수리통계학
|
|
- 선미 갈
- 6 years ago
- Views:
Transcription
1 제 강통계학 Revew Part I. 확률론 (Probablty Theory) I. 확률변수 (Radom Varable) 와확률분포 A. 확률변수 는표본공간 Ω 상에서정의되는 real valued fucto 임. 어떤확률적실험의결과로나올수있는모든가능한결과에대해어떤. 실수값이대응되어야함 하나의실험에대해여러가지의확률변수가정의될수있음. 주사위던지는실험 : 던진결과나오는값을대응시켜주는확률변수 짝수는 홀수는 을대응시켜주는확률변수 Y 등등 B. 확률 ( 밀도 ) 함수 (Probablty (desty) Fucto). 확률함수 : 확률변수 가취하는값이이산적 (dscrete) 인경우 가취하는. 각값에대해취하는확률을대응시켜주는함수 확률밀도함수 : 확률변수 가취하는값이연속적 (cotuous) 한경우 가 P I f x dx 로주어질 취하는값이 I 라는구간에속할확률이 때 f( x) 를확률밀도함수라함 C. ( 누적 ) 분포함수 ((Cumulatve) Dstrbuto Fucto): 확률변수 의분포함수 : F( x) P( x) D. 결합확률 ( 밀도 ) 함수 (Jot Probablty (desty) Fucto):. 두개의확률변수 Y 가이산적이경우결합확률함수는 ( ) ( ) f x y P x Y y 와같이주어지며 xy j j. 두개의확률변수 Y 가연속적이경우결합확률밀도함수 f ( ) (( ) ) xy ( ) P Y D f x y dxdy 와같이주어진다. D E. 한계확률 ( 밀도 ) 함수 (Margal Probablty (desty) Fucto) f x f x y... : 의한계확률함수. x xy j. ( ) j f x f x y dy : 의한계확률밀도함수 x xy I xy xy 는
2 F. 조건부확률 ( 밀도 ) 함수 (Codtoal Probablty (desty) Fucto). 이산적인경우 : Y yj 로주어졌을때 의조건부확률함수는 ( ) ( ) P x Y yj fxy x yj fxy x yj fxy ( x yj) P( x Y yj) PY y f y f x y 와같이주어짐 j y j xy j. 연속적인경우 : Y y 로주어졌을때 의조건부확률밀도함수 f xy ( x y) ( ) fxy xy fxy xy 와같이주어짐 fy y f x y dx G. 수학적기대값 (Mathematcal Expectato). g 가확률변수 의함수라고할때 적인경우 ) E ( g ). g xy g( x) f ( x) dx ( 연속적인경우 ) E g gx ( ) f( x) ( 이산 일때 E 를확률변수 의평균 ( 보통 표기 ) 이라하고. g ( E ) 일때 V E E 수 의분산 ( 보통 σ 또는 σ 로표기 ) 이라고함 µ 또는 µ 로 을확률변 a. σ V : 의표준편차 (tadard Devato). g( Y ) 가확률변수 Y 의함수라고할때 E g( Y) g( x y ) f( x y ) ( 이산적인경우 ) j j j E g( Y ) g( x y) f ( x y) dxdy ( 연속적인경우 ). g( Y) ( µ )( Y µ ) 일때 ( µ )( Y µ ) Y E Y Y 의공분산 (Covarace) 이라고함 ( Cov( Y ) 로표기 ) 를 와
3 . 수학적기대값와관련된사항몇가지. V E [ E ] Cov( Y ) E( Y ) E ( ) E ( Y ). E( c) c V ( c ) c 가상수일때 3. E ( a + by + c) ae ( ) + be ( Y ) + c V a + by + c a V + b V Y + abcov( Y ) (a b c 는상 수 ) V a a a Cov j Cov( ) V ( ) 4. E a ae( ) 5. ρ Y j ( j) coeffcet) Cov( Y ) V VY a 는상수 단 : 확률변수 Y 간의상관계수 (correlato H. 확률적독립 (tochastc Idepedece). 일반적으로 개의확률변수... 가서로확률적으로독립 (mutually tochastcally Idepedet) 이라는것은각확률변수의한계확률 ( 밀 도 ) 함수를 f( x) f( x)... f( x) 이라고할때... 의결합확 률밀도함수가 f ( x x... x ) f ( x ) f ( x )... f ( x ) f ( x ) Π 와. 같이한계확률밀도함수의곱으로나타나는경우로정의된다. 확률적독립과관련된몇가지사항. 확률변수... 가서로확률적으로독립일경우 Π Π ( ) ex.) E E E( ) a. E u ( ) E u ( ) Cov ρ ( 그러나이경우逆은일반적으로 b. j j 성립하지않는다 ) ex) V ( ± ) V ( ) ( + V ) c. Var a a V ( ) 3
