Microsoft PowerPoint - SBE univariate5.pptx
|
|
- 권순 즙
- 5 years ago
- Views:
Transcription
1 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31
2 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재 해결방법 이상치먼저제거그후우로치우침해결 ( 신뢰구간좁다 ) log 변환, 변환 좌로치우침 : X, X 3 변환 우로치우침해결후이상치제거 ( 모든관측치사용 ) 3
3 치우침과이상치진단효과 LOG 변환먼저 변환후에도치우침존재. 이상치먼저제거 여전히치우침존재 LOG 변환하자. 평균추정치 : % 구간 : (77.4, 81.8) 평균추정 : % 신뢰구간 : (77.1, 80.6) 33
4 평균과중앙값 중앙개념 평균보다중앙값 (median) 이더좋다 이상치, 치우침에영향을받지않는다. 치우침이나이상치가있는경우평균 절사평균k-배절삭평균 (k-times trimmed mean) 은큰값k개, 적은값 k 개를제외하고평균을구한다. 왜평균인가? 중심극한정리에의해확률밀도함수를구할수있다. 확률 ( 유의확률 ) 을계산할수있으므로통계적가설검정가능 중심극한정리 (Central Limit Theorem) 모집단의분포와관계없이표본의크기 (n) 가크면 (n>0) 표본평균의분포는정규분포에근사한다. Winsorized Mean: k-배윈저화평균 (k-times winsorized mea n) 은큰값k개, 적은값 k개를바로옆의값으로대체하여평균을구한다. 모집단 ~f(x) σ X ~ N( μ, ) as n n 표본데이터 (x 1, x,, x n ) 표본평균 X In SPSS 5%( 총 10%) 절삭평균출력한다. 분석 (A) 기술통계량 (E) 데이터분석 (E) 표본분포 ~f(x) 이상치, 치우침제거효과가있음. 34
5 평균과표준편차 평균은표준편차와함께사용 ( X, s) 단위가같고, 실증적법칙에의해 CV ( 변동계수 ) 측정단위나관측대상이서로다른두집단의분산을비교하는경우편차의단위를같게할필요가있다. 이를위하여표준편차를평균으로나눈값에 100 을곱한값을변동계수 (CV: Coefficient of Variation) 라하고상대변동 ( 분산 ) 개념으로정의하고있다. s CV = 100(%) x Empirical rule 데이터의분포가좌우대칭 ( 종모양 ) 이면다음이성립한다. 범위 ( 평균 ±s) 에데이터 68% 범위 ( 평균 ±s) 에데이터 95% 범위 ( 평균 ±3s) 에데이터대부분 (99%) 고등학교 3 학년인 A 학생과 B 학생의공부습관을조사하여한달간조사하여 A학생은평균 3시간, 표준편차는 0.5, B 학생은 6시간표준편차0.8인결과를얻었다. 어느학생이더꾸준히공부하는습관을가지고있을까? 이에대한답을위해변동계수를계산하면된다. 다음의계산결과 B 학생이더꾸준히공부하는습관을가지고있다고결론지을수있다. Chevyshev s Theorem 데이터의분포가 ( 평균 ±k*s) 범위안에는적어도터가있다. 1 1/ k 데이 35
6 확률밀도함수와이산형확률분포함수 확률변수 확률실험이나조사, 관측에서측정될수있는값에실수를대응시킨함수로 X로표현, X=X(s), 즉실험결과의숫자표현 ( 이산형 : 예 )X= 주사위눈금, 교통사고건수 ( 연속형 : 예 )X= 키, IQ, 측정오차 확률밀도함수 확률변수 X(x- 축 ) 와그에대응하는확률 (p(x), f(x): y- 축 ) 을그래프, 표, 혹은수식 ( 예 ) 여자 3명, 남자 3명이지원했다. 무작위로 명을선발할때선발될남자의수를확률변수라정의하자. 확률변수의확률밀도함수를구하시오. 이산형확률밀도함수 ( 확률계산가능 ) 확률분포표 베르누이분포 (Bernoulli distribution) B(p) 베르누이시행 실험결과가두개 ( 성공 / 실패 ), 성공확률 p, 서로독립 이항분포 (Binomial) B(n, p) n 번의베르누이시행에서성공의회수 기하분포 (Geometric) G(p) 성공을한번하는데시행하는베르누이시행회수 음이항분포 (Negative Binomial) NB(r, p) 성공을 r번하는데시행하는베르누이시행회수 포아송분포 (Poisson) P(λ) 단위시간, 면적에서임의의사건성공회수에관심을갖는경우를생각하자. 한남대앞정류장에도착하는버스수 ( 시간당 ), 한페이지당오타숫자, 은행창구를찾는고객수 (10분당) 36
