PowerPoint Presentation

Size: px
Start display at page:

Download "PowerPoint Presentation"

Transcription

1 4 장. 신경망

2 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론

3 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학 두뇌의정보처리방식연구 얼마간의성과 ( 뉴런의동작이해등 ) 뇌의정보처리모방하여인간에필적하는지능컴퓨터에도전 인공신경망 (ANN; Artificial Neural Network) 이대표적

4 4.1.1 발상과전개 컴퓨터와두뇌의비교 폰노이만컴퓨터 순차명령어처리기두뇌 뉴런으로구성 ( 약 1011 개, 약 1014 연결 ( 시냅스 )) 고도의병렬명령어처리기

5 4.1.1 발상과전개 간략한역사 1943, McCulloch 과 Pitts 최초신경망제안 1949, Hebb 의학습알고리즘 1958, Rosenblatt 퍼셉트론 Widrow 와 Hoff, Adaline 과 Madaline 1960 대, 신경망의과대포장 1969, Minsky 와 Papert, Perceptrons 라는저서에서퍼셉트론한계지적 퍼셉트론은선형분류기에불과하고 XOR 도해결못함 이후신경망연구퇴조 1986, Rumelhart, Hinton, 그리고 Williams, 다층퍼셉트론과오류역전파학습알고리즘 필기숫자인식같은복잡하고실용적인문제에높은성능 신경망연구다시활기찾음 현재가장널리활용되는문제해결도구

6 4.1.2 수학적모델로서의신경망 신경망특성 학습가능뛰어난일반화능력병렬처리가능현실적문제에서우수한성능다양한문제해결도구 ( 분류, 예측, 함수근사화, 합성, 평가, ) 절반의성공 인간지능에필적하는컴퓨터만들지못함 제한된환경에서실용적인시스템만드는데크게기여 ( 실용적인수학적모델로서자리매김 )

7 4.2 퍼셉트론 새로운개념들등장 층노드와가중치학습활성함수 비록분명한한계를가지지만 MLP 의초석이됨

8 4.2.1 구조와원리 구조 입력층 : d+1개의노드 ( 특징벡터 x=(x 1,,x d ) T ) 출력층 : 한개의노드 ( 따라서 2-부류분류기 ) 에지와가중치

9 4.2.1 구조와원리 노드의연산 입력노드 : 받은신호를단순히전달출력노드 : 합계산과활성함수계산 퍼셉트론은선형분류기

10 4.2.1 구조와원리 예제 4.1 이퍼셉트론은 w=(1,1) T, b=-0.5 따라서결정직선은 d x) = x + x 0.5 ( 1 2 샘플 c 를제대로분류함

11 4.2.2 학습과인식 퍼셉트론학습이란? 예 ) AND 분류문제 a=(0,0) T b=(1,0) T c=(0,1) T d=(1,1) T t a = -1 t b = -1 t c = -1 t d =1 c d 1? x 1?? y a b x 2

12 4.2.2 학습과인식 패턴인식에서일반적인학습알고리즘설계과정 단계 1: 분류기구조정의와분류과정의수학식정의단계 2: 분류기품질측정용비용함수 J(Θ) 정의단계 3: J(Θ) 를최적화하는 Θ를찾는알고리즘설계 단계 1 과 2 단계 3

13 4.2.2 학습과인식 단계 1: 분류기구조정의와분류과정의수학식정의 식 (4.2) 매개변수집합 Θ={w, b} 단계 2: 분류기품질측정용비용함수 J(Θ) 정의 분류기품질을측정하는 J(Θ) 를어떻게정의할것인가? Y: 오분류된샘플집합 J(Θ) 는항상양수 Y 가공집합이면 J(Θ)=0 Y 가클수록 J(Θ) 큼

14 4.2.2 학습과인식 단계 3: J(Θ) 를최적화하는 Θ를찾는알고리즘설계 J(Θ)=0인 Θ를찾아라. 내리막경사법 (Gradient descent method) 현재해를 / Θ 방향으로이동 학습률 ρ를곱하여조금씩이동 J 는음의값을가짐 θ θ값이더큰곳에최적점이존재하므로 J θ를양의값으로하기위해선 - 로해야함 θ

15 4.2.2 학습과인식 알고리즘스케치 초기해를설정한다. 멈춤조건이만족될때까지현재해를 / Θ 방향으로조금씩이동시킨다. 알고리즘에필요한수식들 퍼셉트론학습규칙 ( 델타규칙 )

16 4.2.2 학습과인식

17 4.2.2 학습과인식 예제 w(0)=(-0.5,0.75) T, b(0)=0.375 d(x)= -0.5x x Y={a, b} w(1) = w(0) + 0.4( t a a + tb b) = 0.4 = b(1) = b(0) + 0.4( t + t ) = *0 = d(x)= -0.1x x Y={a} a b w(2) = w(1) + 0.4( t aa) = = b(2) = b(1) + 0.4( t ) = = a 학습율

18 4.2.2 학습과인식 인식알고리즘

19 4.2.2 학습과인식 구현 초기값어떻게? w 와 b 의초기화는? 일반적으로작은난수를생성하여설정함 학습률어떻게? 고정된학습율사용 세대수에따라적응적학습율사용 패턴모드와배치모드 ρ( h) = ρ ( ρ ρ )* h/ H s s e ρ : 시작학습율 배치모드 : 오분류된모든샘플을모은다음, 이들을가지고한꺼번에가중치갱신함 패턴모드 : 샘플을하나입력하고틀리게인식하면곧바로가중치를갱신함 s ρ : 종료시학습율 e h : 세대수 H: 최대세대수

20 4.2.2 학습과인식 구현 초기값어떻게? 학습률어떻게? 패턴모드와배치모드 패턴모드학습알고리즘

21 4.2.2 학습과인식 포켓알고리즘 선형분리불가능한상황 J(Θ)=0( 모든샘플을올바르게분류하고자함 ) 이라는목표를버리고, J(Θ) 를최소화하는목표로수정 새로운 w 를계산한후, 이것이이전것보다좋은지검사함 더좋으면이를사용함

22 4.3 다층퍼셉트론 선형분리불가능한상황 퍼셉트론의한계 그림 4.5(b) 에서퍼셉트론으로최대몇개까지맞출수있을까?

