고차원에서의 유의성 검정

Size: px
Start display at page:

Download "고차원에서의 유의성 검정"

Transcription

1 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15

2 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15

3 서론 I 고차원데이터에서변수들에대한유의성검정 : 특정환자에대하여암을진단하는분류문제보다는정상과암세포 그룹간에 expression level 이다른단백질을찾는데관심이있는경우 이표본 t- 검정 t j = x 2j x 1j se j l = 1: 대조군, l = 2: 처리군 C l : 그룹 l 의인덱스집합, N l : 그룹 l 의표본수 x kj = i C l x ij /N l ˆσ se j = j, ˆσ N N 1 j = N ) 2 1+N 2 2 l=1 i C l (x ij x lj ) 2 2 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 3 / 15

4 서론 II 예를들어방사선치료에민감한환자 (14 명 ) 와정상인환자 (44 명 ) 그룹간의총 12,625 의유전자들중 expression level 이다른유전자를문제를고려 Permutation test 에의한 p-value 계산 각 permutation k(= 1,..., K = ( 58 14) ) 와유전자 j = 1,..., 12625(= M) 에대하여 tj k 를계산 j 번째유전자의 p-value: p j = 1 K K k=1 I ( tk j > t j ) K 는매우큰수이므로가령 K = 정도로랜덤한 permuation 에 대하여계산할수있음 모든유전자들이유사한경우 ( 같은척도에서측정 ) 풀링 p j = 1 MK M j =1 k=1 K I ( t k j > t j ) 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 4 / 15

5 서론 III 다중비교 j = 1,..., p에대하여 H 0j : 유전자 j에대하여처리의효과가없음 vs H 1j : 유전자 j 에대하여처리의효과가있음 p j < α이면 H 0j 를수준 α에서기각하는경우제1종의오류의확률이 α 인데여러검정을동시에하므로전체적인오류율을조절해야함 A j 를 H 0j 가잘못기각될사건이라하면 P(A j ) = α FWER(family-wise error rate): 적어도한번잘못기각될확률 FWER = P(A), A = M j=1a j 일반적으로 p가크면검정들간의상관에의해 P(A) α이됨 Bonferroni 방법 : p j < α/m이면 H 0j 를기각 FWER α이지만 p가크면 α/m는너무작은값이라기각이안됨 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 5 / 15

6 False Discovery Rate I FWER 대신 falsely significant 한유전자의비율에집중 M개의가설의검정결과 Not reject H 0 Reject H 0 Total H 0 true U V M 0 H 0 false T S M 1 Total M R R M FWER = P(V 1) 제 1 종의오류율 : E(V )/M 0, 검정력 (power): 1 E(T )/M 1 FDR = E(V /R) 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 6 / 15

7 False Discovery Rate II Benjamini-Hochberg (BH) 검정통계량에대한근사나 permutation( 순열 ) 으로부터 p-value 계산 FDR M0 M α α가항상성립알고리즘 1. FDR 을 α 로고정. p (1) p (M) : p-value 의순서통계량 2. L = max{j : p (j) < α j M } 3. p j p (L) 인모든 H 0j 를기각 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 7 / 15

8 False Discovery Rate III 예 p value 5*10^ 6 5*10^ 5 5*10^ 4 5*10^ Genes ordered by p value FIGURE Microarray example continued. 참조선 : Shown 0.15 is j a plot of the ordered p-values p (j) and the line 12625, L = (j/12, 625), for the Benjamini Hochberg method. p (11) = 이고대응되는통계량은 4.101임 The largest j for which the p-value p (j) falls below the BH 방법에 line, 따르면 gives the 붉은 BH 색으로 threshold, 표시된 Here this 11 유전자가 occurs at j 유의 =11, indicated by the vertical line. Thus the BH method calls significant the 11 genes (in red) with smallest p-values. 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 8 / 15

