기술통계

Size: px
Start display at page:

Download "기술통계"

Transcription

1 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17

2 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12, 12,11,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,10,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,8,8,8,8,8,8,8,8,8,8,8, 8,8,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1] 박창이 ( 서울시립대학교통계학과 ) 기술통계 2 / 17

3 친구수에대한히스토그램 II friend_counts = Counter(num_friends) xs = range(101) ys = [friend_counts[x] for x in xs] plt.bar(xs, ys) plt.axis([0,101,0,25]) plt.title("histogram of Friend Counts") plt.xlabel("# of friends") plt.ylabel("# of people") plt.show() 박창이 ( 서울시립대학교통계학과 ) 기술통계 3 / 17

4 친구수에대한히스토그램 III 박창이 ( 서울시립대학교통계학과 ) 기술통계 4 / 17

5 몇가지통계치 num_points = len(num_friends) # 204 largest_value = max(num_friends) # 100 smallest_value = min(num_friends) # 1 sorted_values = sorted(num_friends) smallest_value = sorted_values[0] # 1 second_smallest_value = sorted_values[1] # 1 second_largest_value = sorted_values[-2] # 49 박창이 ( 서울시립대학교통계학과 ) 기술통계 5 / 17

6 중심위치 I 평균 >>> from future import division >>> def mean(x): return sum(x) / len(x) >>> print("mean(num_friends)", mean(num_friends)) mean(num_friends) 박창이 ( 서울시립대학교통계학과 ) 기술통계 6 / 17

7 중심위치 II 중앙값 >>> def median(v): """finds the middle-most value of v""" n = len(v) sorted_v = sorted(v) midpoint = n // 2 if n % 2 == 1: # if odd, return the middle value return sorted_v[midpoint] else: # if even, return the average of the middle values lo = midpoint - 1 hi = midpoint return (sorted_v[lo] + sorted_v[hi]) / 2 >>> print("median(num_friends)", median(num_friends)) median(num_friends) 6.0 박창이 ( 서울시립대학교통계학과 ) 기술통계 7 / 17

8 중심위치 III 분위수 >>> def quantile(x, p): """returns the pth-percentile value in x""" p_index = int(p * len(x)) return sorted(x)[p_index] >>> print("quantile(num_friends, 0.10)", quantile(num_friends, 0.10)) quantile(num_friends, 0.10) 1 >>> print("quantile(num_friends, 0.25)", quantile(num_friends, 0.25)) quantile(num_friends, 0.25) 3 >>> print("quantile(num_friends, 0.75)", quantile(num_friends, 0.75)) quantile(num_friends, 0.75) 9 >>> print("quantile(num_friends, 0.90)", quantile(num_friends, 0.90)) quantile(num_friends, 0.90) 13 박창이 ( 서울시립대학교통계학과 ) 기술통계 8 / 17

9 중심위치 IV 최빈값 >>> def mode(x): """returns a list, might be more than one mode""" counts = Counter(x) max_count = max(counts.values()) return [x_i for x_i, count in counts.items() if count == max_count] >>> print("mode(num_friends)", mode(num_friends)) mode(num_friends) [6, 1] 박창이 ( 서울시립대학교통계학과 ) 기술통계 9 / 17

10 산포 I 범위 >>> def data_range(x): return max(x) - min(x) >>> print("data_range(num_friends)", data_range(num_friends)) data_range(num_friends) 99 박창이 ( 서울시립대학교통계학과 ) 기술통계 10 / 17

11 산포 II 분산 >>> def sum_of_squares(vec): return sum([elem**2 for elem in vec]) >>> def de_mean(x): """translate x by subtracting its mean (so the result has mean 0)"" x_bar = mean(x) return [x_i - x_bar for x_i in x] >>> def variance(x): """assumes x has at least two elements""" n = len(x) deviations = de_mean(x) return sum_of_squares(deviations) / (n - 1) >>> print("variance(num_friends)", variance(num_friends)) variance(num_friends) 박창이 ( 서울시립대학교통계학과 ) 기술통계 11 / 17