23 4.3.1 구조와원리 XOR 문제 퍼셉트론은 75% 정인식률이한계 이한계를어떻게극복? 두개의퍼셉트론 ( 결정직선 ) 사용

24 4.3.1 구조와원리 두단계에걸쳐문제해결 단계 1: 원래특징공간을새로운공간으로매핑단계 2: 새로운공간에서분류 단계 1: 새로운공간으로매핑 b,c 는 (1,1) 로변환됨 a (-1,1) d (1,-1) 단계 2: 새로운공간에서분류

25 4.3.1 구조와원리 다층퍼셉트론 (MLP; Multi-layer perceptron) 두개의퍼셉트론 1,2 를사용하여, 특징벡터를새로운공간으로매핑함 이후, 새로운공간에서하나의퍼셉트론을사용하여, 최종분류함

26 4.3.1 구조와원리 다층퍼셉트론의아키텍처 입력층, 은닉층, 출력층을가짐입력을위한 d개의노드, 1개의 bias를위한노드 ( 총 d+1) 개의노드 P+1 개의은닉층노드수 (+1 은 bias 값 ) 가중치 : u 와 v

27 4.3.1 구조와원리 신경망은일종의함수 (4.10) (4.11) 입력 x 입력층에서은닉층매핑함수 ( p(.)) 은닉층출력 z 은닉층에서출력층매핑함수 ( q(.)) 출력벡터 o

28 4.3.1 구조와원리 전방계산 (forward computation) : 신경회로망에서왼쪽에서오른쪽으로계산이이뤄짐 (4.12) (4.13) 활성함수 (activation function) 입력 x 입력층에서은닉층매핑함수 ( p(.)) 은닉층출력 z 은닉층에서출력층매핑함수 ( q(.)) 출력벡터 o

29 4.3.1 구조와원리 활성함수 (activation function) 시그모이드라는비선형함수사용

30 4.3.1 구조와원리 예제 4.3 다층퍼셉트론의공간분할능력 활성함수에따른공간분할 αα 값이줄어들수록 w1 class 영역이줄어들고있음

31 4.3.1 구조와원리 FFMLP (Feed-Forward MLP) 의아키텍처 은닉층은몇개로? 층간의연결은어떻게? 각층의노드는몇개로? 어떤활성함수사용할까?

32 4.3.2 학습 MLP 의학습이란? 패턴인식에서일반적인학습알고리즘설계과정 단계 1: 분류기구조정의와분류과정의수학식정의단계 2: 분류기품질측정용비용함수 J(Θ) 정의단계 3: J(Θ) 를최적화하는 Θ를찾는알고리즘설계

33 4.3.2 학습 단계 1: 분류기구조정의와분류과정의수학식정의 (4.12) 와 (4.13) 의전방계산이분류기의식 매개변수집합 Θ={u, v} 단계 2 ( 비용함수정의 ):

34 4.3.2 학습 단계 3 ( 최적해찾음 ): J(Θ) 를최적화하는 Θ 를찾는알고리즘설계 (4.16) 의오류를줄이는방향으로 Θ 를수정해나감 라인 5 를어떻게?

35 4.3.2 학습 v jk 를위한갱신값 Δv jk 의유도 은닉층노드 출력층노드 특정출력노드 k 에서 tt kk 는상수임 v jk 가미치는영향 출력 oo kk = ττ(oo_ssssss kk )

36 4.3.2 학습 출력층노드 u ij 를위한갱신값 Δu ij 의유도 입력노드 은닉층노드 출력 oo kk = ττ(oo_ssssss kk ) u ij 가미치는영향 vv jjjj = oo_ssssss kk zz jj

37 4.3.2 학습 다중퍼셉트로학습을위한오류역전파알고리즘 ( 패턴모드 ) uu iiii vv jjjj z_sum1 z1 o_sum1 o1 z_sum2 z2 o2

38 4.3.2 학습 예제 4.4 다층퍼셉트론의학습

39 4.3.2 학습 예제 4.4 uu iiii z_sum1 z1 vv jjjj o_sum1 o1 o1= z_sum2 z2 o2 o2=

40 4.3.2 학습 예제 4.4 uu iiii z_sum1 z1 vv jjjj o_sum1 o1 o1= o2 z_sum2 z2 o2=

41 4.3.2 학습 uu iiii z_sum1 z1 vv jjjj o_sum1 o1 예제 4.4 o2 z_sum2 z2

42 4.3.2 학습 예제 4.4 uu iiii z_sum1 z1 vv jjjj o_sum1 o1 z_sum2 z2 o

43 4.3.2 학습 오류역전파알고리즘의계산복잡도 Θ((d+m)pHN) H는세대수 많은시간소요 예 ) MNIST 필기숫자데이터베이스는 N=60000

44 4.3.3 인식 학습된다층퍼셉트론을사용하여, 입력에대해인식을수행 인식알고리즘 시간복잡도 Θ((d+m)p) N 에무관, 빠름

45 4.3.4 구현과몇가지부연설명 몇가지부연설명 네트워크아키텍처 ( 은닉노드개수등 ) 가중치초기화 언제종료할것인가? 목적벡터의표현과활성함수 ( 이진모드와양극모드 ) 샘플처리순서학습률국소최적점탈출

