Microsoft Word - skku_TS2.docx

Size: px
Start display at page:

Download "Microsoft Word - skku_TS2.docx"

Transcription

1 Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 ( e t 1, et,... ) 들이설명변수인 MA 모형의합성어이다. AR(1) 모형 ARIMA 모형에대한개념파악을위하여가장간단한 AR(1) 모형을먼저살펴보자. 용어와기호 AR 모형은아래가설에의해제안되었다. 과거의패턴이지속된다면시계열데이터관측치 는과거관측치 1, Y t, Y t p,... 에의해예측할수있을것이다. 어느정도의멀리있는과거관측치까지이용할것인가? 그리고멀어질수록 영향력을줄어들것이다. 이런상황을고려할수있는가중치를사용해야하지 않을까? AR(1) 모형 : Y t μ = ρ( Y t 1 μ) + et, e ~ iid N (0, σ t ) 만약시계열데이터가서로독립이고유한인평균과분산을갖는동일분포를 따르면 (iid) 이데이는 white noise( 백색잡음 ) 이라한다. 만약평균이 0, 분산이 σ 인정규분포를따른다면이를 Guassian white noise 라한다. { Y t } 대신 { μ} 를사용한이유는평균을 0 으로하기위함이다. μ 는시계열데이터의총평균 (grand mean) 에해당된다. 만약 { Y t } 를 μ0 가되게 shift 하면 AR(1) 모형은 Y t = ρy t 1 + et 이고개념설명을위하여가장많이사용된다. 이를일반화하면 AR( p ) 모형은다음과같다. AR( p ) 모형 : 1, e t ~ iid N(0, σ ) Y t = α 1 + α α p p + et AR(1) 모형을이를다시쓰면다음과같다. Y 3... t-1 t t = μ + e t + ρ e t 1 + ρ e t + ρ e t ρ e1 + ρ ( Yo μ) 1

2 Statistical Package & Statistics Univariate : Time Series Data () 즉 AR(1) 모형이더라도과거의흔적을모두모함하고있다. AR( p ) 도 MA( ) 모형으로쓸수있다. MA( ) 모형 : Y = = + j t μ e t βe t 1 β e t β e t μ β e t j j= 0 { Y t } 분산과공분산 공분산 γ ( j) = cov( Y t, Y t j ), 분산 γ (0) = Var(Y t ) 분산, 공분산개념은시계열데이터에적절한 AR, MA 모형을찾는함수인 ACF, PACF, IACF 에이용된다. ( 다음절에서상세히논한다.) 앞에서우리는 AR(1) 을 MA( ) 로쓸수있음을알았다, 이사실을이용하면 AR(1) 모형을따르는시계열데이터 { Y t } 의분산과공분산을구하면다음과같다. 공분산 ( ) cov(, ) j σ γ j = Y t Y t j = ρ Var( ), 분산 γ (0) = Var(Y t ) = 1 ρ 그러므로 σ 의추정치는 ˆ σ = γ (0)(1 ˆ ρ ) 이다. 예측 (Forecasting) AR(1) 의경우 ρ 을추정하면 { Y t 1,,...} 예측치를다음과같이구할수있다 (n+1) 시점예측치 : Y ˆ n+ 1 = ˆ μ + ˆ( ρ Yn ˆ μ) ( Qe t+ 1의평균은 0 이기때문이다 ) 즉, μ = 100 이고 ρ = / 3로추정되었다면 Y ) n+ 1 = / 3( Yn 100) ) 예측오차 (forecasting error) Yn+ 1 Yn+ 1 = en+ 1 (n+) 시점예측치 Y ) ˆ n+ = ˆ μ + ρ ( Yn ˆ μ) ) (n+) 시점예측오차 Yn+ Yn+ = en+ + ˆ ρen+ 1 Backshift Notation B ( ) = 1, B ( Y t ) = Y t,, B p ( Y t ) = Y t p Y t μ = ρ( B( ) μ) + et (1 B) = μ + ρμ + et 만약 = 0 μ 이면 AR ( 1) (1 B) = et

