PowerPoint 프레젠테이션

Size: px
Start display at page:

Download "PowerPoint 프레젠테이션"

Transcription

1 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) <-3 회차 >. ( 통계적이아니라시행착오적 ) 회귀분석 ( 지도학습 ) by Tensorflow - Tensorflow 를사용하는이유, 신경망구조 - youngdocseo@gmail.com

2 인공지능 데이터분석 When you re fundraising, its AI( 인공지능 ). When you re hiring, it s ML( 머신러닝 ). When you re implementing, it s linear regression( 회귀분석 ). - Baron AI is just an acronym for linear regression. - Sean

3 백讀이불여일打 import random Xdata = list() ydata = list() for num in range( 500 ) : temp = random.random() xdata.append( temp ) ydata.append( * temp ) On your mark Get Set Go import tensorflow myb = tensorflow.variable( 0.5 ) myw = tensorflow.variable( 0.5 ) 3 myy = myb + myw * xdata 4 myloss = tensorflow.reduce_mean( ( myy ydata )** ) 5 mytrain = tensorflow.train.gradientdescentoptimizer( 0.5 ).minimize( myloss ) 6 myinit = tensorflow.global_variables_initializer() * 학습률 7 mysess = tensorflow.session() 8 mysess.run( myinit ) * 시작값 cf) tensorflow.zeros( [] ) cf) tensorflow.random_uniform( [], -.0,.0 ). 단, 0 은안됨. cf) tensorflow.square( myy ydata ) cf) 이코드의위치는 myw, myb 뒤쪽이기만하면됨 여기에도 print(mysess.run( myb ), mysess.run( myw ), mysess.run( myloss ) ) 를넣고실행해보면? for step in range( 00 ) : * 학습횟수 (epoch) 9 mysess.run( mytrain ) 0 print( mysess.run( myb ), mysess.run( myw ), mysess.run( myloss ) ) 3

4 변수 Python 함수 Tensorflow 3 myy = myb + myw * xdata xdata [ 500 ] myy [ 500 ] myb myw 찾고싶은값 Variable() On your mark ydata [ 500 ] myloss 4 배열의요소값들의평균 reduce_mean() 결국이기능때문에 Tensorflow 사용 0 run mytrain 9 run * 여러번 ( 학습과정 ) initialize myinit 8 run * 한번만 ( 초기값실행 ) 5 6 옵티마이저 train.gradientdesc entoptimizer(0.5). minimize() global_variables _initializer() Get Set mysess 7 Session() run() Go 4

5 상수변수함수 회귀모형 = 선형 ( 인간의추정 ) 독립변수 xdata myb + myw * xdata 입력데이터 ( 神이만든세계 ) 종속변수 ydata 실제값 (target/label) vs 회귀모형에의한값 myy 손실 / 오차 / 비용함수 Mean Squared Error 분류문제일경우에는 Cross Entropy 를많이사용 bias( 편향, 절편 ) weight( 가중치 ) 모형이계산한값 myb myw parameter / kernel / filter cf) hyper-parameter: 학습률, 학습횟수등 parameter( 그냥가중치라고도함 ) ( 기계의계산 ) 옵티마이저 GradientDescent Optimizer 손실 / 오차 / 비용점수 손실 / 오차 / 비용점수를최소화하도록 parameter( 가중치 + 편향 ) 를업데이트함 = 학습 / 지능 (parameter 는학습 / 지능의저장소 ) = 결국모형자체까지보다는모형의 parameter 값을찾는것일뿐일지도 5

6 [ Appendix ] 다중 회귀분석도가능 yy = xx + 8 xx 비선형 회귀분석도가능 yy = xx 6 xx + 8 xx 단, 코드3에서리스트값의제곱 (square) 처리는아래와같이 myy = myw * [ i** for i in xdata ] + myw * xdata + myw3 * x_data + myb 조절효과 회귀분석도가능 yy = 0 + 3xx xx 6 xx + 8 xx 승수찾기 도가능? yy = 0 + xx 3 ( 즉, 3 을찾는것 ) 6

7 [ Appendix ] 주의사항 가중치를업데이트하는경사하강법 (gradient descent) 의특성에의해 효과적인학습을위해 - 입출력값은 [ 참고 ] 데이터전처리고급버전백색화 (whitening) 주성분분석 (PCA) : 독립변수간상관성제거 정규화 (normalize: 0~) 혹은표준화 (standardize: 95% 로 -~) 할것 *xdata 값생성을 temp = random.random()* 혹은 *3 으로해보자. (Overshooting 문제 ) - 초기가중치의값을가급적 -~ 사이로하되 0으로하거나모든가중치의값이동일한값으로는설정하지말것 * 참고로가중치의수가많으면많을수록작은값으로시작할것 그래서가중치의초기값을 NN(0, ) 로설정하기도함. 노드수 7