46 4.3.4 구현과몇가지부연설명 매개변수설정 일반적인경우에적용되는보편규칙은없다. 경험과실험을통해설정해야한다. 신경망성능이매개변수에아주민감하지는않기때문에어느정도의실험과경험을통해설정가능

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 3 장. 다층퍼셉트론 PREVIEW 신경망 기계학습역사에서가장오래된기계학습모델이며, 현재가장다양한형태를가짐 1950년대퍼셉트론 1980년대다층퍼셉트론 3장은 4장딥러닝의기초가됨 3.1 신경망기초 3.1.1 인공신경망과생물신경망 3.1.2 신경망의간략한역사 3.1.3 신경망의종류 3.1.1 인공신경망과생물신경망 사람의뉴런 두뇌의가장작은정보처리단위 세포체는 cell

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

1-1-basic-43p

1-1-basic-43p A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

특집 2 부 3 신경회로망 신경회로망에대한연구는뇌신경생리학으로부터유래되어패턴인식이나연산기억장치, 최적화, 로봇제어, 문자인식, 음성인식, 신호처리등의분야로확대됐을뿐아니라경제, 경영분야의의사결정시스템에도응용되기에이르렀다. 최근에는데이터마이닝의주요기법으로손꼽히고있다. 신현

특집 2 부 3 신경회로망 신경회로망에대한연구는뇌신경생리학으로부터유래되어패턴인식이나연산기억장치, 최적화, 로봇제어, 문자인식, 음성인식, 신호처리등의분야로확대됐을뿐아니라경제, 경영분야의의사결정시스템에도응용되기에이르렀다. 최근에는데이터마이닝의주요기법으로손꼽히고있다. 신현 3 신경회로망 신경회로망에대한연구는뇌신경생리학으로부터유래되어패턴인식이나연산기억장치, 최적화, 로봇제어, 문자인식, 음성인식, 신호처리등의분야로확대됐을뿐아니라경제, 경영분야의의사결정시스템에도응용되기에이르렀다. 최근에는데이터마이닝의주요기법으로손꼽히고있다. 신현정서울대학교산업공학과 hjshin72@snu.ac.kr 조성준서울대학교산업공학과교수 zoon@snu.ac.kr

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Introduction to Deep Learning and Neural Networks Vision Modeling Lab. Division of Electrical Engineering Hanyang University, ERICA Campus 2 Contents Machine learning Artificial Neural Network (ANN) 신경망의역사와최근의딥러닝

More information

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, 2018 1 Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. https://docs.scipy.org/doc/numpy-1.15.0/user/quickstart.html https://www.machinelearningplus.com/python/

More information

04 Çмú_±â¼ú±â»ç

04 Çмú_±â¼ú±â»ç 42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.

More information

딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning

딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning 딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning 집필기관및참여인원 : 소프트웨어정책연구소 안성원 추형석 전남대학교 김수형 목 차 제 1 장서론 2 제2장단일퍼셉트론 2 제1절구조 2 제2절기능 3 제3절학습원리 5 제4절단층퍼셉트론 8 제3장다층퍼셉트론

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) . ( 통계적이아니라시행착오적 ) 회귀분석 ( 지도학습 ) by Tensorflow - Tensorflow 를사용하는이유, 신경망구조 - youngdocseo@gmail.com 인공지능 데이터분석 When you re fundraising,

More information

<32303032BEC7BFECC1F62E687770>

<32303032BEC7BFECC1F62E687770> 2001-2002 전남대학교 산악회 2002년 제12집 먼 훗날 당신이 찾으시면 그때에 그 말이 잊었노라. 당신이 속으로 나무라면 무척 그리다 잊었노라. 오늘도 어제도 아니 잊고 먼 훗날 그때도 잊었노라. 지도교수 인사말 산은 인생의 도장이라는 말이 있습니다. 산은 無 言 속에서도 自 然 의 理 致 를 가르쳐주고, 또한 많은 智 慧 를 줍니다. 그러나 生 活

More information

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 ( 보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

소성해석

소성해석 3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식

More information

Microsoft PowerPoint - CUDA_NeuralNet_정기철_발표자료.pptx

Microsoft PowerPoint - CUDA_NeuralNet_정기철_발표자료.pptx 정기철 (kcjung@ssu.ac.kr/ http://hci.ssu.ac.kr) 숭실대학교 IT대학미디어학부 (http://www.ssu.ac.kr/ http://media.ssu.ac.kr) VMD/NAMD Molecular Dynamics 일리노이주립대 가시분자동력학 (VMD)/ 나노분자동력학 (NAMD) 240X 속도향상 http://www.ks.uiuc.edu/research/vmd/projects/ece498/lecture/

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA SIFT 서술자를이용한오프라인필기체문자인식특징추출기법 박정국 김경중 세종대학교 컴퓨터공학과 Email: prfirst@sju.ac.kr, kimkj@sejong.ac.kr Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor Jung-Guk Park Kyung-Joong

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 딥러닝소개 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University (C) 2007-2018, SNU Biointelligence Lab, http://bi.snu.ac.kr/ 1 Playground (playground.tensorflow.org)

More information

모바일동향

모바일동향 .... 기계학습의원리, 능력과한계 2016.3. 김진형 소프트웨어정책연구소소장 KAIST 전산학부명예교수 국제패턴인식학회 Fellow 정보과학회명예회장 결과는종종혁신적이지만 진화는항상점진적이다 * 혁신적인알파고, 딥러닝은 70 년동안의인공지능기술진화의산물 * 출처 : 기술의진화 : 비유와함의들, 이관수 ( 동국대다르마칼리지이관수교수 ) 에서 지능적행동을자동화하기위한컴퓨터과학의한분야