3 Statistical Package & Statistics Univariate : Time Series Data () ARIMA 모형 Process 정의 1white noise process 평균이 0 이고분산이 σ 인동일분포로부터독립적으로 (iid) 얻어진시계열데이터 { Y t } 을백색잡음 (white noise) process 라한다. 백색잡음데이터의평균수준을 μ 라하면이시계열데이터의모형은 Y t = μ + et 라쓸수있다. 만약 Y0 = μ 라하면 Y t = Y0 + e1 + e et 가되며 { Y t } 을 random walk process 라한다. { Y t } 는동일한분포를가지며서로독립이라는가정이다. stationary process F ( yt 1, yt,..., ytn ) = F( yt 1+ k, yt + k,..., ytn + k ) 이면시계열데이터 { Y t } 를 strongly stationary process( 강한정상성 ) 이라한다. 일정한기간의종속변수결합밀도함수는동일한분포를가진다는것을의미한다. 다음조건을만족하는시계열데이터 { Y t } 는 weakly stationary process( 약한정상성 ) 라정의한다. (1) 평균이일정하다. E ( Y t ) = μ () 분산이존재하며일정하다. V ( Y t ) = γ (0) < (3) 두시점사이의자기공분산 (auto-correlation) 은시간의차이에의존한다. COV ( Y t, Y t j ) = COV ( Y s, Y s j ) = γ ( j), forj s 정상적확률모형 ( 시계열데이터 { Y t } 는확률변수 ) 의대표적인것이 AR, MA, ARMA 모형이다. ARMA 모형 1AR(p) 모형 시계열데이터 { Y t } 에서시점 t 의관측치 가과거관측치 1,,..., p 들에의해설명될때 AR(p) ( 차수가 p 인 Auto-Regressive, 자기회귀 ) 모형을따른다고한다. ~ AR( p) Y t = u + α 1Y t 1 + α Y t αpy t p + et 3

4 Statistical Package & Statistics Univariate : Time Series Data () MA(q) 모형 시계열데이터 { Y t } 에서시점 t 의관측치 가과거오차 et 1, et,..., et q 들에의해설명될때 MA(q) ( 차수가 q 인 Moving-Average 이동평균 ) 모형을따른다고한다. ~ MA( q) = e t β 1e t 1 β e t... β q e t q 3ARMA(p, q) 모형 시계열데이터 { Y t } 에서시점 t 의관측치 가과거관측치,,..., p 1 들과 과거오차 et 1, et,..., et q 들에의해설명될때 ARMA(p, p) ( 차수가 p, q 인 Auto- Regressive and Moving Average) 모형을따른다고한다. Y t = μ + α 1 Y t 1 α Y t... α p Y t p + e t β 1 e t 1 β e t +... β q e t q + e t Stationarity and Invertibility MA( ) 모형은언제나정상적 (stationary) 이다. why? AR 모형Y t = u + α1y t 1 + α Y t α p Y t p + et 은 1 α 1 M α M... α p p M = 0 의방정식을만족하는근들의절대값이모두 1 보다클경우 stationary 하다. 정상적인 AR(p) 모형은 MA( ) 모형으로변환할수 있음을의미한다. 정상적인 process 인경우 { } 는 et, et 1, et,... 으로표현할수있으며, { } 에대한 et, et 1, et,... 들의영향은시점이멀어질수록줄어든다. 그러므로 + 1에대한예측치를구할경우 e0 = 0 으로사용해도무방하다. Invertibility = e t β 1e t 1 β e t... β q e t q MA(q) 모형에서 1 β 1 M β M... β q q M = 0 의방정식을만족하는근들의절대값이모두 1 보다클경우 MA 모형은 Invertibility 하다. 이말은 AR( ) 모형으로변환할수있다는 것이다. Y 를 AR( ) 로표현할수있으며, 즉 Y Y,... 들로표현되며 } { t } { t t 1, t Y 에대한 1,,... 들의영향은시점이멀어질수록줄어든다. 4