9 False Discovery Rate IV BH 방법은대응되는 FDR의값이왜 0.15인지직관적으로알기어렵고복잡한증명을통해보여짐더직관적인방법으로 Plug-in 추정법을고려알고리즘 1. 변수 j = 1,..., M과데이터의순열 k = 1,..., K에대하여 tj k 계산 2. 절단값 C에대하여 R obs = M I ( t j > C), Ê(V ) = 1 K j=1 M K I ( tj k > C) j=1 k=1 3. FDR = Ê(V )/R obs α 값대신절단값을고정함 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 9 / 15

10 False Discovery Rate V 예에서 K = 1000이고 C = 4.101로하면 R obs = 11이고 tj k > C인갯수는 1518로평균 1.518이므로 FDR ˆ = /11 14% 임. 대략 α = 0.15 에근사함 Plug-in 추정값은 E(V /R) E(V )/E(R) 에기반하며일반적으로 ˆ FDR 은일치 (consistent) 추정량임 Ê(V ) 는 (M/M 0 )E(V ) 의추정치이므로 M 0 의추정치가주어졌을때, 더나은 FDR 추정치는 ( M 0 /M) FDR 임 M 0 에대한추정치가있으면 FDR M 0 M α α관계식을통해 BH 방법을향상시킬수있음 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 10 / 15

11 SAM I 값이대칭이아닌경우비대칭의절단값을고려 SAM 수직축 : 순서통계량 t (1) t (M) 수평축 : 기대순서통계량 t k (1) t k (M), t (j) = 1 K K k=1 tk (j) y = x ± 직선을그렸을때두직선에의해정의되는영역을벗어나는 첫번째점을상위절단값 C hi 라하고이를벗어나는유전자들은유의한 것으로봄. 마찬가지로왼쪽아래의유전자에대하여하위절단값 C low 를정의할수있음 와 FDR 을계산하여주관적으로결정 SAM 은모든유전자들의통계치들이한쪽방향 ( 양혹은음 ) 으로 나타나는경우절단값유도할때에장점이있음 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 11 / 15

12 SAM II 예 t statistic Chi Expected Order Statistics FIGURE SAM plot for the radiation sensitivity microarray data. On the vertical axis we have plotted the ordered test statistics, while the horizontal axis = 0.71에대하여 shows the expected 11개의 order statistics 유전자가 of the test유의하고 statistics from permutations C of the data. Two lines are drawn, parallel to the 45 line, units away from low = it. Starting at the origin and moving to the right, we find the first place that the genes leave the band. This defines the upper cut-point Chi and all genes beyond that point are called significant (marked in red). Similarly we define a lower cutpoint Clow. For 박창이 ( 서울시립대학교통계학과 the ) particular value of 고차원에서의 = 0.71 in the 유의성 plot, no 검정 genes are called significant in the 12 / 15

13 FDR 에대한베이지안해석 I FDR 은 P(R = 0) > 0 이면잘정의되지않음 positive FDR 을고려 [ ] V pfdr = E R R > 0 베이지안해석 M 개의동일한단순가설검정하는경우를고려 검정통계량 t 1,..., t M 은 iid 이고기각역 Γ 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 13 / 15

14 FDR 에대한베이지안해석 II Z j = I (H 0j is false) 라하면 (t i, Z j ) 는 iid이고적절한분포 F 0 와 F 1 에대하여 t j Z j (1 Z j )F 0 + Z j F 1 P(Z j = 0) = π 0 라하면 t j π 0 F 0 + (1 π 0 )F 1 pfdr(γ) = P(Z j = 0 t j Γ): 검정통계량이기각역에들때귀무가설이참일사후확률 t = t 0 에서의 local FDR: P(Z j = 0 t j = t 0 ) 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 14 / 15

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770> 본 작품들의 열람기록은 로그파일로 남게 됩니다. 단순 열람 목적 외에 작가와 마포구의 허락 없이 이용하거나 무단 전재, 복제, 배포 시 저작권법의 규정에 의하여 처벌받게 됩니다. 마포 문화관광 스토리텔링 공모전 구 분 내 용 제목 수상내역 작가 공모분야 장르 어린이들의 가장 즐거웠던 나들이 장소들 마포 문화관광 스토리텔링 공모전 장려상 변정애 창작이야기 기타