More information

Microsoft PowerPoint - chap04-연산자.pptx

Microsoft PowerPoint - chap04-연산자.pptx int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); } 1 학습목표 수식의 개념과 연산자, 피연산자에 대해서 알아본다. C의 를 알아본다. 연산자의 우선 순위와 결합 방향에

More information

<343320C1A4B1B3B9FC2DBACEBAD0B9E6C0FC20C1F8B4DCC0BB20C0A7C7D128C0FAC0DABBA1B0A3B1DBBEBEC8AEC0CE292E687770>

<343320C1A4B1B3B9FC2DBACEBAD0B9E6C0FC20C1F8B4DCC0BB20C0A7C7D128C0FAC0DABBA1B0A3B1DBBEBEC8AEC0CE292E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 14, No. 9 pp. 4455-4461, 2013 http://dx.doi.org/10.5762/kais.2013.14.9.4455 정교범 1*, 곽선근 2 1 홍익대학교전자전기공학과, 2 ( 주 ) 코맥스 Comparison of Artificial

More information

온습도 판넬미터(JTH-05) 사양서V1.0

온습도 판넬미터(JTH-05)  사양서V1.0 온습도 조절기 Model:JTH-05 1. 제품 사양. [제품 구분] JTH-05A(입력 전원 AC), JTH-05D(입력 전원 DC) [전원 사양] JTH-05A 입력 전압 출력 전원 소비 전력 JTH-05D AC 90~240V DC 10~36V 12Vdc / Max.170mA Max.2W [본체 사이즈] ~ 온/습도 범위(본체): 사용 [0 ~ 50, 85%RH

More information

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 Artificil Intelligence: Assignment 3 Seung-Hoon N November 30, 2017 1 1.1 Srs와 Q-lerning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 그림과 같이 8 7 Grid world 로, Agent는 up, down, right, left의

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)

More information

사용자지침서

사용자지침서 사용자지침서 βλ β hardlim Ex. hardlim 함수의사용예 CEMTool>> x=[-1 0 1 2 3]; CEMTool>> y=hardlim(x) λ λ y = 0 1 1 1 1 CEMTool>> y=hardlim(x,-1) y = 0 0 1 1 1 linear λ λ Ex. linear 함수의사용예 CEMTool>> x=[-1 0

More information

인체에 투사된 레이저 스트라이프의 패턴 인식

인체에 투사된 레이저 스트라이프의 패턴 인식 工學博士學位請求論文 인체에투사된레이저스트라이프의패턴인식 Recognition Methods of Stripe Waves Projected to a Body 2005 年 8 月 仁荷大學校大學院 電子工學科 ( 電子通信工學專攻 ) 石鉉宅 工學博士學位請求論文 인체에투사된레이저스트라이프의패턴인식 Recognition Methods of Stripe Waves Projected

More information

슬라이드 0

슬라이드 0 Machine Learning Basic 2016.09 Quarry systems 윤동한 인공지능이란? 지능적행동을자동화하기위한컴퓨터과학의한분야 (Luger & Stubblefield, 1993) 현재사람이더잘하는일을컴퓨터가하도록하는연구 (Rich & Knight, 1991) 1 Machine Learning 이란 명시적으로 Program 하지않고, 스스로학습할수있는능력을컴퓨터에게주기위한연구

More information

융합WEEKTIP data_up

융합WEEKTIP data_up 2016 MAY vol.19 19 융합 인지과학 연구동향 이아름 융합연구정책센터 발행일 2016. 05. 09. 발행처 융합정책연구센터 융합 2016 MAY vol.19 인지과학 연구동향 이아름 융합연구정책센터 선정 배경 최근 구글의 인공지능 프로그램인 알파고가 이세돌 9단과의 바둑대결에서 압승을 거둔 이후 전세계적으로 인공지능에 대한 관심이 증대 - 인간

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

Chapter ...

Chapter ... Chapter 4 프로세서 (4.9절, 4.12절, 4.13절) Contents 4.1 소개 4.2 논리 설계 기초 4.3 데이터패스 설계 4.4 단순한 구현 방법 4.5 파이프라이닝 개요*** 4.6 파이프라이닝 데이터패스 및 제어*** 4.7 데이터 해저드: 포워딩 vs. 스톨링*** 4.8 제어 해저드*** 4.9 예외 처리*** 4.10 명령어 수준

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

제4장 자연언어처리, 인공지능 , 기계학습

제4장 자연언어처리, 인공지능 , 기계학습 제 4 장 자연언어처리 인공지능 기계학습 목차 인공지능 기계학습 2 인공지능 정의 ( 위키피디아 ) 인공지능은철학적으로인간이나지성을갖춘존재, 혹은시스템에의해만들어진지능, 즉인공적인지능을뜻한다 일반적으로범용컴퓨터에적용한다고가정한다 이용어는또한그와같은지능을만들수있는방법론이나실현가능성등을연구하는과학분야를지칭하기도한다 다양한연구주제 지식표현, 탐색, 추론, 문제해결,

More information

<31302DB1E8BDC2B1C72E687770>

<31302DB1E8BDC2B1C72E687770> 수자원 운영계획 시스템의 구현을 위한 수리계획 모형 자료구조의 활용 서 론 김재희김승권박영준 댐 군 최적 연계 운영문제 화천 춘천 북한강 계 소양댐 상류권 의암 청평 수도권 #2 소양댐 하류권 팔당 소양 남한강 계 수도권 #1 충주 충주권 댐 발전소 용수 수요지 수자원 운영계획 시스템의 구현을 위한 수리계획 모형 자료구조의 활용 Shortage 화천댐 SPL

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

Microsoft PowerPoint - chap06-2pointer.ppt

Microsoft PowerPoint - chap06-2pointer.ppt 2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.