12 산포 III 표준편차 >>> def standard_deviation(x): return math.sqrt(variance(x)) >>> print("standard_deviation(num_friends)", standard_deviation(num_friends)) standard_deviation(num_friends) 사분위수범위 >>> def interquartile_range(x): return quantile(x, 0.75) - quantile(x, 0.25) >>> print("interquartile_range(num_friends)", interquartile_range(num_friends)) interquartile_range(num_friends) 6 박창이 ( 서울시립대학교통계학과 ) 기술통계 12 / 17

13 상관관계 I 공분산 >>> daily_minutes = [1,68.77,51.25,52.08,38.36,44.54,57.13,51.4,41.42, 31.22,34.76,54.01,38.79,47.59,49.1,27.66,41.03, 36.73,48.65,28.12,46.62,35.57,32.98,35,26.07,23.77, 39.73,40.57,31.65,31.21,36.32,20.45,21.93,26.02, 27.34,23.49,46.94,30.5,33.8,24.23,21.4,27.94,32.24, 40.57,25.07,19.42,22.39,18.42,46.96,23.72,26.41, 26.97,36.76,40.32,35.02,29.47,30.2,31,38.11,38.18, 36.31,21.03,30.86,36.07,28.66,29.08,37.28,15.28, 24.17,22.31,30.17,25.53,19.85,35.37,44.6,17.23,13.47, 26.33,35.02,32.09,24.81,19.33,28.77,24.26,31.98, 25.73,24.86,16.28,34.51,15.23,39.72,40.8,26.06,35.76, 34.76,16.13,44.04,18.03,19.65,32.62,35.59,39.43, 14.18,35.24,40.13,41.82,35.45,36.07,43.67,24.61, 20.9,21.9,18.79,27.61,27.21,26.61,29.77,20.59, 27.53,13.82,33.2,25,33.1,36.65,18.63,14.87,22.2, 36.81,25.53,24.62,26.25,18.21,28.08,19.42,29.79, 박창이 ( 서울시립대학교통계학과 ) 기술통계 13 / 17

14 상관관계 II 32.8,35.99,28.32,27.79,35.88,29.06,36.28,14.1,36.63, 37.49,26.9,18.58,38.48,24.48,18.95,33.55,14.24,29.04, 32.51,25.63,22.22,19,32.73,15.16,13.9,27.2,32.01, ,13.74,20.42,27.32,18.23,35.35,28.48,9.08,24.62, 20.12,35.26,19.92,31.02,16.49,12.16,30.7,31.22,34.65, 13.13,27.51,33.2,31.57,14.1,33.42,17.44,10.12,24.42, 9.82,23.39,30.93,15.03,21.67,31.09,33.29,22.61,26.89, 23.48,8.38,27.81,32.35,23.84] >>> import numpy as np >>> def covariance(x, y): n = len(x) return np.dot(de_mean(x), de_mean(y)) / (n - 1) >>> print("covariance(num_friends, daily_minutes)", covariance(num_friends, daily_minutes)) covariance(num_friends, daily_minutes) 박창이 ( 서울시립대학교통계학과 ) 기술통계 14 / 17

15 상관관계 III 상관계수 : 이상치제거전 >>> def correlation(x, y): stdev_x = standard_deviation(x) stdev_y = standard_deviation(y) if stdev_x > 0 and stdev_y > 0: return covariance(x, y) / stdev_x / stdev_y else: return 0 # if no variation, correlation is zero >>> print("correlation(num_friends, daily_minutes)", correlation(num_friends, daily_minutes)) correlation(num_friends, daily_minutes) 박창이 ( 서울시립대학교통계학과 ) 기술통계 15 / 17

16 상관관계 IV 상관계수 : 이상치제거후 >>> outlier = num_friends.index(100) # index of outlier >>> num_friends_good = [x for i, x in enumerate(num_friends) if i!= outlier] >>> daily_minutes_good = [x for i, x in enumerate(daily_minutes) if i!= outlier] >>> print("correlation(num_friends_good, daily_minutes_good)", correlation(num_friends_good, daily_minutes_good)) correlation(num_friends_good, daily_minutes_good) 박창이 ( 서울시립대학교통계학과 ) 기술통계 16 / 17

17 참고 많이사용되는통계함수를포함하는모듈 SciPy: pandas: StatModels: statmodels.sourceforge.net 박창이 ( 서울시립대학교통계학과 ) 기술통계 17 / 17