7 연속형확률분포함수 연속형확률분포함수? 확률분포표 데이터히스토그램의정상을연결하면확률분포함수가된다. 이를이용하여데이터 ( 표본 ) 의분포 ( 이는모집단의분포와동일 ) 를구하게된다. 그러나함수를구하는것은불가능해보인다. 그래서현실에서는확률분포를가정하게된다. ( 예 ) 기다리는시간 : 지수분포, 측정오차 : 정규분포 Gauss( 천문학자 ): 행성들간거리측정오차의히스토그램에서정규분포 (normal distribution) 유도 연속형확률변수와이산형확률변수연결확률변수관계 이항분포의정규분포근사 n이커짐에따라 B(n, p)->normal (np, npq) 일반적근거 : min(np, npq) 가적어도 5 이상 Continuity Correction: ( 예1)P(X>=3: 이항분포 )P(X )=P(X>.5: 정규분포 ) ( 예)P(X<=: 이항분포 )=P(X<.5: 정규분포 ) ( 예3)P(<X<=5: 이항분포 )=P(.5<X<5.5: 정규분포 ) 포아송분포와지수분포 X ~ N( μ, σ ) Z = X ~ iidn( μ, σ ) Z ~ iidn(0,1) N (0,1) χ ( m) / m χ ( m1 ) / m χ ( m ) / m 1 k ~ t( m) ~ F( m, m X μ ~ N(0,1) σ X ~ N( μ, σ ) Z ~ χ ( k) 1 ) Exponential(1/ λ) Poisson(λ) 단위시간당사람이오는회수 : Poisson 분포 다음사람이오는데걸리는시간 : Exponential 분포 m 사람이오는데걸리는시간 : Gamma 분포 37
8 지수분포생성 지수분포 (exponential distribution) ~Exp(β) 균일 (Uniform distribution) 분포 : U ~ Uniform(0,1) 지수분포 ( 평균이 λ인 ) 의누적확률분포함수 : F( X ) =1 e F는균일분포를따른다는성질을이용하여 x 균일분포생성 in Excel λ 1 e = U X = λ ln(1 U ) x λ 감마 (Gamma) 분포 ~Gamma(α, β) 지수분포를따르는서로독립인확률변수의 r개합 카이스퀘어 (χ ) 분포 (Chi-square) ~ χ (r) α=r/, β 인감마분포 베타 (Beta) 분포 ~ Beta(α, β) X~ 감마분포 (α, m), Y~ 감마분포 (β,m) (X+Y)/X ~ Beta(α, β) 38
Microsoft Word - SAS_Data Manipulate.docx
수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )
More information확률과통계6
확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform
More informationMicrosoft Word - EDA_Univariate.docx
일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationMicrosoft PowerPoint - LN05 [호환 모드]
계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected
More information1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F
More informationMicrosoft PowerPoint - PDF3 SBE 20080417.pptx
연속형 확률밀도함수 연속형 확률분포함수? 데이터 히스토그램의 정상을 연결하면 확률분포함수가 된다. 이를 이용하여 데이터(표본)의 분포(이는 모집단의 분포와 동일)를 구 하게 된다. 그러나 함수를 구하는 것은 불가능해 보인다. 그래서 현실에서는 확률분포를 가정하게 된다. (예)기다리는 시간: 지수분포, 측정 오 차: 정규분포 Gauss(천문학자): 행성들간 거리
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information확률 및 분포
확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import
More information중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed
중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More informationContents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2
통계학 - CAS0001 7 주차 이산확률분포 이석준 Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 학습목표 확률변수가연속적인지이산적인지구분한다. 이항분포, 초기하분포,
More informationMicrosoft Word - Ch2_Function_math.docx
Calculus is the mathematics of motion and change. 운동과변화의수학인선형대수는 (Calculus) 함수의순간변화율에 ( 기울기 ) 대한미분 (Differentiation), 함수의특정구간의면적의합에관한적분과 (Integral) 함수의수렴값에대한극한에 (limiting value) 관해다루게된다. 선형대수는 7 세기과학자들의수학적요구에의해시작되었다.