More information

Microsoft PowerPoint - C++ 5 .pptx

Microsoft PowerPoint - C++ 5 .pptx C++ 언어프로그래밍 한밭대학교전자. 제어공학과이승호교수 연산자중복 (operator overloading) 이란? 2 1. 연산자중복이란? 1) 기존에미리정의되어있는연산자 (+, -, /, * 등 ) 들을프로그래머의의도에맞도록새롭게정의하여사용할수있도록지원하는기능 2) 연산자를특정한기능을수행하도록재정의하여사용하면여러가지이점을가질수있음 3) 하나의기능이프로그래머의의도에따라바뀌어동작하는다형성

More information

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

LIDAR와 영상 Data Fusion에 의한 건물 자동추출 i ii iii iv v vi vii 1 2 3 4 Image Processing Image Pyramid Edge Detection Epipolar Image Image Matching LIDAR + Photo Cross correlation Least Squares Epipolar Line Matching Low Level High Level Space

More information

기획-4-ok.indd

기획-4-ok.indd 4월 특별기획 글 이재웅 기자 사진 동아일보, 위키피디아 외 숫자 4, 기 살리기 대작전 화창한 4월, 사람들은 따스한 봄 날씨를 즐기려 야외로 나서지. 하지만 숫자 4에겐 봄이 찾아오지 않아. 다들 4란 수를 꺼려하기 때문이야. 4는 왜 우울한 숫자로 알려진 걸까? 무슨 오해가 있는 건 아닐까? 그 동안 알지 못했던 4의 이야기를 들어 보자. 48 수학동아

More information

<312EB1E8C0CDBCF62E687770>

<312EB1E8C0CDBCF62E687770> 農業科學技術硏究, 第 48 輯, 214 年 6 月 Agricultural Science & Technology Research, Vol. 48 신경회로망을이용한오이배양액의배액내이온농도예측 최성문 최영수 * 전남대학교지역바이오시스템공학과생물산업기계공학전공 Prediction of Ion-concentrations in Discharged Nutrient Solution

More information

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다 이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,

More information

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A 예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf

More information

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > . 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과

More information

PowerPoint Presentation

PowerPoint Presentation 5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.

More information

슬라이드 1

슬라이드 1 마이크로컨트롤러 2 (MicroController2) 2 강 ATmega128 의 external interrupt 이귀형교수님 학습목표 interrupt 란무엇인가? 기본개념을알아본다. interrupt 중에서가장사용하기쉬운 external interrupt 의사용방법을학습한다. 1. Interrupt 는왜필요할까? 함수동작을추가하여실행시키려면? //***

More information

강의록

강의록 Analytic CRM 2006. 5. 11 tsshin@yonsei.ac.kr Analytic CRM Analytic CRM Data Mining Analytical CRM in CRM Ecosystem Operational CRM Business Operations Mgmt. Analytical CRM Business Performance Mgmt. Back

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,

More information

Python과 함께 배우는 신호 해석 제 5 강. 복소수 연산 및 Python을 이용한 복소수 연산 (제 2 장. 복소수 기초)

Python과 함께 배우는 신호 해석 제 5 강. 복소수 연산 및 Python을 이용한 복소수 연산      (제 2 장. 복소수 기초) 제 5 강. 복소수연산및 을이용한복소수연산 ( 제 2 장. 복소수기초 ) 한림대학교전자공학과 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 1 배울내용 복소수의기본개념복소수의표현오일러 (Euler) 공식복소수의대수연산 1의 N 승근 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 2 복소수의 4 칙연산 복소수의덧셈과뺄셈에는직각좌표계표현을사용하고,

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

중간고사

중간고사 중간고사 예제 1 사용자로부터받은두개의숫자 x, y 중에서큰수를찾는알고리즘을의사코드로작성하시오. Step 1: Input x, y Step 2: if (x > y) then MAX

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 연구논문 자동차차체제조공정에서용접공정오류검출을위한지능형모니터링시스템개발 김태형 유지영 이세헌 박영환 미시건대학교기계공학과 한양대학교대학원기계공학과 한양대학교기계공학부 부경대학교기계공학과 Development of Intelligent Monitoring System for Welding Process Faults Detection in Auto Body Assembly

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

<4E505F415AB1DBB7CEB9FABAF1C1EEC7C3B7A35FBEE0B0FC28303630343031292E687770>

<4E505F415AB1DBB7CEB9FABAF1C1EEC7C3B7A35FBEE0B0FC28303630343031292E687770> 무배당 알리안츠글로벌비즈플랜보험 약관 제1관 보험계약의 성립과 유지 제1조 보험계약의 성립 제2조 청약의 철회 제3조 약관교부 및 설명의무 등 제4조 계약의 무효 제5조 계약내용의 변경 제6조 보험대상자(피보험자)의 변경 제7조 계약의 갱신 제8조 계약자의 임의해지 제9조 계약의 소멸 제10조 보험나이 제2관 보험료의 납입(계약자의 주된 의무) 제11조 제1회

More information

Microsoft Word - PLC제어응용-2차시.doc

Microsoft Word - PLC제어응용-2차시.doc 과정명 PLC 제어응용차시명 2 차시. 접점명령 학습목표 1. 연산개시명령 (LOAD, LOAD NOT) 에대하여설명할수있다. 2. 직렬접속명령 (AND, AND NOT) 에대하여설명할수있다. 3. 병렬접속명령 (OR, OR NOT) 에대하여설명할수있다. 4.PLC의접점명령을가지고간단한프로그램을작성할수있다. 학습내용 1. 연산개시명령 1) 연산개시명령 (LOAD,

More information

JVM 메모리구조

JVM 메모리구조 조명이정도면괜찮조! 주제 JVM 메모리구조 설미라자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조장. 최지성자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조원 이용열자료조사, 자료작성, PPT 작성, 보고서작성. 이윤경 자료조사, 자료작성, PPT작성, 보고서작성. 이수은 자료조사, 자료작성, PPT작성, 보고서작성. 발표일 2013. 05.