4 II. 이산적확률분포들 (Dscrete Probablty Dstrbutos) A. 베르누이실험 (Beroull Expermet) : 가능한결과가오직두가지로만나타나는실험 ( 편의상그두가지결과중하나를성공 () 로나머지하나를실패 (F) 로명명.. 확률변수 를한번의베르누이실험에서나오는성공의횟수라고하고 성공의확률을 p 라고하면 의확률분포는다음과같다.. P( ) p P p q 또는 f pq. E ( ) p V ( ) pq 확률분포명및표기 Bomal 분포 ( 이항분포 ) 확률변수확률함수평균 분산기타 N 번의독립적베르누이실험시 성공의횟수 N N f pq... N E( ) Np V ( ) Npq B(p) Posso 분포 P(λ) λt ψ Multom al 분포 시간당 ψ 의비율로물고기가잡힐때 T 시간동안잡힐물고기의수 이충분히크고 p 가충분히작은값일때 B (p) 는 P (p) 로근사 각실험이 3 개 ( 혹은그이상 ) 의결과 (A B C) 가가능한실험을독립적으로행할때 A 의횟수 () 와 B 의횟수 (Y) λ e λ... f E λ! V λ j k f ( j) p py pz jk... j... 단 k j p p p Z Y Cov( Y ) p py λ λ 의모수를갖는두개의독립적인 Posso 분포의합은 λ+λ 의모수를갖는포아송분포를함 와 Y 의한계확률분포는각각이항분포 B(P) B(PY) 임 4
5 III. 연속적확률분포들 (Cotuous Probablty Dstrbutos) 확률분포명및표기 Uform 분포 U(ab) Expoet al 분포 E(β) 단 β는물고기한마리낚는데걸리는시간 Normal 분포 ( 정규분포 ) N(µσ ) 확률밀도함수 분포함수평균 분산기타 f ( x ) a x b b a < < F x x x a a < x < b b a x b x zero elsewhere. β f ( x) e x> zero elsewhere β x F x x β e x> x µ σ a+ b E ( b a) V E V β β f ( x) e < x< E µ πσ V σ 물고기한마리낚는데걸리는시간이 β ( 또는시간당 ψ /β 의비율로물고기가낚임 ) 일때첫물고기를낚을때까지걸리는시간이 Expoetal 분포 a N ( µ σ ) ( µ σ ) N + b ( µ + µ σ + σ + σ ) N a b a b ab A. 변환을통해도출되는분포들 확률분포명및표기 ( 표준 ) Cauchy 분포 C() Chsquare( 카이제곱 ) 분포 χ : 자유 도가 인카이제곱분포 변환확률밀도함수평균 분산기타 Z Z... Z 은서 로독립인표준정규분포 f ( x) - x π + x < < x xe f ( x) x> α Γ elsewhere ( 굳이외울필요는없음 ) zero 을중심으로대칭인분포이나 꼬리부분이표준정규분포에비해두꺼우며 적률이존재하지않는다. E V 5
6 (tudet) t 분포 t : 자유 도가 인 t 분포 F- 분포 Fm: 분자 의자유도가 이고분모의자유도가 m 인 F 분포 Z V Z N() V χ Z V 는 확률적독립 V V V V m χ χ m V 서로 V 는서로 확률적독립 ( x) + Γ( ) + π x f Γ + < x < ( 굳이외울필요는없음 ) f ( x) + m Γ x m m ( x ) + Γ Γ + x > zero elsewhere ( 굳이외울필요는없음 ) m m E ( 재 ) V ( 3 존재 ) m E m ( 3 만존재 ) V 인경우에만존 m ( + m ) ( ) ( 4) m m 인경우에만 인경우에 ( 5 인경우에만존재 ) ( 굳이외울필요는없음 ) 자유도가 인 t 분포는표준 Cauchy 분포가됨 가 Fm 인경우 / 는 Fm 임 t F B. 기타확률분포들 확률분포명및표기 Logormal 분포 Logstc 분 변환확률밀도함수평균 분산기타 Y exp ( ) N µσ 포 l y µ σ f ( y) e y > πσ y x e f x < x< F x - x + e + e x 을중심으로대칭인분포이나 꼬리부분이표준정규분포에비해두꺼움 6
7 Part II. 통계적추론 (tatstcal Iferece) IV. 확률표본 (Radom ample) A. 어떤특정한분포로부터의 크기가 인확률표본 은 개의동일한특정분포 를갖는서로확률적으로독립인확률변수... 들의모음. 통계량 (a statstc): ( 미지의모수에의존하지않는 ) 확률표본의변환 (trasformato) 원칙적으로확률표본의값들이관찰될경우그값들에대 응하는통계량의값을계산할수있으며 이를통계치 (a statstc) 라고함. 표본평균 (ample mea): µ Var ( ) σ E 에의존함을강조시 로표기 σ E ( ) µ Var ( ). 표본분산 (ample varace): B. N ( µσ ) * ( ) σ σ E( ) E * 로부터의확률표본. 표본평균 (ample mea) : ( ) 또는 σ ~ N µ.. 표본분산 (ample varace) :. ( ) ~ χ σ σ σ * : 자유도가 - 인카이제곱분포 : 즉표본평균과표본분산은확률적으로독립이다. 7