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information기술통계
기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,
More informationuntitled
R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationLaTeX. [width=1em]Rlogo.jpg Sublime Text. ..
L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime
More information10. ..
점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More informationnonpara1.PDF
Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710)
More information이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는
제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의
More informationMicrosoft Word - Chapter4.doc
CHAPTER 4. SAS 함수 SAS는변수에대한함수값계산이나계산에필요한함수가내장되어있다. 수학적계산을위한절대값, 제곱근과승 (power), 로그, 지수함수, 통계계산을위한평균, 분산, CV 등많은함수들이있다. 이함수를사용하는방법은다음과같다. 수식처럼오른쪽함수결과가왼쪽변수에저장된다. 함수는변수의각관측치에적용되므로결과는변수의관측치수만큼계산된다. 즉함수의계산은데이터에서행으로이루어진다.
More information모수검정과비모수검정 제 6 강 지리통계학
모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6
More information... —....—
통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =
More information수리통계학
제 강통계학 Revew Part I. 확률론 (Probablty Theory) I. 확률변수 (Radom Varable) 와확률분포 A. 확률변수 는표본공간 Ω 상에서정의되는 real valued fucto 임. 어떤확률적실험의결과로나올수있는모든가능한결과에대해어떤. 실수값이대응되어야함 하나의실험에대해여러가지의확률변수가정의될수있음. 주사위던지는실험 : 던진결과나오는값을대응시켜주는확률변수
More informationMicrosoft PowerPoint - Stat03_Numerical technique(New) [Compatibility Mode]
Descriptive Statistics Describing data with tables and graphs (quantitative or categorical variables) Descriptive Statistics (Numerical techniques) Numerical descriptions of center, variability, position
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More informationuntitled
- 186 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 187 - - 188 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 189 - 한시간교통량 - 190 - HANYANG Univ. Paul Hwang
More information마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.
마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More information<B1B3C0B0B0FAC1A45FC3E2B7C22E687770>
확률및통계 확률및통계 1 성격 본과정은과학기술특성화대학의 확률및통계 ( 또는 기초통계학 ) 과목에해당하는내용을다룬다. 이과정을통하여학생들은대학과정이수에필요한정성적 / 정량적자료분석을위한통계적사고의기초를습득하게된다. 또한수학, 통계학, 또는계량적분석을많이요구하는학문을전공하고자하는학생들에게는과학적분석방법의수리적토대를갖추도록하여상위교과목을수강할수있는능력을기르도록한다.
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationMS_적분.pages
고대수학자들은사각형의면적 밑변 높이, 삼각형면적 밑변 높이 평행사변형의면적 Euclid gomtry 밑면 높이, 사다리꼴의면적 윗변 + 아래변 * 높이 를이용하여구하였다. 이를이용하여왼쪽의다각형면적은구할수있으나오른쪽의곡선의면적은어떻게구할것인가? Archimds 는곡선의면적을이미알려진다각형, 삼각형의면적으로근사시켜구하는방법을생각하였다. 이것이면적에대한현재정의의근간이된다.
More informationμ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.