More information

시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198

시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198 SURVEY AND RESEARCH 02 딥러닝의현재와미래 Ⅰ. 서론 Ⅱ. 딥러닝을이용한채권회수율예측 Ⅲ. 알파고, 알파고제로, 알파제로 Ⅳ. 결론 김동현 * 한국주택금융공사정보전산부팀장 2017년말에딥마인드에서개발한알파제로는딥러닝을이용한강화학습을통해바둑의기본규칙만을입력받고스스로바둑을둬가며학습하여불과 3일만에수천년간쌓아올린인간의바둑지식을터득했고인간이미처생각하지못한새로운전략도발견했다.

More information

Microsoft Word - Lab.4

Microsoft Word - Lab.4 Lab. 1. I-V Lab. 4. 연산증폭기 Characterist 비 tics of a Dio 비교기 ode 응용 회로 1. 실험목표 연산증폭기를이용한비교기비교기응용회로를이해 응용회로를구성, 측정및평가해서연산증폭기 2. 실험회로 A. 연산증폭기비교기응용회로 (a) 기본비교기 (b) 출력제한 비교기 (c) 슈미트트리거 (d) 포화반파정류회로그림 4.1. 연산증폭기비교기응용회로

More information

650 원승현 서대호 박대원 Intelligence, AI) 이란사고나학습등인간이가진지적능력을컴퓨터를통해구현하는기술이며 (Won et al., 2016) 인간처럼생각하고행동하며이성적으로생각하며행동하는시스템으로정의하였다 (Russell et al., 2003). 인공지능

650 원승현 서대호 박대원 Intelligence, AI) 이란사고나학습등인간이가진지적능력을컴퓨터를통해구현하는기술이며 (Won et al., 2016) 인간처럼생각하고행동하며이성적으로생각하며행동하는시스템으로정의하였다 (Russell et al., 2003). 인공지능 한국자원공학회지 J. Korean Soc. Miner. Energy Resour. Eng. Vol. 55, No. 6 (2018) pp. 649-659, https://doi.org/10.32390/ksmer.2018.55.6.649 ISSN 2288-0291(print) ISSN 2288-2790(online) 기술보고 딥러닝기법을활용한매립가스발전소포집공의메탄가스농도예측

More information

<C6F7C6AEB6F5B1B3C0E72E687770>

<C6F7C6AEB6F5B1B3C0E72E687770> 1-1. 포트란 언어의 역사 1 1-2. 포트란 언어의 실행 단계 1 1-3. 문제해결의 순서 2 1-4. Overview of Fortran 2 1-5. Use of Columns in Fortran 3 1-6. INTEGER, REAL, and CHARACTER Data Types 4 1-7. Arithmetic Expressions 4 1-8. 포트란에서의

More information

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp Vol.7, No.11, November (2017), pp. 71-79 http://dx.doi.org/10.14257/ajmahs.2017.11.59 이기종컴퓨팅을활용한환율예측뉴럴네트워크구현 한성현 1), 이광엽 2) Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous

More information

42.hwp

42.hwp Asia-pacific Journal of 김대현 Multimedia Services Convergent with Art, Humanities, and Sociology Vol.6, No.5, May (2016), pp. 435-444 http://dx.doi.org/10.14257/ajmahs.2016.05.22 딥러닝 신경망모형을 이용한 실시간 교통정보수집

More information

낙랑군

낙랑군 낙랑군( 樂 浪 郡 ) 조선현( 朝 鮮 縣 )의 위치 -낙랑군 조선현의 평양설 및 대동강설 비판- 이덕일 (한가람역사문화연구소 소장) 1. 머리말 낙랑군의 위치는 오랜 쟁점이었고, 현재까지도 한 중 일 사이의 역사현안이기도 하다. 낙랑군 의 위치에 따라서 동북아 고대사의 강역이 달라지기 때문이다. 낙랑군의 위치 중에서도 가장 중요한 것은 낙랑군의 치소( 治

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter 1. 머신러닝개요 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 김준호, 이상우 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

More information

Microsoft PowerPoint - chap02-C프로그램시작하기.pptx

Microsoft PowerPoint - chap02-C프로그램시작하기.pptx #include int main(void) { int num; printf( Please enter an integer "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 을 작성하면서 C 프로그램의

More information

Microsoft PowerPoint Predicates and Quantifiers.ppt

Microsoft PowerPoint Predicates and Quantifiers.ppt 이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)

More information

(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)

More information

Sequences with Low Correlation

Sequences with Low Correlation 레일리페이딩채널에서의 DPC 부호의성능분석 * 김준성, * 신민호, * 송홍엽 00 년 7 월 1 일 * 연세대학교전기전자공학과부호및정보이론연구실 발표순서 서론 복호화방법 R-BP 알고리즘 UMP-BP 알고리즘 Normalied-BP 알고리즘 무상관레일리페이딩채널에서의표준화인수 모의실험결과및고찰 결론 Codig ad Iformatio Theory ab /15

More information

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝

때문이다. 물론가장큰이유는, 다음절에서살펴보겠지만최근들어딥러닝구조를학습하는데필요한여러가지테크닉들이개발되었기때문이다 [6,7]. 딥러닝이산업현장에서선호되는데는몇가지이유가있다. 일단은어려운문제를잘해결한다는것이다. 예를들어서, 물체인식과음성인식등전통적인패턴인식의문제에서딥러닝 기계학습개론 / 딥러닝강의노트, 서울대학교컴퓨터공학부장병탁, Copyright 2013-2016 3 장 : 딥러닝모델과모델복잡도이론 3.1 딥러닝개념 3.2 딥러닝의혁신점 3.3 딥러닝아키텍쳐 3.4 모델복잡도이론과정규화 3.5 딥러닝모델의비교 3.1 딥러닝개념 30 년전에는인공지능의기초연구분야에속하던머신러닝이최근구글, 애플, 삼성등글로벌기업들이앞다투어확보하려는핵심산업기술로발전하고있다.