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

데이터 시각화

데이터 시각화 데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 파이썬을이용한빅데이터수집. 분석과시각화 Part 2. 데이터시각화 이원하 목 차 1 2 3 4 WordCloud 자연어처리 Matplotlib 그래프 Folium 지도시각화 Seabean - Heatmap 03 07 16 21 1 WORDCLOUD - 자연어처리 KoNLPy 형태소기반자연어처리 http://www.oracle.com/technetwork/java/javase/downloads/index.html

More information

단순 베이즈 분류기

단순 베이즈 분류기 단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =

More information

8장 문자열

8장 문자열 8 장문자열 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 8 장문자열 1 / 24 학습내용 문자열 (string) 훑기 (traversal) 부분추출 (slicing) print 함수불변성 (immutablity) 검색 (search) 세기 (count) Method in 연산자비교 박창이 ( 서울시립대학교통계학과 ) 8 장문자열 2 /

More information

한눈에-아세안 내지-1

한눈에-아세안 내지-1 I 12 I 13 14 I 15 16 I 17 18 II 20 II 21 22 II 23 24 II 25 26 II 27 28 II 29 30 II 31 32 II 33 34 II 35 36 III 38 III 39 40 III 41 42 III 43 44 III 45 46 III 47 48 III 49 50 IV 52 IV 53 54 IV 55 56 IV

More information

이슈분석 2000 Vol.1

이슈분석 2000 Vol.1 i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

More information

가볍게읽는-내지-1-2

가볍게읽는-내지-1-2 I 01. 10 11 12 02. 13 14 15 03. 16 17 18 04. 19 20 21 05. 22 23 24 06. 25 26 27 07. 28 29 08. 30 31 09. 32 33 10. 34 35 36 11. 37 12. 38 13. 39 14. 40 15. 41 16. 42 43 17. 44 45 18. 46 19. 47 48 20. 49

More information

kbs_thesis.hwp

kbs_thesis.hwp - I - - II - - III - - IV - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me Python 을이용한기초통계분석 1. 통계학을위한 Python 모듈 1.1 numpy 패키지 - 고급데이터분석과수리계산을위한라이브러리를제공 - 아나콘다에기본적으로설치되어있음 (1) numpy가제공하는통계분석함수 import numpy as np print(dir(np)), 'max',, 'mean', 'median',, 'min',, 'percentile',,

More information

tkinter를 이용한 계산기 구현

tkinter를 이용한 계산기 구현 tkinter 를이용한계산기구현 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) tkinter 를이용한계산기구현 1 / 26 학습내용 그림판계산기설계연산가능한계산기 To do 박창이 ( 서울시립대학교통계학과 ) tkinter 를이용한계산기구현 2 / 26 그림판 I 크기 600 400 인캔버스에서화살표를이용하여녹색선으로스케치하며 u 키로화면지움

More information

- i - - ii - - i - - ii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - - x - - xi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 -

More information

CONTENTS.HWP

CONTENTS.HWP i ii iii iv v vi vii viii ix x xi - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -

More information

INDUS-8.HWP

INDUS-8.HWP i iii iv v vi vii viii ix x xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

17장 클래스와 메소드

17장 클래스와 메소드 17 장클래스와메소드 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 17 장클래스와메소드 1 / 18 학습내용 객체지향특징들객체출력 init 메소드 str 메소드연산자재정의타입기반의버전다형성 (polymorphism) 박창이 ( 서울시립대학교통계학과 ) 17 장클래스와메소드 2 / 18 객체지향특징들 객체지향프로그래밍의특징 프로그램은객체와함수정의로구성되며대부분의계산은객체에대한연산으로표현됨객체의정의는

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

............ ......