8 V. 극한분포이론 (Lmtg Dstrbuto Theory) A. 대수의 ( 약 ) 법칙 ((Weak) Law of Large Number) 확률적수렴 (Covergece Prob.).... ~..d. wth E µ < V σ < 임의의양의실수 ε에대해 P( µ ε) 가 µ 로확률적으로수렴함. 또는 > as. p µ 또는 plm µ.... ~ 서로독립적이지도않고 동일한분포를하지도않음. 다만 m E < m plm lm B. 중심극한정리 (Cetral Lmt Theorem) V V < V as.. 분포수렴 : 확률변수 의분포함수의값이연속적인모든점에서 에따라확률변수 Y 의분포함수의값으로수렴할때확률변수 가확 률변수 Y 로분포수렴한다고함.... D Y ~..d. N E µ < V σ < D µ as. : 중심극한정리 σ.... ~ 서로독립적이지도않고 동일한분포를하지도않음. 다만 lm V ( ) σ E ( ) V < D N as. : ( 좀더일반화된 ) 중심극한정리 8
9 VI. 점추정 (Pot Estmato) A. 추정량 (Estmator) ˆ.... 모수 θ 의추정을위해적절히고안된통계량 ( ) θ 을추정량 관측된표본값에대응되는해당통계량의값을추정치 (Estmate) 라함 ˆ.... θ ( ) B. 추정량에요구되는성질 를줄여서 ˆ θ 또는 ˆ θ 으로표기. 불편성 (Ubasedess) 또는점근적불편성 (Asymptotc Ubasedess) E ( ˆ θ) θ ( 불편추정량 ) 또는 lm E ( ˆ θ ) θ ( 점근적불편추정량 ).. 일치성 (Cosstecy) ˆ θ p θ ( 일치추정량 ) ( 점근적 ) 불편추정량이고 V ( ˆ θ ) lm 유효성 (Effcecy) 또는점근적유효성. 모수 θ 를불편추정량 ˆ θ 로추정할경우추정량 ˆ θ 의분산의이론적 인하한을크래머 - 라오하한 (CR Lower Boud: CRLB) 이라하며 불편추정 량 ˆ θ 의유효성은 CRLB % 로나타냄 V ( ˆ θ ) a. % 유효성을갖는불편추정량을유효추정량이라고함 b. 점근적불편추정량의분산이점근적으로 CRLB 에도달할경우점 근적유효추정량이라고함. 불편추정량과점근적불편추정량의성능 (Performace) 는보통 평균제곱오차 (Mea quared Error: ME) 로비교함 ( ˆ) ( ˆ) ( ˆ) ME θ V θ + E θ θ c. 유효추정량은최소분산불편추정량 (Mmum Varace Ubased Estmator: MVUE) 임 C. 적률방법 (Method of Momets). 수학적적률 ( 보통추정하고자하는모수의함수 ) 과표본적률을등치시키는 식으로부터추정량을구하는방법 k. k 번째 ( 수학적 ) 적률 : E( ). ( ) 적률방법추정량은점근적불편성과일치성을가짐 k : k 번째표본적률 9
10 D. 최우추정법 (Maxmum Lkelhood Method). 우도함수 (Lkelhood fucto) : 표본의결합확률분포를추정하고자하는. 모수의함수로볼때 이를우도함수라함 ( θ θ.. θk) Π ( θ θ.. θk) L f x 최우추정법은우도함수를극대화시키는모수의값을해당모수의추정치 로삼는방법이며이를확률표본... 의함수로볼때 이를최우 추정량 (Maxmul Lkelhood Estmator : MLE) 이라고함. 경우에따라서는우도함수의극대화해 (soluto) 를찾는것보다우도 함수에자연대수를취한 l L 를극대화하는해를찾는것이용이. ˆ θ ˆ θ(... ) 을 θ 의최우추정량이라고할때 이는다음과같은 성질을갖는다.. 즉 MLE 는점근적불편성 일치성 그리고점근적유효성을갖는다.. 충분히큰 에대해 a. ˆ θ θ ( ˆ ) σ θ ˆ σ θ ~ N θ ~ N 또는 ( θ) 로근사할수있다. ( θ ) σ ˆ θ ~ N θ ˆ 으로근사
11 VII. 신뢰구간 (Cofdece Iterval: CI) 또는구간추정 (Iterval Estmato) A. 모집단이 N ( µσ ) 일때 µ 에대한 CI. σ 가알려진경우 (-α)% CI: Z ~ N ± z σ α. 단 P( Z > z ) α α. σ 를모르는경우 (-α) %CI: PT > t α α 의제곱근. ( ) ± t. 단 는표본분산 α T 은자유도 - 인 t 분포확률변수.. σ 를모르고 이충분히클경우 (-α) % CI: ± z α N µσ 일때 B. 모집단이 ( ) σ 에대한 (-α) % CI: ( ) ( ) χ χ α α 분포확률변수.. 표준편차 (σ) 에대한 CI :. 단 P ( α ) χ > χ α ( ) ( ) χ χ α α χ 은자유도 - 인 χ