8 회귀분석 with CSV, Test and Batch Size # 데이터생성 /import xdata = list() ydata = list() import csv file = open("data.csv") read = csv.reader(file) for row in read : xdata.append(float(row[0])) ydata.append(float(row[])) # tensorflow 로모델링 import tensorflow as tf # 데이터를훈련데이터와테스트데이터로나눔. 그리고 python list를 numpy array로변환한후 축으로설정. import numpy as np trainindex = 400 # 보통전체데이터의 80% trainxdata = np.array( xdata[:trainindex] ) trainxdata = np.reshape( trainxdata, ( trainindex, ) ) trainydata = np.array( ydata[:trainindex] ) trainydata = np.reshape( trainydata, ( trainindex, ) ) testxdata = np.array( xdata[trainindex:] ) testydata = np.array( ydata[trainindex:] ) myb = tf.variable( 0.5 ) myw = tf.variable( 0.5 ) 8

9 trainxdatabatch = tf.placeholder( tf.float3, [None, ] ) trainydatabatch = tf.placeholder( tf.float3, [None, ] ) myy = myb + myw * trainxdatabatch myloss = tf.reduce_mean( tf.square( myy - trainydatabatch ) ) mytrain = tf.train.gradientdescentoptimizer( 0. ).minimize( myloss ) myinit = tf.global_variables_initializer() *tensorflow.constant(): 계속고정된값 (data) mysess = tf.session() mysess.run( myinit ) tensorflow.variable(): 변화시키면서찾고자하는값 (parameter) tensorflow.placeholder(): 그때그때입력하고자하는값 (data batch) # 학습 np.random.seed() # for indentical random sequence for step in range( 00 ) : # Epoch 수 rand_index = np.random.choice(trainindex, 00) # Batch Size batchxdata = trainxdata[ rand_index ] *random selection cf) slice selection batchydata = trainydata[ rand_index ] mysess.run( mytrain, feed_dict={ trainxdatabatch: batchxdata, trainydatabatch: batchydata } ) print( mysess.run(myb), mysess.run(myw) ) Placeholder 사용구조 trainmyy = myb + myw * trainxdata trainloss = tf.reduce_mean( ( trainmyy - trainydata )** ) print(mysess.run(trainloss)) # 테스트 testmyy = myb + myw * testxdata testloss = tf.reduce_mean( ( testmyy - testydata )** ) print(mysess.run(testloss)) # import matplotlib.pyplot as plt # plt.plot(testxdata, testydata, 'ro') # plt.plot(testxdata, mysess.run(testmyy)) # plt.show() trainxdatabatch myy myloss placeholder trainydatabatch mysess.run( mytrain, feed_dict={ } 9

10 *Epoch은학습횟수를칭하기도하고전체 data의사용횟수를칭하기도함. Mini-Batch Data selection = slice일경우에는전체 data의사용횟수를칭하는편임. 즉 Epoch에다수의학습이이루어짐. (Batch size = total일때는동일함 ) 손실 ( 오차 ) 점수 [ Appendix ] 학습률, 학습횟수 (epoch), Batch Size 학습속도 *Batch Size = Total 이라고하여한번에학습을완료하는것은아니다. 어디까지나 반복적시행착오 이다. 즉, 동일한데이터일지라도반복하여사용하면추가학습이이루어진다. 학습안정성 ㅇ Batch Size : (SGD) vs Mini-Batch vs Total/Batch ㅇ Mini-Batch Data selection : random vs slice Batch Size : 회학습에사용하는데이터 (inputs, label) 수 학습률 ( 작을수록폭이좁음 ) ㅇ학습률 : 크게 vs 작게 학습횟수 (epoch) ㅇ학습률이작을수록 (!) Batch Size 가작을수록 (?) 학습횟수는많이 * 통계적회귀분석은 total data 를사용하여한번에최저지점으로간다. 가중치 0

11 회귀분석 with multiple inputs(independent variables) import random import numpy # 데이터생성 xdata = list() ydata = list() for num in range( 500 ) : temp = random.random() temp = random.random() temp3 = random.random() xdata.append( [temp, temp, temp3] ) ydata.append( * temp 4 * temp + * temp3 ) import numpy as np ydata = np.reshape( ydata, [500,] ) # ydata (500,) 를 (500,) 로변환 # tensorflow 로모델링 import tensorflow as tf myb = tf.variable( 0.0 ) # bias 의초기값은보통 0.0 으로 ( 정수 0 은안됨 ) myw = tf.variable( tf.random.normal( [3, ], 0, ) ) # weight 의초기값은보통정규분포 ( 적절한표준편차공식있음 ) myy = tf.matmul( xdata, myw ) + myb # 회귀식 myloss = tf.reduce_mean( tf.square(myy - ydata) ) # 손실함수 mytrain = tf.train.gradientdescentoptimizer( 0.05 ).minimize( myloss ) # 옵티마이저 myinit = tf.global_variables_initializer() mysess = tf.session() mysess.run( myinit ) for step in range( 500 ) : mysess.run( mytrain ) #print( xdata[0], mysess.run( myw ), mysess.run( myb ), mysess.run( myy[0] ) ) print( mysess.run(myb), mysess.run(myw) )