............ ...... 3 N.P 하모닉드라이브 의 작동원리 서큘러스플라인 웨이브제네레이터 플렉스플라인 플렉스플라인은 웨이브제네레 이터에 의해 타원형상으로 탄 성변형되어 이로인해 타원의 장축부분에서는 서큘러스플라 인과 이가 맞물리고 단축부분 에서는 이가 완전히 떨어진 상태로

More information

Microsoft PowerPoint - Stat03_Numerical technique(New) [Compatibility Mode]

Microsoft PowerPoint - Stat03_Numerical technique(New) [Compatibility Mode] Descriptive Statistics Describing data with tables and graphs (quantitative or categorical variables) Descriptive Statistics (Numerical techniques) Numerical descriptions of center, variability, position

More information

ABSTRACT Development of statistical method to modeling tooth healthspan curves in Korean Jung Hoi In Department of Dentistry The Graduate School, Yonsei University Development of statistical method to

More information

01_°íºÀÂùöKš

01_°íºÀÂùöKš Total Return Swap 1997 7 J.P. Morgan TRSTotal Return Swap 1998 10 J.P. Morgan 75800 1996 1997 J.P. Morgan SK LG 17100 SK 16129 12593 10235 8150 7300 19981023 1 J.P. Morgan 27550 1 48250 75800 TRS SK SK

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

정치사적

정치사적 2014-2 역사학의 이론과 실제 수업 지도 교수: 조범환 담당 교수: 박 단 신라 중대 말 갈항사와 진골 귀족 20100463 김경진 I. 머리말 II. 승전과 갈항사 창건 III. 갈항사와 원성왕 외가 IV. 원성왕 외가와 경덕왕 V. 맺음말 목 차 I. 머리말 葛 項 寺 는 신라 고승 勝 詮 이 700년 전후에 경상북도 김천시 남면 오봉리에 건립한 사찰이

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

14장 파일

14장 파일 14 장파일 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 14 장파일 1 / 18 학습내용 파일입출력예포멧연산자 (format operator) 파일명과경로예외처리하기피클링 (pickling) 파일입출력디버깅 박창이 ( 서울시립대학교통계학과 ) 14 장파일 2 / 18 파일입출력예 >>> fout = open( output.txt, w )

More information

0.Â÷·Ê

0.Â÷·Ê Voice of the People Voice of the People 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물 저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

삼교-1-4.hwp

삼교-1-4.hwp 5 19대 총선 후보 공천의 과정과 결과, 그리고 쟁점: 새누리당과 민주통합당을 중심으로* 윤종빈 명지대학교 논문요약 이 글은 19대 총선의 공천의 제도, 과정, 그리고 결과를 분석한다. 이론적 검증보다는 공천 과정의 설명과 쟁점의 발굴에 중점을 둔다. 4 11 총선에서 새누리당과 민주통합당의 공천은 기대와 달랐고 그 특징은 다음과 같이 요약될 수 있다. 첫째,

More information

<303720C7CFC1A4BCF86F6B2E687770>

<303720C7CFC1A4BCF86F6B2E687770> 1) < 論 文 > 라이프스타일 세분화를 통한 실버타운 수요자 분석 133 주택연구 제15권 4호 2007. 12/15(4) : 133~160 Housing Studies Review Vol. 15, No. 4 : 133~160 접수일 : 2007. 7. 9, 심사일 : 2007. 7. 16, 심사완료일 : 2007. 8. 29 라이프스타일 세분화를 통한 실버타운

More information

본문01

본문01 Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과

More information

목차 Ⅰ. 과업의 개요 1. 과업의 배경 및 목적 2. 과업의 범위 및 내용 05 Ⅱ. 조사 및 분석 1. 현황조사 및 분석 2. 국외 우수사례 분석 3. 시사점 도출 11 Ⅲ. 간판설치계획 작성을 위한 가이드라인 1. 총칙 2. 가이드라인 적용방법 3. 간판설치 기본방향 및 원칙 4. 건축유형별 간판설치 가이드라인 31 Ⅳ. 가이드라인 실행 및 연계방안 1.

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

3장 함수

3장 함수 3 장함수 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 3 장함수 1 / 20 학습내용 함수호출타입변환함수수학함수사용자정의함수파라미터와인자변수와파라미터의범위함수의구분함수를사용하는이유 from을이용한가져오기디버깅변수의범위재귀함수 박창이 ( 서울시립대학교통계학과 ) 3 장함수 2 / 20 함수호출 함수는어떤연산을수행하는일련의명령문들로함수이름으로호출

More information

012임수진

012임수진 Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar

More information

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름 동화 텍스트를 활용한 패러디 광고 스토리텔링 연구 55) 주 지 영* 차례 1. 서론 2. 인물의 성격 변화에 의한 의미화 전략 3. 시공간 변화에 의한 의미화 전략 4. 서사의 변개에 의한 의미화 전략 5. 창조적인 스토리텔링을 위하여 6. 결론 1. 서론...., * 서울여자대학교 초빙강의교수 300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,...