12 VIII. 가설검정 (Hypothess Testg) A. 가설검정의구성요소. 귀무가설 (ull hypothess) 과대립가설 (alteratve hypothess). 귀무가설 ( H ) 는검정결과그것을기각해야하는증거가나타나기전 까지는사실로받아들여야하는가설. 대립가설 ( H ) 은검정결과귀무가설을기각하는경우사실로받아들여 야하는가설이며 따라서증거로부터우리가보이고자하는새로운 사실이나관계를설명하는내용을통상적으로대립가설로둠. 검정통계량 (Test tatstc). 검정통계량은귀무가설하에서 ( 적어도근사적으로라도 ) 그확률분포 가알려진통계량 T T( ).... 검정통계량의대립가설하의분포는알려져있을필요는없으나귀무가설하의분포와구별되는분포를해야함. 기각역 (Rejecto Rego). 검정통계량의값이이구간에포함되면귀무가설을기각함 (R) B. 제 형오류와제 형오류. 제 형오류 : 모집단에서귀무가설이옮음에도불구하고표본으로부터귀무가설을기각하는경우. 제 형오류를범할확률을검정의크기 (sze) 또는유의수준 (sgfcace level) 이라고함 (α) ( (... ) s true) α P T RH. 보통유의수준은 % 5% % 등으로주어짐. 제 형오류 : 모집단에서귀무가설이옳지않음에도불구하고귀무가설을기각하지못하는경우. 귀무가설이옳지않을때귀무가설을기각할확률을검정력 (Power of test) 이라고하며 제 형오류의확률을 β라하면 검정력은 -β ( ( ) ) β P T... RH s ot true : 검정력함수. 주어진유의수준에서가능하면검정력이큰검정이좋은검정임 a. 유의수준이클수록검정력은커진다 b. 두가설간의차이가뚜렷할수록검정력은커진다. C. CI 에근거한검정. 각경우에있어서의 CI 를도출하였던과정을응용하여적절한검정통계량 을고안해낼수있음
13 . 실례 : N ( µσ ) 일때 µ 에대한 (-α) % CI 는 ± t α p µ > tα α µ 가자유도 - 인 t 분포를하는것을 이용하여 µ 와관련된가설검정의검정통계량으로이용 H : µ µ H : µ µ ( 양측검정의경우 ) :. µ > tα 이거 나 µ < tα 이면유의수준 α에서귀무가설을기각함 H : µ µ H : µ > µ ( 또는 H : µ µ H : µ > µ ( 단측검정. 의경우 ) : µ > tα 이면유의수준 α에서귀무가설을기각함 H : µ µ H : µ < µ ( 또는 H : µ µ H : µ < µ ( 단측검정 3. 의경우 ) : µ < tα 이면유의수준 α에서귀무가설을기각함 3
MBA 통계6-12장.ppt
tatstcs: Descrptve tatstcs: Iferetal tatstcs: Populato: ample: Quattatve : Qualtatve Categorcal : PC Cross sectoal : Tme seres : - Populato: : : Parameter: costat : : Relatve frequec Frequec dstrbuto Frequec
More informationuntitled
Mathematcal Statstcs / 6. 87 Chapter 6 radom varable probablty desty ucto. dstrbuto ucto.. jot desty ucto... k k margal desty ucto k m.. Statstcs ; θ ereces Y... p. ~ ; θ d radom sample... ; θ ~ statstc
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationObjective-driven systems modeling
Lect 4: Hypothess Test ad Model Valdato Goodess of : Cofdece Iterval for μ of 5 X: ormal dstrbuto σ : ow s also ormal f () (-α) C.I. C.I for X (- ) P{ w w X w X P{ } / / / w w P{ z } / / P{ z z z } w z
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationMicrosoft PowerPoint - SBE univariate5.pptx
이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More information우루과이 내지-1
U R U G U A Y U r u g u a y 1. 2 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 3 U r u g u a y 2. 4 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 5 U r u g u a
More informationMicrosoft PowerPoint - LN05 [호환 모드]
계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected
More information10. ..