12 [ Appendix ] 입력값및가중치의행렬표기방법과 tf.matmul for one data < 수학적방정식 > ww xx + ww xx + ww 3 xx 3 + bb = yy < 행렬표기법 > xx ww ww ww 3 xx + bb = yy matmul(ww 3, XX 3 ) + b = y xx 3 matmul(ww 3, XX 3 ) + b = y Why bb instead of [bb]? < 행렬표기법 : 더권장 > ww xx xx xx 3 ww ww 3 + bb = yy matmul(xx 3, WW 3 ) + b = y matmul(xx 3, WW 3 ) + b = y import numpy as np a = np.array( [,, 3 ] ) b = np.array( [ 4, 5, 6 ] ) c = np.array( [ [4], [5], [6]] ) print(np.matmul(a, b)) print(np.matmul(b, a)) print(np.matmul(a, c)) print(np.matmul(c, a)) # 오류

13 [ Appendix ] 입력값및가중치의행렬표기방법과 tf.matmul for many inputs(batch) < 수학적방정식 > ww xx + ww xx + ww 3 xx 3 + bb = yy ww xx + ww xx + ww 3 xx 3 + bb = yy < 행렬표기법 > xx xx ww ww ww 3 xx xx xx 3 xx 3 + bb = yy yy Why bb instead of [bb, bb]? matmul(ww 3, XX 3 ) + b = YY < 행렬표기법 : 더권장 > ww xx xx xx 3 ww + bb = yy xx xx xx 3 ww yy 3 Why bb instead of bb bb matmul(xx 3, WW 3 ) + bb = YY ii. ee. [ [bb], [bb] ]? import numpy as np w = np.array( [,, 3 ] ) x = np.array( [ [, 4 ], [, 5 ], [3, 6] ] ) print(np.matmul(w, x)) x = np.array( [ [,, 3 ], [ 4, 5, 6] ] ) w = np.array( [ [ ], [ ], [ 3 ] ] ) print(np.matmul(x, w)) 3

14 [Appendix 3 ] 입력값및가중치의행렬표기방법과 tf.matmul for many inputs(batch) with many outputs for next Hidden Layer < 수학적방정식 : many inputs(batch) 와 many outputs 구분및 W, B 형태이해중요 > ww xx + ww xx + ww 3 xx 3 + bb = yy ww xx + ww xx + ww 3 xx 3 + bb = yy ww xx + ww xx + ww 3 xx 3 + bb = yy ww xx + ww xx + ww 3 xx 3 + bb = yy case xx xx xx 3 xx xx xx 3 input 종류 XX bb mm WW mm nn + BB nn = YY bb nn bb : input batch/case/sample 개수 mm : input 종류개수 nn : output 종류개수 참고 < 행렬표기법 > xx xx ww ww ww 3 ww ww ww xx xx 3 xx 3 xx 3 < 행렬표기법: 더권장 > output 연결 ww ww ww ww yy + bb bb = yy ww 3 ww yy 3 yy input 연결 + bb = yy yy bb yy yy output 종류 case Why bb bb instead of bb bb bb bb? matmul(xx 3, WW 3 ) + BB = YY import numpy as np x = np.array( [ [,, 3 ], [ 4, 5, 6] ] ) w = np.array( [ [, ], [ 3, 4 ], [ 5, 6 ] ] ) b = np.array( [0, 0] ) b = np.array( [ [0, 0], [0, 0] ] ) print( np.matmul(x, w) ) print( np.matmul(x, w) + b ) print( np.matmul(x, w) + b ) 4

15 신경망구조 Input Data xx xx xx ii Kernel : HH bbbb = XX bbbb WW iimm + BB mm h h h mm * bb for batch size * is possible for bb * ii is given, mm is decision Hidden Layer h h h mm Activation Function (relu, sigmoid etc.) Optimizer Kernel : ZZ bbbb = HH bbbb WW mmmm + BB jj zz zz zz jj * bb for batch size * is possible for bb * jj is given. Output Layer zz zz zz jj Activation Function (sigmoid, softmax etc.) Output Data yy yy yy jj Loss Function (MSE, CrossEntropy etc.) 5

16 회귀분석 with hidden layer and activation function 이전 : No hidden layer> 선형분리가능문제 만해결 선형분리불가능문제 는해결안됨. Input xdata < 이번 : One hidden layer(with two units/nodes) and Activation Function(AF) > Input Xdata 선형분리불가능문제일명 XOR 문제 도해결가능. Xdata * mywto + mybto Xdata * mywto3 + mybto3 kernel kernel Xdata * myw + myb Hidden Layer myh AF myh myh3 3 AF myh3 3 은닉층의 AF 는주로 relu, sigmoid, tanh 사용. 분류 문제에서는출력층에도 AF 적용 ( 주로 sigmoid, softmax). 입력층에는 AF 미적용. kernel myh * mywto4 + myh3 * myw3to4 + myb3to4 Output myy ydata Output myy 4 ydata 6