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

윈도우즈프로그래밍(1)

윈도우즈프로그래밍(1) 제어문 (2) For~Next 문 윈도우즈프로그래밍 (1) ( 신흥대학교컴퓨터정보계열 ) 2/17 Contents 학습목표 프로그램에서주어진특정문장을부분을일정횟수만큼반복해서실행하는문장으로 For~Next 문등의구조를이해하고활용할수있다. 내용 For~Next 문 다중 For 문 3/17 제어문 - FOR 문 반복문 : 프로그램에서주어진특정문장들을일정한횟수만큼반복해서실행하는문장

More information

(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로

(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로 Lab. 1. I-V Characteristics of a Diode Lab. 6. 연산증폭기가산기, 미분기, 적분기회로 1. 실험목표 연산증폭기를이용한가산기, 미분기및적분기회로를구성, 측정및 평가해서연산증폭기연산응용회로를이해 2. 실험회로 A. 연산증폭기연산응용회로 (a) 가산기 (b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로 3. 실험장비및부품리스트

More information

제 4 장수요와공급의탄력성

제 4 장수요와공급의탄력성 제 4 장수요와공급의탄력성 탄력성 (elasticity) 의개념 u 탄력성 (elasticity) è 탄력성은소비자와생산자가시장환경의변화에어떻게 반응하는가를보여주는지표임. è 현실경제에는무수히많은현상들이원인과결과로 연결되어있음. è 즉, 탄력성은원인변수에대해결과변수가얼마나민감하게 반응하는가를나타내는지표임. è 원인변수 ( 독립변수 ) 와결과변수 ( 종속변수

More information

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB1E2BFEBB0C9>

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DB1E2BFEBB0C9> 기획시리즈 주간기술동향 2016. 3. 9. 인공지능과심층학습의연구동향 기용걸 도로교통공단교통과학연구원부수석연구원 kiyongkul@koroad.or.kr 1. 서론 2. 심층학습의발전과정 3. 심층망의문제점 4. 심층망을위한학습기법 5. 심층학습의응용 6. 결론및시사점 1. 서론마이너리티리포트와같은공상과학영화에서미래에는자동차가스스로운전하고사람들은그냥편안히앉아있는모습을종종보게된다.

More information

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

02장.배열과 클래스

02장.배열과 클래스 ---------------- DATA STRUCTURES USING C ---------------- CHAPTER 배열과구조체 1/20 많은자료의처리? 배열 (array), 구조체 (struct) 성적처리프로그램에서 45 명의성적을저장하는방법 주소록프로그램에서친구들의다양한정보 ( 이름, 전화번호, 주소, 이메일등 ) 를통합하여저장하는방법 홍길동 이름 :

More information

Ch 8 딥강화학습

Ch 8 딥강화학습 Chapter 8. 딥강화학습 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 최진영 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Version

More information

하고또한큰공간을점유한다. 비록기술이발전하여전력소모를줄인다고해도기존의폰노이만 (von Neumann) 방식의컴퓨터아키텍처에서는한계가있어크게줄일수없다. 따라서, SW 기반인공지능은클라우드컴퓨팅 (Cloud Computing) 형태로발전하여네트워크 (network) 환경에서

하고또한큰공간을점유한다. 비록기술이발전하여전력소모를줄인다고해도기존의폰노이만 (von Neumann) 방식의컴퓨터아키텍처에서는한계가있어크게줄일수없다. 따라서, SW 기반인공지능은클라우드컴퓨팅 (Cloud Computing) 형태로발전하여네트워크 (network) 환경에서 한국은하드웨어인공지능을선도할수있을까? 이종호 서울대학교전기 정보공학부교수 머리말 2016년 3월알파고 (AlphaGo, 구글딥마인드가개발한인공지능 (AI) 바둑프로그램 ) 가세계최상위수준급의프로기사인이세돌 9단과 5번기공개대국에서대부분의예상과달리 4승 1패로승리함으로써세상을놀라게했고인공지능의가능성을깨닫는계기를마련했다. 인공지능은 IoT(Internet of

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

실사구시학파의 실증적 학풍이 일어나므로 서구적인 과학사상의 유입을 본 것 등이 인식 의 대상이 될 것이다. 그러나 이조 봉건사회 최종의 절대적 왕권주의자 대원군에 의하여 그 싹은 잘리고 말았다. 따라서 다단한 전기가 될 근대적 개방에 의하여 재건하려던 서구적 교육 즉

실사구시학파의 실증적 학풍이 일어나므로 서구적인 과학사상의 유입을 본 것 등이 인식 의 대상이 될 것이다. 그러나 이조 봉건사회 최종의 절대적 왕권주의자 대원군에 의하여 그 싹은 잘리고 말았다. 따라서 다단한 전기가 될 근대적 개방에 의하여 재건하려던 서구적 교육 즉 朝 鮮 科 學 史 JB409.11-1 洪 以 燮 (홍이섭) 著 - 東 京 : 三 省 堂 出 版 ( 株 ) 1944년( 昭 和 19) [서론] 一. 과학사의 방법 인류의 행복의 증진은 과학과 자연과의 투쟁에 관련된다. 국가의 국방적 건설과 국토 계획 이야말로 국민생활의 최고의 지표인데 그 기초적 문제는 과학에 있다. 그러므로 현대 인류생 활의 기술적 문제로서의

More information

Chap 6: Graphs

Chap 6: Graphs 5. 작업네트워크 (Activity Networks) 작업 (Activity) 부분프로젝트 (divide and conquer) 각각의작업들이완료되어야전체프로젝트가성공적으로완료 두가지종류의네트워크 Activity on Vertex (AOV) Networks Activity on Edge (AOE) Networks 6 장. 그래프 (Page 1) 5.1 AOV

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 (   ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각 JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.