More information

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있 대한한방부인과학회지 THE JOURNAL OF ORIENTAL OBSTETRICS & GYNECOLOGY VOL.17, NO.2 : 115-122 (2004) 달생산이 초산모 분만시간에 미치는 영향 * 북경한의원, ** 윤산부인과의원, *** 최은림산부인과의원, 상지대학교 한의과대학 부인과학교실 ****, 경희대학교 동서의학대학원 김성준 *****, 윤왕준

More information

영남학17합본.hwp

영남학17합본.hwp 退 溪 讀 書 詩 에 나타난 樂 의 層 位 와 그 性 格 신 태 수 * 53) Ⅰ. 문제 제기 Ⅱ. 讀 書 詩 의 양상과 樂 의 의미 층위 Ⅲ 敬 의 작용과 樂 개념의 구도 1. 敬 과 靜 味 樂 의 관계 2. 樂 개념의 구도와 敬 의 기능 Ⅳ. 樂 개념이 讀 書 詩 에서 지니는 미학적 성격 1. 樂 의 심상 체계, 그 심미안과 능동성 2. 樂 의 審 美 構

More information

24011001-26102015000.ps

24011001-26102015000.ps news 02 한줄 News www.metroseoul.co.kr 2015년 10월 26일 월요일 정치 사회 The price of gold is going up again 군 가운데 정부가 감정노동자 보호를 위한 법 개 정에 나서 이목이 집중된다 다시 뛰는 금값 Gold funds are receiving at ttentions again since there

More information

歯M991101.PDF

歯M991101.PDF 2 0 0 0 2000 12 2 0 0 0 2000 12 ( ) ( ) ( ) < >. 1 1. 1 2. 5. 6 1. 7 1.1. 7 1.2. 9 1.3. 10 2. 17 3. 25 3.1. 25 3.2. 29 3.3. 29. 31 1. 31 1.1. ( ) 32 1.2. ( ) 38 1.3. ( ) 40 1.4. ( ) 42 2. 43 3. 69 4. 74.

More information

03.Agile.key

03.Agile.key CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development

More information

5장 SQL 언어 Part II

5장 SQL 언어 Part II 5 장 SQL 언어 Part II 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 5 장 SQL 언어 Part II 1 / 26 데이터조작문 데이터검색 : SELECT 문데이터추가 : INSERT 문데이터수정 : UPDATE 문데이터삭제 : DELETE 문 박창이 ( 서울시립대학교통계학과 ) 5 장 SQL 언어 Part II 2 / 26 SELECT

More information

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770> 제 출 문 보건복지부장관 귀 하 이 보고서를 정신질환자의 편견 해소 및 인식 개선을 위한 대상별 인권 교육프로그램 개발 연구의 결과보고서로 제출합니다 주관연구기관명 서울여자간호대학 산학협력단 연 구 책 임 자 김 경 희 연 구 원 김 계 하 문 용 훈 염 형 국 오 영 아 윤 희 상 이 명 수 홍 선 미 연 구 보 조 원 임 주 리 보 조 원 이 난 희 요

More information

Microsoft Word _mentor_conf_output5.docx

Microsoft Word _mentor_conf_output5.docx < 이재성교수님연구실멘토링자료 > 20151012 최현준제작 # 목차 1. 간단한파이썬 1.1 파이썬설치및설명. 1.2 파이썬데이터형과연산자. 1.3 간단한입출력과형변환. 1.4 for, while, if, with ~ as, indent. 1.5 def 함수정의와 default / return values 1.6 import 와 try except, pip.