17 import random xdata = list() ydata = list() for num in range( 500 ) : temp = random.random() xdata.append(temp) ydata.append( 3 * temp + 0 ) import tensorflow as tf mywto = tf.variable( tf.random.normal ( [], 0, ) ) mybto = tf.variable( 0.0 ) mywto3 = tf.variable( tf.random.normal ( [], 0, ) ) mybto3 = tf.variable( 0.0 ) mywto4 = tf.variable( tf.random.normal ( [], 0, ) ) myw3to4 = tf.variable( tf.random.normal ( [], 0, ) ) myb3to4 = tf.variable( 0.0 ) # - 3 * (temp 0.5)** + 0 으로해보면? * 여러번실행 : 가중치초기값의중요성!! 적합한초기값을찾는 ML 도발전하고있음 ex) 사전학습 ( 비지도 ) with e.g. AutoEncoder or RBM( 생성모델 ) cf) vanishing gradient 문제도해결해줌 myh = xdata * mywto + mybto # 회귀식H myh = tf.nn.sigmoid( myh ) # 활성화함수 (Activation Function) myh3 = xdata * mywto3 + mybto3 # 회귀식H3 myh3 = tf.nn.sigmoid( myh3 ) # 활성화함수 (Activation Function) myy = myh * mywto4 + myh3 * myw3to4 + myb3to4 cf) 선형들의선형결합은선형일뿐이다. AF 를모두주석처리해보자. AF 를모두 sigmoid -> relu 로변경해보자. myloss = tf.reduce_mean( (myy - ydata) ** ) # 손실함수 mytrain = tf.train.gradientdescentoptimizer( 0.0 ).minimize( myloss ) # 옵티마이저. 학습률 =0.0이면? myinit = tf.global_variables_initializer() mysess = tf.session() mysess.run( myinit ) for step in range( 0000 ) : mysess.run( mytrain ) print( mysess.run(myloss) ) # import matplotlib.pyplot as plt # plt.plot( xdata, ydata, 'ro ) # plt.plot( xdata, mysess.run(myy), bo ) # plt.show() 7

18 [Appendix] 앞의 - 3 * (temp 0.5)** + 0 예제 with AutoEncoder( 사전학습 ) *< 주의 > 아직개념적이해수준의실행코드 ( 확정필요 ) import random xdata = list() ydata = list() for num in range( 500 ) : temp = random.random() xdata.append(temp) ydata.append( -3 * (temp - 0.5)** + 0 ) import tensorflow as tf # AutoEncoder 를통한사전학습 mywto = tf.variable( tf.random.normal( [], 0, ) ) mybto = tf.variable( 0.0) mywto3 = tf.variable( tf.random.normal( [], 0, ) ) mybto3 = tf.variable( 0.0 ) mywto4 = tf.variable( tf.random.normal( [], 0, ) ) myw3to4 = tf.variable( tf.random.normal( [], 0, ) ) myb3to4 = tf.variable( 0.0 ) myh = xdata * mywto + mybto myh = tf.nn.sigmoid( myh ) myh3 = xdata * mywto3 + mybto3 myh3 = tf.nn.sigmoid( myh3 ) myy = myh * mywto4 + myh3 * myw3to4 + myb3to4 myloss = tf.reduce_mean((myy - xdata) ** ) # 정답이 xdata 그자체 mytrain = tf.train.gradientdescentoptimizer( 0.0 ).minimize( myloss ) myinit = tf.global_variables_initializer() mysess = tf.session() mysess.run( myinit ) for step in range( 0000 ) : mysess.run( mytrain ) # 본학습 # 사전학습된지식 ( 가중치 ) 초기값설정 mywto = tf.variable( mysess.run(mywto) ) mybto = tf.variable( mysess.run(mybto) ) mywto3 = tf.variable( mysess.run(mywto3) ) mybto3 = tf.variable( mysess.run(mybto3) ) mywto4 = tf.variable( mysess.run(mywto4) ) myw3to4 = tf.variable( mysess.run(myw3to4) ) myb3to4 = tf.variable( mysess.run(myb3to4) ) myh = xdata * mywto + mybto myh = tf.nn.sigmoid( myh ) myh3 = xdata * mywto3 + mybto3 myh3 = tf.nn.sigmoid( myh3 ) myy = myh * mywto4 + myh3 * myw3to4 + myb3to4 myloss = tf.reduce_mean((myy - ydata) ** ) # 정답이 ydata mytrain = tf.train.gradientdescentoptimizer( 0.0 ).minimize( myloss ) myinit = tf.global_variables_initializer() mysess = tf.session() mysess.run( myinit ) for step in range( 0000 ) : mysess.run( mytrain ) print( mysess.run(myloss) ) import matplotlib.pyplot as plt plt.plot(xdata, ydata, 'ro') plt.plot(xdata, mysess.run(myy), 'bo') plt.show() 8