More information고객관계를 리드하는 서비스 리더십 전략
제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0
More informationuntitled
Mathematcal Statstcs / 6. 87 Chapter 6 radom varable probablty desty ucto. dstrbuto ucto.. jot desty ucto... k k margal desty ucto k m.. Statstcs ; θ ereces Y... p. ~ ; θ d radom sample... ; θ ~ statstc
More information위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞
줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information05 ƯÁý
Special Issue 04 / 46 VOL. 46 NO. 4 2013. 4 47 Special Issue 04 / 48 VOL. 46 NO. 4 2013. 4 49 S pecial Issue 04 / IHP 7단계 연구사업 구분 1970년대 1980년대 1990년대 2000년대 연최대 강우량 침수면적 인명피해 재산피해 그림 4. 시군구별 연 최대 강우량과
More informationANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행
Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID
More information모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ
수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지
More information01
2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationi f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationhwp
2005. 12 80.0 70.0 60.0 농림어업 광공업 사회간접자본및서비스업 50.0 40.0 30.0 20.0 10.0 0.0 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 9.0 8.0 실업률 7.0 6.0 5.0 4.0 전체남자여자
More information베이지안통계분석 전종준 1 1 University of Seoul, Korea Spring 2017 1/49 Outline 들어가며베이지안추론베이지안분석모형 Monte-Carlo Markov Chain (MCMC) 2/49 들어가며 확률변수 동전던지기실험 실험결과는앞면또는뒷면확률변수 X 는앞면일때 1, 뒷면일때 0 의값을갖는다. 주가의로그수익률실험 ( 관찰
More information3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로
3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)
More information수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론
수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생
More informationMicrosoft Word - Chapter6.doc
CHAPTER 6 기초통계량분석 분류형 ( 범주형 ) 변수데이터에대한정리방법으로는숫자요약인빈도분석과그래프요약인파이차트, 바차트가이용된다. 측정형변수에대한숫자요약은일반적으로자료의중앙위치와자료의흩어진정도를나타내는두개의값으로축약된다. 즉, 크기 n 개의데이터의가진정보가 2 개숫자요약으로축약 (data reduction) 된다. 데이터의중앙위치에대한통계량평균 (mean)
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information목차 1. 통계학이란무엇인가? 2. 통계학의응용분야 3. 통계학의분야들 4. 강의소개 5. 그리고..
경영통계학 경영통계학에서는무엇을배우게될까? 2014 년도 2 학기 목차 1. 통계학이란무엇인가? 2. 통계학의응용분야 3. 통계학의분야들 4. 강의소개 5. 그리고.. 1. 통계학이란무엇인가? 매일접하는통계적결과들 연극티켓의평균가격은 18,670원이며우리나라가정의연평균관람횟수는 3.4회이다. 지난해투신사들의평균수익률은 26.5% 였으며투신사에예금한금액은 230억원이증가하였다.
More informationPowerPoint 프레젠테이션
제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More information... —... ..—
통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information*) α ρ : 0.7 0.5 0.5 0.7 0.5 0.5-1 - 1 - - 0.7 (**) 0.5 0.5-1 - (**) Max i e i Max 1 =150 kg e 1 = 50 g xxx.050 kg xxx.050 kg xxx.05 kg xxx.05 kg Max 2=300 kg
More information국가기술자격 재위탁 효율성 평가
- i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - Ⅱ - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ
More information경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationuntitled
Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f
More information통계학입문
통계학입문 ( 기초통계학 ) 1. 1 개요 통계학 (statistics) 관심의대상에대해관련된자료를수집하고그 자료를요약, 정리하여이로부터불확실한사실에 대한결론이나일반적인규칙성을추구하는학문 Statistic : 통계치, 통계량 CH 1-2 1. 1 개요 통계학 (statistics) 기술통계학 (descriptive stat) 수집된자료의정리및요약방법을다룸
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의
lrognis II 전자기학 제 장 : 전자파의전파 Prof. Young Cul L 초고주파시스템집적연구실 Advnd RF Ss Ingrion ARSI Lb p://s.u..kr/iuniv/usr/rfsil/ Advnd RF Ss Ingrion ARSI Lb. Young Cul L .4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄.