점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm
More informationPowerPoint 프레젠테이션
제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More informationMicrosoft Word - SAS_Data Manipulate.docx
수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )
More informationCONTENTS C U B A I C U B A 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 9 C U B A 10 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 11 C U B
More informationMicrosoft Word - ch2_simple.doc
REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?
More information1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임
More information경제통상 내지.PS
CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V
More information°æÁ¦Åë»ó³»Áö.PDF
CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationMicrosoft Word - EDA_Univariate.docx
일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,
More information세계 비지니스 정보
- i - ii - iii - iv - v - vi - vii - viii - ix - 1 - 2 - 3 - - - - - - - - - - 4 - - - - - - 5 - - - - - - - - - - - 6 - - - - - - - - - 7 - - - - 8 - 9 - 10 - - - - - - - - - - - - 11 - - - 12 - 13 -
More informationisrael-내지-1-4
israel-내지-1-4 1904.1.1 12:49 AM 페이지1 mac2 2015. 11 Contents S T A T E O F I S R A E L 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 9 S T A T E O F I S R A E L 10 Part I Part
More information[96_RE11]LMOs(......).HWP
- i - - ii - - iii - - iv - - v - - vi - - vii - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
More information2 0 1 1 4 2011 1 2 Part I. 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 Part II. 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationMicrosoft PowerPoint - PDF3 SBE 20080417.pptx
연속형 확률밀도함수 연속형 확률분포함수? 데이터 히스토그램의 정상을 연결하면 확률분포함수가 된다. 이를 이용하여 데이터(표본)의 분포(이는 모집단의 분포와 동일)를 구 하게 된다. 그러나 함수를 구하는 것은 불가능해 보인다. 그래서 현실에서는 확률분포를 가정하게 된다. (예)기다리는 시간: 지수분포, 측정 오 차: 정규분포 Gauss(천문학자): 행성들간 거리
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationi ii iii iv v vi vii viii 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XXXXXXXX 22 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
More informationMicrosoft Word - Ch2_Function_math.docx
Calculus is the mathematics of motion and change. 운동과변화의수학인선형대수는 (Calculus) 함수의순간변화율에 ( 기울기 ) 대한미분 (Differentiation), 함수의특정구간의면적의합에관한적분과 (Integral) 함수의수렴값에대한극한에 (limiting value) 관해다루게된다. 선형대수는 7 세기과학자들의수학적요구에의해시작되었다.