5 Statistical Package & Statistics Univariate : Time Series Data () 상관함수 시계열자료 { Y t } 의상관함수는 acf, pacf, iacf 가있는데이는 ARMA 모형진단에사용된다. Auto Correlation Function (ACF) 자기상관함수 (ACF) 는다음과같이정의한다. γ ( j) Cov(, j ) ρ ( j) = = 그러므로 ρ ( 0) = 1, ρ ( j) = ρ( j) γ (0) VAR( ) MA(1) 경우 : Y t = et β1et 1 γ ( 0) = V ( Y ) = (1 + β )σ t 1, γ ( 1) = COV ( Y, β t 1 ) = 1 σ, 그러나 γ ( ) = γ (3) = γ (4) =... = 0 그러므로이를요약하면 MA(q) 모형의경우 j > q 이면 ACF ρ ( j) = 0 (drop off) 이다. AR(1) 경우 : Y t = α et 정상적인 (stationary) AR 모형은 MA( ) 로바꾸어쓸수있다. AR(1) 인경우 Y 3 t-1 α t t = μ + e t + α 1 e t 1 + α 1 e t + α 1 e t α 1 e1 + 1 ( Yo μ) 이다. γ ( 0) = V ( Y ) = σ /(1 α t 1 ) 가정 : α 1 < 1, 즉정상성 (stationary) 가정이필요 j γ ( j) = COV (, ) = α σ /(1 α j 1 ) i j 이를정리하면 ρ(j) = α 1 이므로 ACF 는지수적으로감소한다.(exponentially decay) 이를일반화하면 AR(p) 모형의경우 ACF 는지수적으로감소한다. ARMA(p, q) 경우 α 1Y t 1 α Y t... α p Y t p = e t β 1 e t 1 β e t +... βqe t q AR(p) 모형처럼지수적으로감소한다. 그러나 MA(q) 모형의 drop off 효과가있으므로꼬리부분이갑자기줄어들게된다. 이를 exponentially tail off 라한다. 5

6 Statistical Package & Statistics Univariate : Time Series Data () Partial Auto Correlation Function (PACF) LAG 1 인부분상관함수 (PACF) 는 를종속변수, 1 을설명변수로한단순 회귀모형에서 1 의회귀계수를의미한다. LAG 인부분상관함수 (PACF) 는 를종속변수, 1,, 을설명변수로한다중회귀모형에서 의회귀계수를의미한다. LAG 3 인부분상관함수 (PACF) 는 를종속변수, Y t 1,, 3 설명변수로한다중회귀모형에서 3 의회귀계수를의미한다. AR(p) 모형의경우 PACF 는 LAG p 이후에는 0 이다. MA(q) 모형의 PACF 는 Invertibility 조건하에서지수적으로감소한다. ARMA(p, q) 모형의 PACF 도지수적으로감소한다. Inverse Auto Correlation Function (IACF) 역상관함수 (IACF) 다음과같이정의한다. ARMA(p, q) 모형의 IACF 는 ARMA(q, p) 의 ACF 이다. 그러므로 AR(p) 의 IACF 는 MA(p) 의 ACF 와같고 MA(q) 의 IACF 는 AR(q) 의 ACF 와같다. IACF 는 Drop off 와 Tail off 판단이어려운경우사용한다. ARMA 모형인식방법 AR(p) MA(q) ARMA(p, q) ACF T D(q) T PACF D(p) T T IACF D(p) T T *) T: Tail off exponentially *) D(p): Drop off to 0 after lag p 계절성이존재하는경우 ACF 는주기 k 마다 peak 가생긴다. 왜냐하면 가영향을주기때문이다. 에 k 6

7 Statistical Package & Statistics Univariate : Time Series Data () ARMA 모형추정순서 (1) 시계열데이터 white noise Test 시계열데이터기백색잡음 (white noise) 인경우자기상관계수는 Chi-square 분포에 k γ ( j) 근사한다. Ljung modified Box-Pierce Q 통계량 n( n + ) ~ χ ( k). Q- ( n j) j= 1 통계량은시계열데이터의백색잡음여부를판단하는것으로원시계열자료는백색잡음이아니어야모형설정이가능하다. 또한모형설정후잔차는백색잡음이면모형설정이올바로된경우이다. () ACF, PACF 그래프진단 AR(1) 이적절해보인다. 7

8 Statistical Package & Statistics Univariate : Time Series Data () (Unit Root 문제 ) AR(1) 모형을갖는시계열데이터의경우 UNIT root 문제는 ( Y t = μ + α 1, α = 1) 임을의미한다. Unit-root 갖는데이터는안정적이지못하므로모형설정의의미가없다. 이에대한 test 방법으로 augmented Dickey-Fuller 검정방법, Phillips-Perron 검정방법등이있다. 단일근인시계열데이터는 1 차차분데이터에 MA(1) 을적용하여미래값을예측한다. why? Y t = μ et 1 = μ + et, e t is white noise (3) ARMA 모형추정, 회귀계수유의성검정 회귀계수검정통계량 TS = = 3. 0, highly significant (± 기준 ) 0.04 Akaike Information Criteria : 모형적합성통계량, 검정통계량이아니므로서로다른모형의적합정도를비교판단할때사용, 작을수록적합성높음 8