More information

화판_미용성형시술 정보집.0305

화판_미용성형시술 정보집.0305 CONTENTS 05/ 07/ 09/ 12/ 12/ 13/ 15 30 36 45 55 59 61 62 64 check list 9 10 11 12 13 15 31 37 46 56 60 62 63 65 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

More information

°æÁ¦Àü¸Á-µ¼º¸.PDF

°æÁ¦Àü¸Á-µ¼º¸.PDF www.keri.org i ii iii iv v vi vii viii ix x xi xii xiii xiv xv 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 48 49 50 51 52 53

More information

10장 리스트

10장 리스트 10 장리스트 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 10 장리스트 1 / 32 학습내용 리스트가변성 (mutability) 가로지르기 (traversing) 연산부분추출메소드 (method) 맵, 필터, 리듀스 (map, filter, and reduce) 원소제거하기 (deleting element) 리스트와문자열객체와값별명 (aliasing)

More information

슬라이드 1

슬라이드 1 / 유닉스시스템개요 / 파일 / 프로세스 01 File Descriptor file file descriptor file type unix 에서의파일은단지바이트들의나열임 operating system 은파일에어떤포맷도부과하지않음 파일의내용은바이트단위로주소를줄수있음 file descriptor 는 0 이나양수임 file 은 open 이나 creat 로 file

More information

204 205

204 205 -Road Traffic Crime and Emergency Evacuation - 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 Abstract Road Traffic Crime

More information

R

R R 프로그래밍의기초 Big Data Analytics Short Courses 5 Big Data Analytics Short Courses R 프로그래밍의기초 5 1 / 37 R Programming 1 R Programming 2 3 Big Data Analytics Short Courses R 프로그래밍의기초 5 2 / 37 Topic R Programming

More information

민속지_이건욱T 최종

민속지_이건욱T 최종 441 450 458 466 474 477 480 This book examines the research conducted on urban ethnography by the National Folk Museum of Korea. Although most people in Korea

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression Lab - Gradient descent Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression 모듈을구현하는것을목표로합니다. 앞서 우리가 Normal equation lab 을수행하였듯이,

More information

274 한국문화 73

274 한국문화 73 - 273 - 274 한국문화 73 17~18 세기통제영의방어체제와병력운영 275 276 한국문화 73 17~18 세기통제영의방어체제와병력운영 277 278 한국문화 73 17~18 세기통제영의방어체제와병력운영 279 280 한국문화 73 17~18 세기통제영의방어체제와병력운영 281 282 한국문화 73 17~18 세기통제영의방어체제와병력운영 283 284

More information

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이 1 2 On-air 3 1. 이베이코리아 G마켓 용평리조트 슈퍼브랜드딜 편 2. 아모레퍼시픽 헤라 루즈 홀릭 리퀴드 편 인쇄 광고 올해도 겨울이 왔어요. 당신에게 꼭 해주고 싶은 말이 있어요. G마켓에선 용평리조트 스페셜 패키지가 2만 6900원! 역시 G마켓이죠? G마켓과 함께하는 용평리조트 스페셜 패키지. G마켓의 슈퍼브랜드딜은 계속된다. 모바일 쇼핑 히어로

More information

(132~173)4단원-ok

(132~173)4단원-ok IV Q 134 135 136 1 10 ) 9 ) 8 ) 7 ) 6 ) 5 ) 4 ) 3 ) 2 ) 1 ) 0 100km 2 1. 1 2. 2 3. 1 2 137 138 139 140 1. 2. 141 Q 142 143 1 2 1. 1 2. 2 144 145 146 1. 2. 147 Q 148 149 150 151 1. 2. 152 100.0 weight 153

More information

2 0 1 1 4 2011 1 2 Part I. 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 Part II. 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28

More information

세계 비지니스 정보

세계 비지니스 정보 1.... 1 2. /2005... 3 3.... 6 4.... 8 5. /... 9 6....12 7. /...17 8....23 9. /...26 10....28 11....29 12....30 13. /...31 14....32 15....33 16. /...35 17....39 - i 18....43 19....46 20....51 21....53 22....56

More information

[96_RE11]LMOs(......).HWP

[96_RE11]LMOs(......).HWP - i - - ii - - iii - - iv - - v - - vi - - vii - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

More information

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조 Lab-Normalequation Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Normal equation을활용하여 LinearRegression 모듈을구현하는것을목표로한다. LinearRegression 모듈의구현을위해서는 numpy와 Python

More information

23_Time-Series-Prediction

23_Time-Series-Prediction TensorFlow #23 (Time-Series Prediction) Magnus Erik Hvass Pedersen (http://www.hvass-labs.org/) / GitHub (https://github.com/hvass- Labs/TensorFlow-Tutorials) / Videos on YouTube (https://www.youtube.com/playlist?