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

LIDAR와 영상 Data Fusion에 의한 건물 자동추출 i ii iii iv v vi vii 1 2 3 4 Image Processing Image Pyramid Edge Detection Epipolar Image Image Matching LIDAR + Photo Cross correlation Least Squares Epipolar Line Matching Low Level High Level Space

More information

데이터 시각화

데이터 시각화 데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

단순 베이즈 분류기

단순 베이즈 분류기 단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

Ç¥Áö-¸ñÂ÷

Ç¥Áö-¸ñÂ÷ http://www.keis.or.kr Analysis of HRD-Net Statistics Analysis of HRD-Net Statistics HRD-Net 2005 직업훈련동향 http://www.keis.or.kr Analysis of HRD-Net Statistics 2005 HRD-Net 통계분석 Analysis of HRD-Net Statistics

More information

머 리 말 우리 나라에서 한때 가장 인기가 있었던 직업은 은행원이었다 년대만 하더라도 대학 졸업을 앞둔 학생들은 공사 公 社 와 더불어 은행 을 가장 안정적인 직장으로 선망했다 그러나 세월은 흘러 구조조정이 상시화된 지금 은행원 은 더이상 안정도 순위의 직업이 아니다

머 리 말 우리 나라에서 한때 가장 인기가 있었던 직업은 은행원이었다 년대만 하더라도 대학 졸업을 앞둔 학생들은 공사 公 社 와 더불어 은행 을 가장 안정적인 직장으로 선망했다 그러나 세월은 흘러 구조조정이 상시화된 지금 은행원 은 더이상 안정도 순위의 직업이 아니다 기본연구 머 리 말 우리 나라에서 한때 가장 인기가 있었던 직업은 은행원이었다 년대만 하더라도 대학 졸업을 앞둔 학생들은 공사 公 社 와 더불어 은행 을 가장 안정적인 직장으로 선망했다 그러나 세월은 흘러 구조조정이 상시화된 지금 은행원 은 더이상 안정도 순위의 직업이 아니다 은행 이 대형화되고 업무의 상당부분이 전산화됨에 따라 단순 반복적인 업무 담당자들의

More information

6자료집최종(6.8))

6자료집최종(6.8)) Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter

More information

Crt114( ).hwp

Crt114( ).hwp cdna Microarray Experiment: Design Issues in Early Stage and the Need of Normalization Byung Soo Kim, Ph.D. 1, Sunho Lee, Ph.D. 2, Sun Young Rha, M.D., Ph.D. 3,4 and Hyun Cheol Chung, M.D., Ph.D. 3,4 1

More information

이슈분석 2000 Vol.1

이슈분석 2000 Vol.1 i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

More information

가볍게읽는-내지-1-2

가볍게읽는-내지-1-2 I 01. 10 11 12 02. 13 14 15 03. 16 17 18 04. 19 20 21 05. 22 23 24 06. 25 26 27 07. 28 29 08. 30 31 09. 32 33 10. 34 35 36 11. 37 12. 38 13. 39 14. 40 15. 41 16. 42 43 17. 44 45 18. 46 19. 47 48 20. 49

More information

한눈에-아세안 내지-1

한눈에-아세안 내지-1 I 12 I 13 14 I 15 16 I 17 18 II 20 II 21 22 II 23 24 II 25 26 II 27 28 II 29 30 II 31 32 II 33 34 II 35 36 III 38 III 39 40 III 41 42 III 43 44 III 45 46 III 47 48 III 49 50 IV 52 IV 53 54 IV 55 56 IV

More information

kbs_thesis.hwp

kbs_thesis.hwp - I - - II - - III - - IV - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

8장 문자열

8장 문자열 8 장문자열 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 8 장문자열 1 / 24 학습내용 문자열 (string) 훑기 (traversal) 부분추출 (slicing) print 함수불변성 (immutablity) 검색 (search) 세기 (count) Method in 연산자비교 박창이 ( 서울시립대학교통계학과 ) 8 장문자열 2 /