19 < 과제 : 신경망 and Regression 종합 > Input( 독립변수 ) 값이 3개 000개의 data set. CSV 파일사용 : Train set 700개, Test set 300개 Batch Size 50 적용 One hidden layer(with two units/nodes) and Activation Function(Relu) 적용 커널설정은행렬을사용한 tf.matmul 적용 ( Hint: 앞에있는 Appendix 4_3 ) reduce_mean() 에 index 추가? Input X data X data Kernel Hidden AF AF X3 data Kernel Output myy ydata 9

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

23_Time-Series-Prediction

23_Time-Series-Prediction TensorFlow #23 (Time-Series Prediction) Magnus Erik Hvass Pedersen (http://www.hvass-labs.org/) / GitHub (https://github.com/hvass- Labs/TensorFlow-Tutorials) / Videos on YouTube (https://www.youtube.com/playlist?

More information

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, 2018 1 Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. https://docs.scipy.org/doc/numpy-1.15.0/user/quickstart.html https://www.machinelearningplus.com/python/

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

데이터 시각화

데이터 시각화 데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행

More information

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression Lab - Gradient descent Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression 모듈을구현하는것을목표로합니다. 앞서 우리가 Normal equation lab 을수행하였듯이,

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Introduction to Deep Learning and Neural Networks Vision Modeling Lab. Division of Electrical Engineering Hanyang University, ERICA Campus 2 Contents Machine learning Artificial Neural Network (ANN) 신경망의역사와최근의딥러닝

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 파이썬을이용한빅데이터수집. 분석과시각화 Part 2. 데이터시각화 이원하 목 차 1 2 3 4 WordCloud 자연어처리 Matplotlib 그래프 Folium 지도시각화 Seabean - Heatmap 03 07 16 21 1 WORDCLOUD - 자연어처리 KoNLPy 형태소기반자연어처리 http://www.oracle.com/technetwork/java/javase/downloads/index.html

More information

Microsoft PowerPoint Predicates and Quantifiers.ppt

Microsoft PowerPoint Predicates and Quantifiers.ppt 이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)

More information

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me Python 을이용한기초통계분석 1. 통계학을위한 Python 모듈 1.1 numpy 패키지 - 고급데이터분석과수리계산을위한라이브러리를제공 - 아나콘다에기본적으로설치되어있음 (1) numpy가제공하는통계분석함수 import numpy as np print(dir(np)), 'max',, 'mean', 'median',, 'min',, 'percentile',,

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

Lab-Numpyinanutshell Copyright 2018 document created by Introduction PDF 파일다운로드 오래기다리셨습니다. 드디어 Machin Learning 강의첫번째 Lab Assi

Lab-Numpyinanutshell Copyright 2018 document created by Introduction PDF 파일다운로드 오래기다리셨습니다. 드디어 Machin Learning 강의첫번째 Lab Assi Lab-Numpyinanutshell Copyright 2018 document created by teamlab.gachon@gmail.com Introduction PDF 파일다운로드 오래기다리셨습니다. 드디어 Machin Learning 강의첫번째 Lab Assignment 입니다. 머신러닝강의는사 실 Lab 제작에있어많은고민을했습니다. 처음이야상관없겠지만뒤로갈수록데이터도커지고,

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

<4E505F415AB1DBB7CEB9FABAF1C1EEC7C3B7A35FBEE0B0FC28303630343031292E687770>

<4E505F415AB1DBB7CEB9FABAF1C1EEC7C3B7A35FBEE0B0FC28303630343031292E687770> 무배당 알리안츠글로벌비즈플랜보험 약관 제1관 보험계약의 성립과 유지 제1조 보험계약의 성립 제2조 청약의 철회 제3조 약관교부 및 설명의무 등 제4조 계약의 무효 제5조 계약내용의 변경 제6조 보험대상자(피보험자)의 변경 제7조 계약의 갱신 제8조 계약자의 임의해지 제9조 계약의 소멸 제10조 보험나이 제2관 보험료의 납입(계약자의 주된 의무) 제11조 제1회

More information

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 3 장. 다층퍼셉트론 PREVIEW 신경망 기계학습역사에서가장오래된기계학습모델이며, 현재가장다양한형태를가짐 1950년대퍼셉트론 1980년대다층퍼셉트론 3장은 4장딥러닝의기초가됨 3.1 신경망기초 3.1.1 인공신경망과생물신경망 3.1.2 신경망의간략한역사 3.1.3 신경망의종류 3.1.1 인공신경망과생물신경망 사람의뉴런 두뇌의가장작은정보처리단위 세포체는 cell