9 Statistical Package & Statistics Univariate : Time Series Data () (4) 모형추정잔차 white noise 검정 모형이적합하다면잔차는 white noise 여야한다. ACF 는지수적으로감소해야하며 (why? 백색잡음은 MA 모형 ) 유의확률이 0.05 미만, 즉점선위에있어야함. (5) 최종모형높이뛰기기록시계열데이터는 ACF, PACF 에의해 AR(1) 을적용하였다. 그러나단일근문제가있고모형추정결과회귀계수는유의하나잔차가백색잡음을따르지않는다. 모형적합실패 9

10 Statistical Package & Statistics Univariate : Time Series Data () 아이스크림예제 데이터시간도표 직선 trend, seasonality 주기 13 있는것으로보임 시계열데이터백색잡음및 stationary 검정 시계열데이터는백색잡음이아니므로 ARMA 모형추정가능 10

11 Statistical Package & Statistics Univariate : Time Series Data () 시계열데이터는 stationary 하므로 ARMA 모형추정가능 ACF, PACF 이용한모형진단 ACF 는지수적감소, PACF 는 Lag=1 에서유의 => AR(1) 진단 모형추정및잔차진단 회귀계수검정통계량 TS = = 8. 4 high significant

12 Statistical Package & Statistics Univariate : Time Series Data () 잔차의 ACF 는 13 에서 peak 가있고 ( 계절성문제 ) 잔차가백색잡음을따르지 않으므로문제가있음 최종진단모형 1

Microsoft Word - ch2_smoothing.doc

Microsoft Word - ch2_smoothing.doc FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.

More information

Microsoft Word - Forecast_lecture.docx

Microsoft Word - Forecast_lecture.docx 예측방법 목차 I. 개요 1 II. TIME PLOT 3 III. MOVING AVERAGE 이동평균법 5 IV. 지수평활법개요 7 V. ARMA 개요 0 VI. 계량경제회귀모형 40 시계열데이터분석 014 I. 개요 1. Hisory 17 세기에태양의흑점자료나밀가격지수변동을나타내는함수로 Sine, Cosine 곡선을이용하였다. Yule(196) 은 ARMA에대한개념을제시하였고

More information

8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모

8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모 8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모형의추정 (estimation) 모형의진단 (diagnostic checking) 예 아니오

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자 시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

untitled

untitled Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

Microsoft PowerPoint - TimeSeriesAnalysis_Part_1.pptx

Microsoft PowerPoint - TimeSeriesAnalysis_Part_1.pptx 이기천 ( 한양대학교산업공학과조교수 ) 2013. 10. 31 ( 목 ) 국민대학교비즈니스 IT 전문대학원 지능데이터시스템연구실 이기천소개 연구분야 Research area Data Mining, Text Mining, Machine Learning, Pattern Recognition Process Mining, Social Network Analysis,

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

Microsoft Word - 동태적 모형.doc

Microsoft Word - 동태적 모형.doc 동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

歯표지_최종H_.PDF

歯표지_최종H_.PDF 21 5 LG < > / 5 5 Chen, Roll, Ross,, (-) (+) (-), (-) (+) / (-), (+) J, /, (-) IMF, /,,, 5bp 5bp 1 1 3 ( )/ ( ) ( :p) 1 3 6 / 1-23 45 55 1% 2 33 42 1p 296 234 175 1%p -13 147 171 1%p 1 81 7 1% 48 57 54

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

<3135C0FCBBF3B0EF28BCF6C1A4BBE7C7D7BEF8C0BD292E687770>

<3135C0FCBBF3B0EF28BCF6C1A4BBE7C7D7BEF8C0BD292E687770> 농업생명과학연구 45(5) pp.115-126 Journal of Agriculture & Life Science 45(5) pp.115-126 ARIMA 모형을이용한한육우사육두수추정 전상곤 1* 박한울 2 1 경상대학교농업경제학과 ( 농업생명과학연구원 ), 2 경상대학교대학원농업경제학과 Estimation of the Number of Korean Cattle

More information

untitled

untitled 통계청 통계분석연구 제 2 권제 1 호 ( 97. 봄 )23-56 벡터자기회귀 (VAR) 모형의이해 (Vector Autoregressive Model: VAR) 문권순 * 본논문은예측뿐만아니라어떠한변수의일시적인충격에대한효과분석을위하여연립방정식체계로구성된벡터자기회귀 (VAR) 모형을소개한글이다. VAR모형의가장큰특징은첫째, 충격반응분석 (impulse response

More information

Chapter4.hwp

Chapter4.hwp Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6

More information

3.고봉현

3.고봉현 Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets.. 1. 2.. 1. 2. 3. ARCH-LM.. 1. 2. Abstract.,,,. 2000,,.. 2008 1,382 3,363 41.1%, 1995 2009 7 17