More information확률 및 분포
확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import
More information- i - - ii - - i - - ii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - - x - - xi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 -
More informationCONTENTS.HWP
i ii iii iv v vi vii viii ix x xi - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -
More informationINDUS-8.HWP
i iii iv v vi vii viii ix x xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
More informationuntitled
R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해
More informationÀ̶õ°³È²³»Áö.PDF
Islamic Republic of Iran I I S L A M I C R E P U B L I C O F I R A N 10 Part I 11 I S L A M I C R E P U B L I C O F I R A N 12 Part I 13 I S L A M I C R E P U B L I C O F I R A N 14 II I S L A M I C R
More information제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기
최종보고서 폐기물관리 규제개선방안 연구 ( 업계 건의사항 및 질의사례 중심) 2006. 9 환 경 부 제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장
More informationMicrosoft Word - Chapter4.doc
CHAPTER 4. SAS 함수 SAS는변수에대한함수값계산이나계산에필요한함수가내장되어있다. 수학적계산을위한절대값, 제곱근과승 (power), 로그, 지수함수, 통계계산을위한평균, 분산, CV 등많은함수들이있다. 이함수를사용하는방법은다음과같다. 수식처럼오른쪽함수결과가왼쪽변수에저장된다. 함수는변수의각관측치에적용되므로결과는변수의관측치수만큼계산된다. 즉함수의계산은데이터에서행으로이루어진다.
More information모수검정과비모수검정 제 6 강 지리통계학
모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6
More information슬라이드 1
Prncples of Econometrcs (3e) 013 년 1 학기 윤성민 8.1. 이분산의본질 ( 예 ) 식료품지출 / 식료품지출과소득에관한 40 개표본 8.1 이분산의본질 3 8.1 이분산의본질 4 8.1 이분산의본질 동분산가정 5 8.1 이분산의본질 이분산가정 6 8.1
More information1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속
1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.
More information모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ
수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지
More information00-1표지
summary _I II_ summary _III 1 1 2 2 5 5 5 8 10 12 13 14 18 24 28 29 29 33 41 45 45 45 45 47 IV_ contents 48 48 48 49 50 51 52 55 60 60 61 62 63 63 64 64 65 65 65 69 69 69 74 76 76 77 78 _V 78 79 79 81
More information... —....—
통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =
More information... —... ..—
통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information<4D F736F F D20BCF6B8AEC5EBB0E8C7D020C1A B0AD202D20C8BEB4DCB8E9BAD0BCAE2E646F63>
제 4 강횡단면자료분석 (Cross-sectional data analysis) Part I. 이진반응모형 (Binary response model)) Part II. 제한종속변수모형 (limited dependent variable regression model) Part III. 기타이슈들 Part I. 이진반응모형 (Binary response model))
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More information고차원에서의 유의성 검정
고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정
More information*통신1802_01-도비라및목차1~11
ISSN 25-2693 218. 2 218. 2 214 215 216 217 2.6 2.9 1.5 1.8 1.2 3.1 3.2 1.3 2.1 1.8 2.6 2.5 2.8 2.4.4 1.4.9 1.4 1.5 2.9 2.5 7.3 6.9 6.7 6.8 6.9 6.9 6.8 2.8 14 2.6 13 2.4 12 2.2 2. 11 1.8 1.6 1.4
More information<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics) 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion) 고검정 (es) 하는학문 거시소비함수 (Keynse). C=f(Y), 0
More information확률과통계6
확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform
More informationMicrosoft Word - Ch3_Derivative2.docx
통계수학 Chapter. 미분.5 미분응용.5. 최대값과최소값 지역 (local) 과절대 (absolute) 의의미 f 절대최소지역최대지역최소절대최대지역최소 차미분정리함수 f 가일정구간안의모든점에서미분가능하고구간내임의의점 c 에서 차미분이 0 이면 ( c) 0 ) 함수 f 는점 c 에서지역최대값이나최소값을갖는다. 증가함수와감소함수정의만약 > f ( ) > f
More informationi f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰
제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다.
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More informationContents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2
통계학 - CAS0001 7 주차 이산확률분포 이석준 Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 학습목표 확률변수가연속적인지이산적인지구분한다. 이항분포, 초기하분포,
More information표1
i ii Korean System of National Accounts iii iv Korean System of National Accounts v vi Korean System of National Accounts vii viii Korean System of National Accounts 3 4 KOREAN SYSTEM OF NATIONAL ACCOUNTS
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information슬라이드 1
Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i
More information함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과
함수공간 함수공간, 점열린위상 Definition.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function spce) 이라한다. F(X, Y ) 는다음과같이적당한적집합과같음을볼수있다. 각 x X에대해 Y x = Y 라하자. 그리고 F := Y x x X 이라하자.