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A 예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf

More information

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1

More information

1-1-basic-43p

1-1-basic-43p A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

15 홍보담당관 (언론홍보담당) 김병호 ( 金 秉 鎬 ) 16 (행정담당) 박찬해 ( 朴 鑽 海 ) 예산담당관 17 (복지행정담당) 이혁재 ( 李 赫 在 ) 18 (보육담당) 주사 이영임 ( 李 泳 任 ) 기동근무해제. 19 (장애인담당) 박노혁 ( 朴 魯 爀 ) 기동

15 홍보담당관 (언론홍보담당) 김병호 ( 金 秉 鎬 ) 16 (행정담당) 박찬해 ( 朴 鑽 海 ) 예산담당관 17 (복지행정담당) 이혁재 ( 李 赫 在 ) 18 (보육담당) 주사 이영임 ( 李 泳 任 ) 기동근무해제. 19 (장애인담당) 박노혁 ( 朴 魯 爀 ) 기동 人 事 發 令 논산시 (2013. 2. 7일자) 일련 1 감사담당관 지방행정사무관 이정열 ( 李 廷 烈 ) 2 지방행정사무관 김오형 ( 金 五 衡 ) 감사담당관 3 지방행정사무관 조상환 ( 趙 相 煥 ) 행정지원과 4 지방행정사무관 이정호 ( 李 廷 鎬 ) 5 지방행정사무관 서형욱 ( 徐 炯 旭 ) 6 산림공원과 지방행정사무관 이연형 ( 李 連 炯 ) 취암동

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

Megazone-ML-v2

Megazone-ML-v2 활용장점 학습모델개발자관점및비지니스 Time-to-market Jaehoon Lee 목차 I. 머신러닝 à 개발자관점 기본개념 약간의수학 약간의데모 모델개발자들의작업 II. 모델개발자생산성과비교 No coding. Fast deployment 비즈니스영역 SageMaker 란? 마무리 머신러닝은수집 / 저장 / 처리 / 분석 / 배포 / 활용단계를거쳐프로덕션되어집니다.

More information

PowerPoint Presentation

PowerPoint Presentation 4 장. 신경망 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 4.2-4.3 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학

More information

강의10

강의10 Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf("hihi\n"); } warning: conflicting types for functiona

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf(hihi\n); } warning: conflicting types for functiona 이름 : 학번 : A. True or False: 각각항목마다 True 인지 False 인지적으세요. 1. (Python:) randint 함수를사용하려면, random 모듈을 import 해야한다. 2. (Python:) '' (single quote) 는한글자를표현할때, (double quote) 는문자열을표현할때사용한다. B. 다음에러를수정하는방법을적으세요.

More information

Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터

Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터 Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터를사용자에게전송하게되며 Parsing 단계에서실행계획이생성된다. Bind 변수를사용하는 SQL

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

시스템경영과 구조방정식모형분석

시스템경영과 구조방정식모형분석 2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법

More information

Observational Determinism for Concurrent Program Security

Observational Determinism for  Concurrent Program Security 웹응용프로그램보안취약성 분석기구현 소프트웨어무결점센터 Workshop 2010. 8. 25 한국항공대학교, 안준선 1 소개 관련연구 Outline Input Validation Vulnerability 연구내용 Abstract Domain for Input Validation Implementation of Vulnerability Analyzer 기존연구

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

Microsoft PowerPoint - ch07 - 포인터 pm0415

Microsoft PowerPoint - ch07 - 포인터 pm0415 2015-1 프로그래밍언어 7. 포인터 (Pointer), 동적메모리할당 2015 년 4 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) Outline 포인터 (pointer) 란? 간접참조연산자

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE 2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,

More information

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce Artificial Intelligence for Deep Learning 01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Concept of Neural

More information

2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 5 2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 6 겨울이 되면 1-4 박지예 겨울이 되면 난 참 좋아. 겨울이 되면 귀여운 눈사람도 만들고 겨울이 되면 신나는 눈싸움도 하고 겨울이

2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 5 2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 6 겨울이 되면 1-4 박지예 겨울이 되면 난 참 좋아. 겨울이 되면 귀여운 눈사람도 만들고 겨울이 되면 신나는 눈싸움도 하고 겨울이 2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 1 2015년 2월 12일 사랑의 동삭교육 제 2014-4호 (2월) 2 제2014년 - 4호 ( 2월 ) 펴낸이 : 안 승 렬 교장선생님 도운이 : 박 명 덕 교감선생님 편집인 : 정 경 순 선생님 Tel. (031) 618-9671 학부모회장님 글 1 2월 동삭 교육활동 1.13 신입생 예비소집

More information

1.1 how to use jupyter notebook Esc 키를누른후 h 키를누르면누르면 jupyter notebook 의 cheat sheet 가나온다. jupyter notebook 에는 Command Mode, Edit Mode, 총두가지모드가있다. 셀을클릭