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More informationMicrosoft Word - EDA_Univariate.docx
일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationuntitled
韓國數學敎育學會誌시리즈 A < 數學敎育 > J. Korea Soc. Math. Ed. Ser. A: The Mathematical Education 1998. 11. 제 37권, 제 2호, 227-231. Nov. 1998, Vol. 37, No. 2, 227-231. 이항분포의정규근사 1) 이장택 ( 단국대학교 ) I. 서론 2) 이항분포의정규근사문제는고교수학에서중요한비중을차지하고있다.
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More information..(..) (..) - statistics
수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)
More information확률과통계4
확률과통계 4. 확률변수와확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 4. 확률변수와확률분포 4.1 확률변수와확률분포의개념 4.2 결합확률분포 4.3 주변확률분포 4.4 조건부확률분포 4.5 확률변수의독립 4.1 확률변수와확률분포의개념 [ 정의 4-1] 확률변수 (random variable) 표본공간의각원소를실수값으로
More information(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)
More information<4D F736F F F696E74202D20C5EBB0E8C0FB20B0F8C1A4B0FCB8AEBFE4BEE02E >
교육시간표 2 기초통계 통계? 복잡한데이터를아주간단하게표현하는것 자료에서정보를추출하는것 수많은데이터 흩어져있는자료 요약된수치와그래프 의미있는정보 4 데이터의특성 중심위치 데이터는중심으로모인다산포 데이터는일정한크기의변동이있다. 5 중심위치에대한평가척도 평균 (Mean) : 모든자료의합을자료의개수로나눈값 X = n X 절사평균 (Trimmed Mean) : 상위
More information한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관
통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.
More information제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS
제장 비모수 검정(nonparametric analysis) 모집단의 분포를 알 수 없거나 모집단이 정규분포를 따른다고 가정할 수 없는 경우에는 모수적 검정을 사용할 수 없다. 이 경우에 자료의 부호나 순위로 가설 검정을 실시하며 이러한 검정 방법을 비모수 검정이라고 한다. 제절 적합도 검정(goodness of fit test) 주어진 자료가 어떠한 통계적
More informationMATLAB and Numerical Analysis
School of Mechanical Engineering Pusan National University dongwoonkim@pusan.ac.kr Review 무명함수 >> fun = @(x,y) x^2 + y^2; % ff xx, yy = xx 2 + yy 2 >> fun(3,4) >> ans = 25 시작 x=x+1 If문 >> if a == b >>
More information<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D>
5. 상평형 : 순수물질 이광남 5. 상평형 : 순수물질 상전이 phase transition 서론 ~ 조성의변화없는상변화 5. 상평형 : 순수물질 전이열역학 5. 안정성조건 G ng ng n G G 자발적변화 G < 0 G > G or 물질은가장낮은몰Gibbs 에너지를갖는상 가장안정한상 으로변화하려는경향 5. 상평형 : 순수물질 3 5. 압력에따른Gibbs
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More information저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물
저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationProbabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):
Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률
More information회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서
More informationnonpara6.PDF
6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationyscec.yonsei.ac.kr Useful information 통계학입문 2013 년겨울학기 v 교수 : 정보통계학과박동권교수 v v 연구실 : 창조관 153호 / 교내 2247 v v Pdf file 은정보통
yscec.yonsei.ac.kr Useful information 통계학입문 03 년겨울학기 v 교수 : 정보통계학과박동권교수 v v 연구실 : 창조관 53호 / 교내 47 v E-mail : statpdk@yonsei.ac.kr v Pdf file 은정보통계학과 Homepage infostat.yonsei.ac.kr 에서다운받음 v 교재 : 통계학입문 v
More information문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의
제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s
제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.
More informationMicrosoft Word - Software_Ch2_FUNCTION.docx
Chapter 2 SAS 함수 SAS 함수는소프트웨어에내장되어작업자가손쉽게연산을할수있게데이터값은로그값을계산하려면 LOG() 함수를사용하면된다. 한다. 예를들어 맛보기 EXP() 함수 : () 안의관측치의지수값을구하는함수 RANNOR(seed) 함수 : 평균이 0 이고표준편차가 1인정규분포함수를따르는관측치를생성하는함수, SEED ( 시드 ) 는값을생성할때시작하는위치를나타내는는값으로
More information