More information

±èÇö¿í Ãâ·Â

±èÇö¿í Ãâ·Â Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

복부비만 이란

복부비만 이란 복부비만의 치료 I. 복부비만 이란? 1. 비만은 체내지방이 과다하게 축적된 상태를 말한다. 비만은 체내지방의 분포 양상에 따라, 복부비만(상체비만, 중심성비만)과 하체비만 (말초비만)으로 구분하는데, 우리 몸에서 다른 부위보다 복부 또는 복강 내에 지방이 과다 하게 축적된 경우를 복부비만이라 한다. 2. 지방의 분포에 의한 복부비만 형태 1) 피하형 : 복강과

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770> ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ 儀 禮 의 社 會 的 機 能 과 變 化 李 顯 松 裵 花 玉 ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ

More information

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞 줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면

More information

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대 대한정치학회보 20집 1호 2012년 6월: 77~99 세종과 소학( 小 學 ) : 민풍( 民 風 ) 과 사풍( 士 風 ) 의 교화* 1) 박홍규 ㆍ송재혁 고려대학교 요 약 2 기존 소학 에 대한 연구들은 주로 중종( 中 宗 ) 시대 사림( 士 林 ) 과의 연관선상에서 소학 의 의미를 모색하고 있다. 그러나 소학 에 대한 존숭 의식은 이미 조선 전기 관학파들도

More information

Lab-Buildamatrix Copyright 2018 document created by Introduction PDF 파일다운로드 Machin Learning의두번째랩은 Pandas와 Numpy를활용하여 Rating M

Lab-Buildamatrix Copyright 2018 document created by Introduction PDF 파일다운로드 Machin Learning의두번째랩은 Pandas와 Numpy를활용하여 Rating M Lab-Buildamatrix Copyright 2018 document created by teamlab.gachon@gmail.com Introduction PDF 파일다운로드 Machin Learning의두번째랩은 Pandas와 Numpy를활용하여 Rating Matrix 또는 Frequent Matrix 를만드는것입니다. 추천시스템개발등머신러닝을하다보면누가,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf("hihi\n"); } warning: conflicting types for functiona

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf(hihi\n); } warning: conflicting types for functiona 이름 : 학번 : A. True or False: 각각항목마다 True 인지 False 인지적으세요. 1. (Python:) randint 함수를사용하려면, random 모듈을 import 해야한다. 2. (Python:) '' (single quote) 는한글자를표현할때, (double quote) 는문자열을표현할때사용한다. B. 다음에러를수정하는방법을적으세요.

More information

..(..) (..) - statistics

..(..) (..) - statistics 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 5 RF Module Reader /Writer 3 4 2 1 RFID Tag Host Computer Antenna RFID TAG Stock Tracking Availability Improvement Loss Prevention Point-of-Sale Automation 60 50 Return on Investment 57.5 (increase

More information

1.1 how to use jupyter notebook Esc 키를누른후 h 키를누르면누르면 jupyter notebook 의 cheat sheet 가나온다. jupyter notebook 에는 Command Mode, Edit Mode, 총두가지모드가있다. 셀을클릭

1.1 how to use jupyter notebook Esc 키를누른후 h 키를누르면누르면 jupyter notebook 의 cheat sheet 가나온다. jupyter notebook 에는 Command Mode, Edit Mode, 총두가지모드가있다. 셀을클릭 Introduction to Python Collected by Kwangho Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIST Reference Wikidocs (https://wikidocs.net/6) TensorFlow Essential (https://livebook.manning.com/#!/book/machinelearning-with-tensorflow/chapter-2/1)

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

,,,,,, 167711 1),,, (Euripides) 2),, (Seneca, LA) 3), 1) 1573 17 2) 3 3 1 2 4

,,,,,, 167711 1),,, (Euripides) 2),, (Seneca, LA) 3), 1) 1573 17 2) 3 3 1 2 4 Journal of Women s Studies 2001 Vol 16 123~142 Racine s Phèdre, a Tragic Woman (Jung, Hye Won, ) 17 (Racine) (Phèdre),,,,,,,, 1 2 3 ,,,,,, 167711 1),,, (Euripides) 2),, (Seneca, LA) 3), 1) 1573 17 2) 3