More information마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.
마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf
More information제 12강 함수수열의 평등수렴
제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.
More information영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 201 3. 마한문화공원 명소화 사업 219 4. 기찬랜드 명소화 사업 240
목 차 제1장 과업의 개요 1. 과업의 배경 및 목적 3 2. 과업의 성격 5 3. 과업의 범위 6 4. 과업수행체계 7 제2장 지역현황분석 1. 지역 일반현황 분석 11 2. 관광환경 분석 25 3. 이미지조사 분석 45 4. 이해관계자 의견조사 분석 54 제3장 사업환경분석 1. 국내 외 관광여건분석 69 2. 관련계획 및 법규 검토 78 3. 국내 외
More information01
2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More information용역보고서
신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ) 9.. ( 주 ) 한국신뢰성기술서비스 목차 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ).... 개요.... 기호및용어정의.... 샘플링검사의설계방법... 3. 정수중단시샘플링검사설계방법...4 4. 신뢰성샘플링시험계획예제...5 hp://www.kors.co.kr 신뢰성샘플링검사의설계방법 ( 정수관측중단시험
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s
제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More informationPrecipitation prediction of numerical analysis for Mg-Al alloys
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMS_적분.pages
고대수학자들은사각형의면적 밑변 높이, 삼각형면적 밑변 높이 평행사변형의면적 Euclid gomtry 밑면 높이, 사다리꼴의면적 윗변 + 아래변 * 높이 를이용하여구하였다. 이를이용하여왼쪽의다각형면적은구할수있으나오른쪽의곡선의면적은어떻게구할것인가? Archimds 는곡선의면적을이미알려진다각형, 삼각형의면적으로근사시켜구하는방법을생각하였다. 이것이면적에대한현재정의의근간이된다.
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More information100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005
100 Bond Issue Performance Evaluation Risk management 100, Jan. 21, 2005 100, Jan. 21, 200 5 100호, Jan. 21, 2005 2 100, Jan. 21, 2005 3 100, Jan. 21, 2005 4 100, Jan. 21, 2005 5 100, Jan. 21, 2005 6 100,
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information메타분석: 통계적 방법의 기초
메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성
More information한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관
통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information*통신1604_01-도비라및목차1~12
ISSN 25-2693 216. 4 216. 4 213 214 215 1.5 2.4 2.4.6 3.9 2. 1.4 -.3.9 1.6 2.3 1.6 1.2 1.3 1.4..5 4.6-1.4 1.4-1.1 7.7 7.3 6.9 7. 7. 6.9 6.8 14 13 12 11 1 9 8 7 5 4 3 2 1 i 4 4 3 3 2. 1.5 1. 2.
More information베이지안통계분석 전종준 1 1 University of Seoul, Korea Spring 2017 1/49 Outline 들어가며베이지안추론베이지안분석모형 Monte-Carlo Markov Chain (MCMC) 2/49 들어가며 확률변수 동전던지기실험 실험결과는앞면또는뒷면확률변수 X 는앞면일때 1, 뒷면일때 0 의값을갖는다. 주가의로그수익률실험 ( 관찰
More information제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS
제장 비모수 검정(nonparametric analysis) 모집단의 분포를 알 수 없거나 모집단이 정규분포를 따른다고 가정할 수 없는 경우에는 모수적 검정을 사용할 수 없다. 이 경우에 자료의 부호나 순위로 가설 검정을 실시하며 이러한 검정 방법을 비모수 검정이라고 한다. 제절 적합도 검정(goodness of fit test) 주어진 자료가 어떠한 통계적
More informationCommunications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는
Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을
More information이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는
제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의
More information문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의
제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More information2
rev 2004/1/12 KAIST 2 6 7 1 13 11 13 111 13 112 18 113 19 114 21 12 24 121 24 122 26 13 28 131 28 132 30 133 (recurrence) 34 134 35 4 2 39 21 39 211 39 212 40 22 42 221, 42 222 43 223, 45 224 46 225, 48
More informationMicrosoft Word - multiple
Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj
More information미얀-내지-8차
미얀-내지-8차 2014.10.29 12:44 AM 페이지1 mac2 Contents I The Republic of the Union of Myanmar 12 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 13 The Republic of the Union
More information1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ
More information고객관계를 리드하는 서비스 리더십 전략
제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0
More information