More information

Microsoft PowerPoint - additional01.ppt [호환 모드]

Microsoft PowerPoint - additional01.ppt [호환 모드] 1.C 기반의 C++ part 1 함수 오버로딩 (overloading) 디폴트매개변수 (default parameter) 인-라인함수 (in-line function) 이름공간 (namespace) Jong Hyuk Park 함수 Jong Hyuk Park 함수오버로딩 (overloading) 함수오버로딩 (function overloading) C++ 언어에서는같은이름을가진여러개의함수를정의가능

More information

슬라이드 1

슬라이드 1 CHAP 7: 트리 C 로쉽게풀어쓴자료구조 생능출판사 2005 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 트리는부모 - 자식관계의노드들로이루어진다. 대표이사 응용분야 : 계층적인조직표현 총무부 영업부 생산부 파일시스템 인공지능에서의결정트리 전산팀구매팀경리팀생산 1 팀생산 2 팀 트리의용어 노드 (node): 트리의구성요소 루트 (root): 부모가없는노드

More information

a b c d e f^xh= 2x 2 + ax a f^1+ hh -f^1h lim 6 h 0 h = " A B C D E A J an K O B K b 1O C K 1 1 c 1 0O D K O 0 d K O E Le 1

a b c d e f^xh= 2x 2 + ax a f^1+ hh -f^1h lim 6 h 0 h =  A B C D E A J an K O B K b 1O C K 1 1 c 1 0O D K O 0 d K O E Le 1 b c d e + + + + x + x f^+ hh -f^h lim 6 h h " A B C D E A J N K O B K b O C K c O D K O d K O E Le P - - 5 A B C D E A J N K O B K b O C K c O D K d O K O E Le P f^+ hh - f^h lim 6 h " h f l^h 6 x + x

More information

Microsoft PowerPoint - LA_ch6_1 [호환 모드]

Microsoft PowerPoint - LA_ch6_1 [호환 모드] Chapter 6 선형변환은무질서한과정과공학제어시스템의설계에관한연구에사용된다. 또한전기및음성신호로부터의소음여과와컴퓨터그래픽등에사용된다. 선형변환 Liear rasformatio 6. 6 변환으로서의행렬 Matrices as rasformatios 6. 변환으로서의행렬 6. 선형연산자의기하학 6.3 핵과치역 6.4 선형변환의합성과가역성 6.5 컴퓨터그래픽 si

More information

2_안드로이드UI

2_안드로이드UI 03 Layouts 레이아웃 (Layout) u ViewGroup의파생클래스로서, 포함된 View를정렬하는기능 u 종류 LinearLayout 컨테이너에포함된뷰들을수평또는수직으로일렬배치하는레이아웃 RelativeLayout 뷰를서로간의위치관계나컨테이너와의위치관계를지정하여배치하는레이아웃 TableLayout 표형식으로차일드를배치하는레이아웃 FrameLayout

More information

Lab 3. 실습문제 (Single linked list)_해답.hwp

Lab 3. 실습문제 (Single linked list)_해답.hwp Lab 3. Singly-linked list 의구현 실험실습일시 : 2009. 3. 30. 담당교수 : 정진우 담당조교 : 곽문상 보고서제출기한 : 2009. 4. 5. 학과 : 학번 : 성명 : 실습과제목적 : 이론시간에배운 Singly-linked list를실제로구현할수있다. 실습과제내용 : 주어진소스를이용해 Singly-linked list의각함수를구현한다.

More information

HWP Document

HWP Document CODE A00-B99 A00-A09 A00 KOR_TITLE 특정 감염성 및 기생충성 질환 창자 감염 질환 콜레라 A00.0 비브리오 콜레리 01 전형균에 의한 콜레라 A00.0 전형균에 의한 콜레라 A00.1 비브리오 콜레리 01 엘토르형균에 의한 콜레라 A00.1 엘토르형균에 의한 콜레라 A00.9 상세불명의 콜레라 A01 A01.0 장티푸스 장티푸스

More information

< E20C6DFBFFEBEEE20C0DBBCBAC0BB20C0A7C7D12043BEF0BEEE20492E707074>

< E20C6DFBFFEBEEE20C0DBBCBAC0BB20C0A7C7D12043BEF0BEEE20492E707074> Chap #2 펌웨어작성을위한 C 언어 I http://www.smartdisplay.co.kr 강의계획 Chap1. 강의계획및디지털논리이론 Chap2. 펌웨어작성을위한 C 언어 I Chap3. 펌웨어작성을위한 C 언어 II Chap4. AT89S52 메모리구조 Chap5. SD-52 보드구성과코드메모리프로그래밍방법 Chap6. 어드레스디코딩 ( 매핑 ) 과어셈블리어코딩방법

More information

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids Qinghai Yang, Kyung-Sup Kwak To cite this version: Qinghai Yang, Kyung-Sup Kwak. Context-aware Recommendation System

More information