification) 은개인성도의음성학적특징을모델링하고분류 ISSN 2383-6318(Print) / ISSN 2383-6326(Online) KIISE Transactions on Computing Practices, Vol. 24, No. 6, pp. 289-294, 2018. 6 https://doi.org/10.5626/ktcp.2018.24.6.289 STFT 소리맵을이용한컨볼루션신경망기반화자식별방법 (Speaker

More information

11장 포인터

11장 포인터 누구나즐기는 C 언어콘서트 제 9 장포인터 이번장에서학습할내용 포인터이란? 변수의주소 포인터의선언 간접참조연산자 포인터연산 포인터와배열 포인터와함수 이번장에서는포인터의기초적인지식을학습한다. 포인터란? 포인터 (pointer): 주소를가지고있는변수 메모리의구조 변수는메모리에저장된다. 메모리는바이트단위로액세스된다. 첫번째바이트의주소는 0, 두번째바이트는 1, 변수와메모리

More information

07.045~051(D04_신상욱).fm

07.045~051(D04_신상욱).fm J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,

More information

1 : (Su-Min Hong et al.: Depth Upsampling Method Using Total Generalized Variation) (Regular Paper) 21 6, (JBE Vol. 21, No. 6, November 2016)

1 : (Su-Min Hong et al.: Depth Upsampling Method Using Total Generalized Variation) (Regular Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) 1: (Su-Min Hong et al.: Depth Upsampling Method Using Total Generalized Variation) (Regular Paper) 21 6, 2016 11 (JBE Vol. 21, No. 6, November 2016) http://dx.doi.org/10.5909/jbe.2016.21.6.957 ISSN 2287-9137

More information

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론

More information

<B1E2C8B9BDC3B8AEC1EE2DC0CCC8ABBCAE2D30342E687770>

<B1E2C8B9BDC3B8AEC1EE2DC0CCC8ABBCAE2D30342E687770> 주간기술동향 2018. 7. 18. 딥러닝기반도심지교통혼잡해결 * 이홍석한국과학기술정보연구원단장 인구의증가에따라늘어나는도심지교통혼잡비용문제는여러가지기술개발추진에도불구하고개선되지않는대표적인사회현안문제이다. 이러한국민생활문제를해결하기위해새로운패러다임의인공지능 (AI) 혁신기술개발이필요하다. 최근정부에서는 4차산업혁명대응을위해지능형인프라응용분야의혁신기술개발을추진하고있다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3

More information

제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을 드러

제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을 드러 국가연구개발사업 정보 길잡이 제23호 2016년 4월 4월 과학의 날 특집 인공지능과 알파고 이야기 제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을

More information

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.8, No.10, October (2018), pp

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.8, No.10, October (2018), pp Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.8, No.10, October (2018), pp.281-288 http://dx.doi.org/10.21742/ajmahs.2018.10.57 을이용한 스켈레톤애니메이션학습 정윤상 박진호

More information

_KrlGF발표자료_AI

_KrlGF발표자료_AI AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think

More information

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018)   ISSN (JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.642 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Online

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

중간고사

중간고사 중간고사 예제 1 사용자로부터받은두개의숫자 x, y 중에서큰수를찾는알고리즘을의사코드로작성하시오. Step 1: Input x, y Step 2: if (x > y) then MAX

More information

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017)   ISSN (JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

<494354BDC5B1E2BCFA2DBCDBBAB4C3B62E687770>

<494354BDC5B1E2BCFA2DBCDBBAB4C3B62E687770> 주간기술동향 2018. 10. 17. 감정인식기술동향 * 송병철김대하 * 최동윤 * 이민규 * 인하대학교교수인하대학교대학원생 * I. 서론 최근소피아나페퍼같은소셜로봇이화제가되고있다. 소셜로봇이란과거기계적움직임을통해인간의육체적노동을대신하는기존로봇의개념과달리인간과커뮤니케이션을수행할수있는능력을갖추고자율적으로동작하여사회적행동을하는감성중심의로봇을말한다. 소셜로봇의주요기능중하나가사람과의자연스러운대화를통해사람의감정상태를파악하고로봇자신의감정을전달하는정서적인상호작용이다.

More information

02본문

02본문 75 특집 딥러닝기반방송미디어기술 글로벌라이프로그미디어클라우드개발및구축 Global lifelog media cloud development and deployment 송혁, 최인규 *, 이영한, 고민수, 오진택 **, 유지상 * / 전자부품연구원, * 광운대학교, ** 판도라티비 요약글로벌라이프로그미디어클라우드서비스를위하여네트워크기술, 클라우드기술멀티미디어

More information

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,. : 565 (Special Paper) 7 4, 0 7 (JBE Vol. 7, No. 4, July 0) http://dx.doi.org/0.5909/jbe.0.7.4.565 a), b), a) Depth Map Denoising Based on the Common Distance Transform Sung-Yeol Kim a), Manbae Kim b),

More information

<34342D342D B9DAC0E7BCB120B1E8C1D8C8AB20B1E8C7FCBCAE20B8F0B0E6C7F620B0ADC7CABCBA2E687770>

<34342D342D B9DAC0E7BCB120B1E8C1D8C8AB20B1E8C7FCBCAE20B8F0B0E6C7F620B0ADC7CABCBA2E687770> Journal of the Korean Institute of Industrial Engineers Published Online, pp. 249-258, August 2018. ISSN 1225-0988 EISSN 2234-6457 2018 KIIE 합성곱신경망을이용한웨이퍼맵기반불량탐지 박재선 김준홍 김형석 모경현

More information

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 2 pp. 866-871, 2012 http://dx.doi.org/10.5762/kais.2012.13.2.866 증강현실을 이용한 아동교육프로그램 모델제안 권미란 1*, 김정일 2 1 나사렛대학교 아동학과, 2 한세대학교 e-비즈니스학과

More information