1.1 how to use jupyter notebook Esc 키를누른후 h 키를누르면누르면 jupyter notebook 의 cheat sheet 가나온다. jupyter notebook 에는 Command Mode, Edit Mode, 총두가지모드가있다. 셀을클릭 Introduction to Python Collected by Kwangho Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIST Reference Wikidocs (https://wikidocs.net/6) TensorFlow Essential (https://livebook.manning.com/#!/book/machinelearning-with-tensorflow/chapter-2/1)

More information

fx-82EX_fx-85EX_fx-350EX

fx-82EX_fx-85EX_fx-350EX KO fx-82ex fx-85ex fx-350ex http://edu.casio.com RJA532550-001V01 ...2... 2... 2... 3... 4...5...5...6... 8... 9...10... 10... 11... 13... 16...17...17... 17... 18... 20 CASIO Computer Co., Ltd.,,, CASIO

More information

C# Programming Guide - Types

C# Programming Guide - Types C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

목차 배열의개요 배열사용하기 다차원배열 배열을이용한문자열다루기 실무응용예제 C 2

목차 배열의개요 배열사용하기 다차원배열 배열을이용한문자열다루기 실무응용예제 C 2 제 7 장. 배열 목차 배열의개요 배열사용하기 다차원배열 배열을이용한문자열다루기 실무응용예제 C 2 배열의개요 배열 (array) 의정의 같은데이터형을가지는여러개의변수를하나의배열명으로공유 기억공간을순차적으로할당받아사용하는것 [ 7.1] C 3 배열의개요 배열 (array) 의필요성 같은데이터형의여러개의변수간결하게선언 기억공간을순차적으로변수의값들을저장, 관리

More information

T100MD+

T100MD+ User s Manual 100% ) ( x b a a + 1 RX+ TX+ DTR GND TX+ RX+ DTR GND RX+ TX+ DTR GND DSR RX+ TX+ DTR GND DSR [ DCE TYPE ] [ DCE TYPE ] RS232 Format Baud 1 T100MD+

More information

PowerPoint Template

PowerPoint Template JavaScript 회원정보 입력양식만들기 HTML & JavaScript Contents 1. Form 객체 2. 일반적인입력양식 3. 선택입력양식 4. 회원정보입력양식만들기 2 Form 객체 Form 객체 입력양식의틀이되는 태그에접근할수있도록지원 Document 객체의하위에위치 속성들은모두 태그의속성들의정보에관련된것

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

NLTK 6: 텍스트 분류 학습 (` `%%%`#`&12_`__~~~ౡ氀猀攀)

NLTK 6: 텍스트 분류 학습 (` `%%%`#`&12_`__~~~ౡ氀猀攀) nltk.org/book/ch06.html gender_features word last_letter word[-1] word >>> def gender_features(word):... return { last_letter : word[-1]} >>> gender_features( Shrek ) { last_letter : k } nltk.corpus.names

More information

hlogin2

hlogin2 0x02. Stack Corruption off-limit Kernel Stack libc Heap BSS Data Code off-limit Kernel Kernel : OS Stack libc Heap BSS Data Code Stack : libc : Heap : BSS, Data : bss Code : off-limit Kernel Kernel : OS

More information

[ 마이크로프로세서 1] 2 주차 3 차시. 포인터와구조체 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Functi

[ 마이크로프로세서 1] 2 주차 3 차시. 포인터와구조체 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Functi 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Function) 1. 함수의개념 입력에대해적절한출력을발생시켜주는것 내가 ( 프로그래머 ) 작성한명령문을연산, 처리, 실행해주는부분 ( 모듈 ) 자체적으로실행되지않으며,

More information

C 프로그래밍 언어 입문 C 프로그래밍 언어 입문 김명호저 숭실대학교 출판국 머리말..... C, C++, Java, Fortran, Python, Ruby,.. C. C 1972. 40 C.. C. 1999 C99. C99. C. C. C., kmh ssu.ac.kr.. ,. 2013 12 Contents 1장 프로그래밍 시작 1.1 C 10 1.2 12

More information

<4D F736F F F696E74202D20B8B6C0CCC5A9B7CEC7C1B7CEBCBCBCAD202834C1D6C2F7207E2038C1D6C2F729>

<4D F736F F F696E74202D20B8B6C0CCC5A9B7CEC7C1B7CEBCBCBCAD202834C1D6C2F7207E2038C1D6C2F729> 8주차중간고사 ( 인터럽트및 A/D 변환기문제및풀이 ) Next-Generation Networks Lab. 외부입력인터럽트예제 문제 1 포트 A 의 7-segment 에초시계를구현한다. Tact 스위치 SW3 을 CPU 보드의 PE4 에연결한다. 그리고, SW3 을누르면하강 에지에서초시계가 00 으로초기화된다. 동시에 Tact 스위치 SW4 를 CPU 보드의

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드] 제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