More information

02. 특2 원혜욱 지니 3.hwp

02. 특2 원혜욱 지니 3.hwp 仁 荷 大 學 校 法 學 硏 究 第 18 輯 第 4 號 2015년 12월 31일, 31~60쪽 Inha Law Review The Institute of Legal Studies Inha University Vol.18, No.4, December, 2015 아동학대의 개념 및 실효적인 대책에 관한 검토 * ** - 아동학대범죄의 처벌 등에 관한 특례법을 중심으로

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

11¹Ú´ö±Ô

11¹Ú´ö±Ô A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -

More information

step-2-1

step-2-1 Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 2 through 15 Action Verbs Table of Contents Unit 1 Review Exercises 01~05 Unit 2 Review Exercises 06~10 STEP BY STEP KOREAN(2) with 15 Verbs Unit 3

More information

Lab10

Lab10 Lab 10: Map Visualization 2015 Fall human-computer interaction + design lab. Joonhwan Lee Map Visualization Shape Shape (.shp): ESRI shp http://sgis.kostat.go.kr/html/index.html 3 d3.js SVG, GeoJSON, TopoJSON

More information

, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** ***

, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** *** , 40 3 4 (2006 12 ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I. 1998. 2005 12 ( ) *. ** *** 2, 40 3 4 37.2%, 20 60%. 80%..,..,.,,, (SCB),,,.,..,, /,..

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

A Hierarchical Approach to Interactive Motion Editing for Human-like Figures

A Hierarchical Approach to Interactive Motion Editing for Human-like Figures 단일연결리스트 (Singly Linked List) 신찬수 연결리스트 (linked list)? tail 서울부산수원용인 null item next 구조체복습 struct name_card { char name[20]; int date; } struct name_card a; // 구조체변수 a 선언 a.name 또는 a.date // 구조체 a의멤버접근 struct

More information

SIGPLwinterschool2012

SIGPLwinterschool2012 1994 1992 2001 2008 2002 Semantics Engineering with PLT Redex Matthias Felleisen, Robert Bruce Findler and Matthew Flatt 2009 Text David A. Schmidt EXPRESSION E ::= N ( E1 O E2 ) OPERATOR O ::=

More information

slide2

slide2 Program P ::= CL CommandList CL ::= C C ; CL Command C ::= L = E while E : CL end print L Expression E ::= N ( E + E ) L &L LefthandSide L ::= I *L Variable I ::= Numeral N ::=

More information

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63>

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63> 第 46 期 定 期 柱 主 總 會 日 時 : 2006. 5. 26 午 前 11 時 場 所 : 大 熊 本 社 講 堂 株 式 會 社 大 熊 회 순 Ⅰ. 개회선언 Ⅱ. 국민의례 Ⅲ. 출석주주 및 출석주식수 보고 Ⅳ. 의장인사 Ⅴ. 회의의 목적사항 1. 보고사항 감사의 감사보고 영업보고 외부감사인 선임 보고 2. 의결사항 제1호 의안 : 제4기 대차대조표, 손익계산서

More information

중 국 6 대 패 션 시 장 조 사 보 고 서 < 2004 년 상 해 10 대 매 장 10대 패 션 제 품 의 브 랜 드 시 장 점 유 뮬 > 제 품 브 랜 드 시 장 점 유 율 제 품 브 랜 드 시 장 점유 율 C O N C H 19 9 9 6 P LA Y B O Y

중 국 6 대 패 션 시 장 조 사 보 고 서 < 2004 년 상 해 10 대 매 장 10대 패 션 제 품 의 브 랜 드 시 장 점 유 뮬 > 제 품 브 랜 드 시 장 점 유 율 제 품 브 랜 드 시 장 점유 율 C O N C H 19 9 9 6 P LA Y B O Y 한국섬유 산업연합 회(KO F ㄲ) 도 표 로 보 면 매 년 1월 은 판 매 성 수 기 로 30592. 43 만 元 의 신 기륵 을 달성하 였 다.중국 전통 영절인 춘절이 여전히 사 람들의 구 매욕 을 자극하였 고, 판 매 업 체 가 갖 가 지 묘 안을 짜 내었 다. 2월 의 판 매 액 은 1월 의 추 세 를 잇 지 못하고 대폭 하락하였다.3,4,5월은 그다지

More information