More information

204 205

204 205 -Road Traffic Crime and Emergency Evacuation - 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 Abstract Road Traffic Crime

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

보광31호(4)

보광31호(4) 보광병원 2015 통권 Vol.31 수술도 비수술 치료도 보광병원이라면 믿을 수 있습니다. 보건복지부 의료기관인증병원 나에게 사진은 도전하는 친구 Q. 자기소개 안녕하십니까? 저는 영상의학과 실장으로 일하고 있는 류정철 입니다. 직업 특성상 근무시간 내내 사진촬영을 하고 있지만 주말이면 또 사진을 찍기 위해 집을 나선답니다. 그만큼 사진을 저의 삶의 일부라

More information

Microsoft PowerPoint Predicates and Quantifiers.ppt

Microsoft PowerPoint Predicates and Quantifiers.ppt 이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A 예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf

More information

untitled

untitled 전방향카메라와자율이동로봇 2006. 12. 7. 특허청전기전자심사본부유비쿼터스심사팀 장기정 전방향카메라와자율이동로봇 1 Omnidirectional Cameras 전방향카메라와자율이동로봇 2 With Fisheye Lens 전방향카메라와자율이동로봇 3 With Multiple Cameras 전방향카메라와자율이동로봇 4 With Mirrors 전방향카메라와자율이동로봇

More information

03±èÀçÈÖ¾ÈÁ¤ÅÂ

03±èÀçÈÖ¾ÈÁ¤Å x x x x Abstract The Advertising Effects of PPL in TV Dramas - Identificaiton by Implicit Memory-based Measures Kim, Jae - hwi(associate professor, Dept. of psychology, Chung-Ang University) Ahn,

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT

More information

Chap 6: Graphs

Chap 6: Graphs 그래프표현법 인접행렬 (Adjacency Matrix) 인접리스트 (Adjacency List) 인접다중리스트 (Adjacency Multilist) 6 장. 그래프 (Page ) 인접행렬 (Adjacency Matrix) n 개의 vertex 를갖는그래프 G 의인접행렬의구성 A[n][n] (u, v) E(G) 이면, A[u][v] = Otherwise, A[u][v]

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

Microsoft PowerPoint - AC3.pptx

Microsoft PowerPoint - AC3.pptx Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,

More information

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012 11-1480523-001163-01 유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012 목 차 ⅰ ⅲ ⅳ Abstract ⅵ Ⅰ Ⅱ Ⅲ i 목 차 Ⅳ ii 목 차 iii 목 차 iv 목 차 v Abstract vi Abstract σ ε vii Abstract viii Ⅰ. 서론 Ⅰ. 1 Ⅰ. 서론.

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) Simple Type System - - 1+malloc(), {x:=1,y:=2}+2,... (stuck) { } { } ADD σ,m e 1 n 1,M σ,m e 1 σ,m e 2 n 2,M + e 2 n

More information

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

슬라이드 제목 없음

슬라이드 제목 없음 2006-09-27 경북대학교컴퓨터공학과 1 제 5 장서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 슈퍼넷팅 (Supernetting) 2006-09-27 경북대학교컴퓨터공학과 2 서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 하나의네트워크를여러개의서브넷 (subnet) 으로분할 슈퍼넷팅 (supernetting) 여러개의서브넷주소를결합 The idea

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

PDF

PDF v s u e q g y vœ s s œx}s Enhancing the Night Time Vehicle Detection for Intelligent Headlight Control using Lane Detection Sungmin Eum Ho i Jung * School of Mechanical Engineering Hanyang University,

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

975_983 특집-한규철, 정원호

975_983 특집-한규철, 정원호 Focused Issue of This Month Gyu Cheol an, MD Department of Otolaryngology ead & Neck Surgery, Gachon University of College Medicine E - mail : han@gilhospital.com Won-o Jung, MD Department of Otolaryngology

More information

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ 알고리즘설계와분석 (CSE3081(2 반 )) 기말고사 (2016년 12월15일 ( 목 ) 오전 9시40분 ~) 담당교수 : 서강대학교컴퓨터공학과임인성 < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고, 반드시답을쓰는칸에어느쪽의뒷면에답을기술하였는지명시할것. 연습지는수거하지않음. function MakeSet(x) { x.parent