Microsoft PowerPoint - LA_ch6_1 [호환 모드]

Microsoft PowerPoint - LA_ch6_1 [호환 모드] Chapter 6 선형변환은무질서한과정과공학제어시스템의설계에관한연구에사용된다. 또한전기및음성신호로부터의소음여과와컴퓨터그래픽등에사용된다. 선형변환 Liear rasformatio 6. 6 변환으로서의행렬 Matrices as rasformatios 6. 변환으로서의행렬 6. 선형연산자의기하학 6.3 핵과치역 6.4 선형변환의합성과가역성 6.5 컴퓨터그래픽 si

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

무배당 바로받는연금보험II 약관 이 보험계약에서 인용된 법령내용은 [부록] 약관에서 인용 된 법령내용 을 참고하시기 바랍니다. 목 차 가입자 유의사항 4 주요내용 요약서 6 보험용어 해설 8 무배당 바로받는연금보험II 약관 11 지정대리청구서비스특약 약관 39 [부록] 약관에서 인용된 법령내용 45 신체부위 설명도 96 무배당 바로받는연금보험Ⅱ 약관 3 가입자

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

CPX-E-EC_BES_C_ _ k1

CPX-E-EC_BES_C_ _ k1 CPX-E CPX-E-EC EtherCAT 8071155 2017-07 [8075310] CPX-E-EC CPX-E-EC-KO EtherCAT, TwinCAT (). :, 2 Festo CPX-E-EC-KO 2017-07 CPX-E-EC 1... 4 1.1... 4 1.2... 4 1.3... 4 1.4... 5 1.5... 5 2... 6 2.1... 6

More information

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

歯메뉴얼v2.04.doc

歯메뉴얼v2.04.doc 1 SV - ih.. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 - - - 23 24 R S T G U V W P1 P2 N R S T G U V W P1 P2 N R S T G U V W P1 P2 N 25 26 DC REACTOR(OPTION) DB UNIT(OPTION) 3 φ 220/440 V 50/60

More information

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

An Effective Sentence-Extraction Technique Using Contextual Information and Statistical Approaches for Text Summarization

An Effective Sentence-Extraction Technique Using Contextual Information and  Statistical Approaches for Text Summarization 한국 BI 데이터마이닝학회 2010 추계학술대회 Random Forests 기법을사용한 저수율반도체웨이퍼검출및혐의설비탐색 고태훈, 김동일, 박은정, 조성준 * Data Mining Lab., Seoul National University, hooni915@snu.ac.kr Introduction 반도체웨이퍼의수율 반도체공정과웨이퍼의수율 반도체공정은수백개의프로세스로이루어져있음

More information

RNN & NLP Application

RNN & NLP Application RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term

More information

hlogin7

hlogin7 0x07. Return Oriented Programming ROP? , (DEP, ASLR). ROP (Return Oriented Programming) (excutable memory) rop. plt, got got overwrite RTL RTL Chain DEP, ASLR gadget Basic knowledge plt, got call function

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Machine Learning Linear Regression siga α 2015.06.06. siga α Issues siga α 2 Issues https://www.facebook.co/architecturearts/videos/ 1107531579263808/ 8 살짜리조카에게데이터베이스 (DB) 가무엇인지 3 줄의문장으로설명하시오 6 개월동안최대

More information

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조 Lab-Normalequation Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Normal equation을활용하여 LinearRegression 모듈을구현하는것을목표로한다. LinearRegression 모듈의구현을위해서는 numpy와 Python

More information

Microsoft Word - CL5000,5500_KOR_UM_20110321_.doc

Microsoft Word - CL5000,5500_KOR_UM_20110321_.doc 2 차 례 1. 주의 사항... 8 1.1 취급주의... 8 2. Specification... 10 2.1 소개... 10 2.2 규격... 12 3. 명칭과 기능... 14 3.1 CL 5000 - P Type... 14 3.2 기본 설치... 18 3.3 표시부... 19 3.4 기능키... 20 3.5 라벨롤의 설치... 24 4. PROGRAMMING...

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

금오공대 컴퓨터공학전공 강의자료

금오공대 컴퓨터공학전공 강의자료 C 프로그래밍프로젝트 Chap 14. 포인터와함수에대한이해 2013.10.09. 오병우 컴퓨터공학과 14-1 함수의인자로배열전달 기본적인인자의전달방식 값의복사에의한전달 val 10 a 10 11 Department of Computer Engineering 2 14-1 함수의인자로배열전달 배열의함수인자전달방식 배열이름 ( 배열주소, 포인터 ) 에의한전달 #include

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower.

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower. 스피킹 매트릭스 특별 체험판 정답 및 스크립트 30초 영어 말하기 INPUT DAY 01 p.10~12 3 min 집중 훈련 01 I * wake up * at 7. 02 I * eat * an apple. 03 I * go * to school. 04 I * put on * my shoes. 05 I * wash * my hands. 06 I * leave

More information