More information

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * , 40 12 (2006 6) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * 40, 40 12 (EPQ; economic production quantity). (setup cost) (setup time) Bradley

More information

http://www.kbc.go.kr/ Abstract Competition and Concentration in the Market for the Multichannel Video Programming G h e e - Young Noh ( P r o f e s s o, rschool of Communication,

More information

- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -

More information

Chapter4.hwp

Chapter4.hwp Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6

More information

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) 전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) 전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - -

More information

PL10

PL10 assert(p!=null); *p = 10; assert(0

More information

untitled

untitled Six Sigma - - Grouping Brainstorming : Observ. 8 - - 22 27 32 37 5 5 Capability -27.7552 63.7552 22 Capability 3.SL=69.82 X=29.73-3.SL=-.35 3.SL=49.24 R=5.7-2.29 7.7578-3.SL=.E+ 22 Data Source: Time Span:

More information

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드] 전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation

More information

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 2 3 < 표 1> ECM 을이용한선행연구 4 5 6 7 and 8 < 표 2> 오차수정모형 (ECM1~ECM4) 9 10 < 표 3> 민감도분석에쓰인더미변수 11 12 < 표

More information

짧은 글 긴 생각 Contents 04 취임사 김성실 부회장 06 특별기고 신이 내린 직장 08 협회소식 09 KOLAS/KAS소식 10 관련기관소식 12 스페셜 테마 날개 달린 금 16 교정기관탐방 (주)한국계측기기연구센터를 찾아서 18 과학칼럼 햄버거와 표준품질체계

짧은 글 긴 생각 Contents 04 취임사 김성실 부회장 06 특별기고 신이 내린 직장 08 협회소식 09 KOLAS/KAS소식 10 관련기관소식 12 스페셜 테마 날개 달린 금 16 교정기관탐방 (주)한국계측기기연구센터를 찾아서 18 과학칼럼 햄버거와 표준품질체계 9+10 특별기고_ 신이 내린 직장 스페셜 테마_ 날개 달린 금 교정기관탐방_ (주)한국계측기기연구센터를 찾아서 문화읽기_ K-Pop 열풍, 지구를 흔들다 WEIGHING&MEASUREMENTS 짧은 글 긴 생각 Contents 04 취임사 김성실 부회장 06 특별기고 신이 내린 직장 08 협회소식 09 KOLAS/KAS소식 10 관련기관소식 12 스페셜 테마

More information

Jkbcs016(92-97).hwp

Jkbcs016(92-97).hwp Expression of bcl-2 and Apoptosis and Its Relationship to Clinicopathological Prognostic Factors in Breast Cancer - A Study with Long Term Follow-up correlated with the survival rate.(journal of Korean

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

Microsoft PowerPoint - 7-Work and Energy.ppt

Microsoft PowerPoint - 7-Work and Energy.ppt Chapter 7. Work and Energy 일과운동에너지 One of the most important concepts in physics Alternative approach to mechanics Many applications beyond mechanics Thermodynamics (movement of heat) Quantum mechanics...

More information

II. 기존선행연구

II. 기존선행연구 수익용부동산의임대수익영향요인에관한연구 I. 서론 II. 기존선행연구 Ⅲ. 실증분석모형및자료 yit = a + b xit + ui + eit yit = ( a + ui ) + b xit + eit α α cov( it, i ) 0 x u = cov( x, ) 0 it u i ¹ H : cov( x, u ) = 0 0 H : cov( x, u ) ¹ 0 1 it

More information

본문01

본문01 Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4) THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Oct.; 29(10), 799 804. http://dx.doi.org/10.5515/kjkiees.2018.29.10.799 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Method

More information

untitled

untitled Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended

More information

취업모 고용지원정책에 관한 연구:

취업모 고용지원정책에 관한 연구: 취업모 고용지원정책에 관한 연구: 육아휴직/보육제도를 중심으로 2004년 2월 인하대학교 행정대학원 사회복지학과(사회복지학전공) 나 혜 영 취업모 고용지원정책에 관한 연구: 육아휴직/보육제도를 중심으로 2004년 2월 지도교수 김 천 권 이 논문을 석사학위 논문으로 제출함 인하대학교 행정대학원 사회복지학과(사회복지학전공) 나 혜 영 이 논문을 나혜영의 석사학위

More information

2 / 26

2 / 26 1 / 26 2 / 26 3 / 26 4 / 26 5 / 26 6 / 26 7 / 26 8 / 26 9 / 26 10 / 26 11 / 26 12 / 26 13 / 26 14 / 26 o o o 15 / 26 o 16 / 26 17 / 26 18 / 26 Comparison of RAID levels RAID level Minimum number of drives

More information

아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기 최종보고서 폐기물관리 규제개선방안 연구 ( 업계 건의사항 및 질의사례 중심) 2006. 9 환 경 부 제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

<3136C1FD31C8A320C5EBC7D52E687770>

<3136C1FD31C8A320C5EBC7D52E687770> 고속도로건설에 따른 지역간 접근성 변화분석 A study on the impact of new highway construction on regional accessibility The purpose of this is to analyse the interregional accessibility changes due to highway construction.

More information

기관고유연구사업결과보고

기관고유연구사업결과보고 기관고유연구사업결과보고 작성요령 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 1 2/3 2 1 0 2 3 52 0 31 83 12 6 3 21 593 404 304 1,301 4 3 1 8 159 191 116 466 6 11 (`1: (1: 16 33 44 106

More information

한국성인에서초기황반변성질환과 연관된위험요인연구

한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -

More information

HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M.

HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M. 오늘할것 5 6 HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M. Review: 5-2 7 7 17 5 4 3 4 OR 0 2 1 2 ~20 ~40 ~60 ~80 ~100 M 언어 e ::= const constant

More information

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특 한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province

More information

untitled

untitled Chapter 5 Gases 3 5.1 2 NaN 3 (s) 2Na(s) + 3N 2 (g) Air bag 45.5L sodium azide?,,? 3 5.2 ? 1.,,, 2. P, V, n, T ( ) 3. 3 5.3 5.1,, = 1L = 10 3 cm 3 = 10-3 m 3 m=m n ( ) T k = t c + 273.15 : psi, mmhg, atm(

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

12È«±â¼±¿Ü339~370

12È«±â¼±¿Ü339~370 http://www.kbc.go.kr/ k Si 2 i= 1 Abstract A Study on Establishment of Fair Trade Order in Terrestrial Broadcasting Ki - Sun Hong (Professor, Dept. of Journalism & Mass Communication,

More information

Promise for Safe & Comfortable Driving

Promise for Safe & Comfortable Driving AL. WHEEL CUTTING SOLUTION Promise for Safe & Comfortable Driving 17 AL. WHEEL CUTTING SOLUTION 19 22.5 L-AW SERIES AL WHEEL TURNING CENTER 01 03 02 01 01 L-AW SERIES AL WHEEL TURNING CENTER 02 03 L-AW

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although

More information

IL-1β, IL-1RN, IL-8, MUC, NAT, GST 등 ) IL-1β, IL-1RN, IL-8, MUC, NAT, GST 등 ) IL-1β, IL-1RN, IL-8, MUC, NAT, GST 등 ) l l l α β α β β α β β α β 목적 (Background/Aims): 위암의가족력과 Helicobacter pylori 감염은각각위암발생의위험인자로알려져있으나,

More information

09구자용(489~500)

09구자용(489~500) The Study on the Grid Size Regarding Spatial Interpolation for Local Climate Maps* Cha Yong Ku** Young Ho Shin*** Jae-Won Lee**** Hee-Soo Kim*****.,...,,,, Abstract : Recent global warming and abnormal

More information

농림수산식품 연구개발사업 운영규정

농림수산식품 연구개발사업 운영규정 - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - 1. - 29 - - 30 - - 31 - -

More information