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

untitled

untitled 통계청 통계연구 제 10 권제 1 호, 2005, pp. 165-188 몬테카를로실험에의한 Augmented Dickey-Fuller 단위근검정법의검정력에관한연구 조성일 * 최종수 ** 1) < 요약 > 이연구에서는몬테카를로실험 (Monte Carlo Experiment) 을통하여 Augmented Dickey-Fuller 단위근검정법의검정력을측정하였다. 컴퓨터시뮬레이션을통한자료생성과정에있어서상수항과시간추세의포함여부에따라세가지형태를가정하였다.

More information

Microsoft PowerPoint - Info R(3) pptx

Microsoft PowerPoint - Info R(3) pptx Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 9 동태모형, 자기상관, 예측 2013 년 1 학기 윤성민 9.1 서론 경제적인과관계의시차효과 x 변화는여러기간에걸쳐종속변수에영향을미칠수있음 x y, y+1, y+ 2, 2 9.1 서론 경제변수의동태적관계를모형화할수있는세가지방법 시차설명변수의도입 x y, y+1, y+ 2, 이관계를달리표현하면,

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ

More information

공휴일 전력 수요에 관한 산업별 분석

공휴일 전력 수요에 관한 산업별 분석 에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 99 ~ 137 공휴일전력수요에관한산업별분석 1) 99 100 ~ 101 102 103 max m ax 104 [ 그림 1] 제조업및서비스업대표업종전력사용량추이 105 106 [ 그림 2] 2014 년일별전자및전자기기업종 AMR

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

702 Gui-Yeol Ryu Table 1.1 Subscribers of smart phone and mobile services (unit: person) Year Smart phone Mobile services ratio 2011 22,578,408 52,506

702 Gui-Yeol Ryu Table 1.1 Subscribers of smart phone and mobile services (unit: person) Year Smart phone Mobile services ratio 2011 22,578,408 52,506 Journal of the Korean Data & Information Science Society 2016, 27(3), 701 710 http://dx.doi.org/10.7465/jkdi.2016.27.3.701 한국데이터정보과학회지 네이버 무선포털의 패킷량 분석에 관한 연구 류귀열 1 1 서경대학교 컴퓨터과학과 접수 2016년 4월 26일, 수정 2016년

More information

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp

More information

- 1 -

- 1 - - 1 - - 2 - χ loglog log - 3 - σ - 4 - - 5 - ψφ θθ - 6 - σ 월이윤년인경우 월이윤년이아닌경우 α - 7 - - 8 - π π π - 9 - - 10 - - 11 - - 12 - 모형 모형 - 13 - 모형 모형 - 14 - - 15 - - 16 - - 17 - σ σ - 18 - σ MSR 크기 MSR 2.5 3.5

More information

21세기 미국의 패권과 유엔

21세기 미국의 패권과 유엔 126 김지열 국제 지역연구 14 권 2 호 2005 여름 pp. 125 141 I. 서론 중동권경제에서의장기기억에관한연구 : 주식수익률을중심으로 김지열 아시아대학교보건한방학부전임강사 τ τ τ 주제어 : 중동권국가, 주식시장, 수정 R/S분석, 허스트지수, V 통계량 중동권국가 (Middle East country) 는아직까지우리나라에서분쟁의지역이나관광지로만인식되어있을뿐,

More information

i f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

( ) ( e- ) ( ) ( ) ( ) , IMF., 1000.,..,. SAS ARIMA OLS, SUR, 3SLS. 2004-2006 1999 1-2003 12 5. 2004-2006 9.31%, 5.37% 8.08% 40%.. < > 2004-2006 2004 2005 2006 131,752,662 138,832,342 150,060,656 65,500,904

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

공간계량경제학을 응용한 사례분석

공간계량경제학을 응용한 사례분석 공간계량경제학을응용한사례분석 서울대학교사회과학대학지리학과교수 손정렬 2 Anselin versus Griffith Anselin versus Griffith 3 On Anselin s, Griffith says 두서적의비교를통한서평 오자 (multicollinearity), 개념적오류, 오해등의문제존재 공간통계분야문헌들의언급부재혹은미약 중복되는부분이적어두서적간의보완성상당히높음

More information

(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

2013 건설공사표준품셈기계설비부문 제 I 편 공통사항제 1 장 적용기준제 2 장 가설공사제 II 편 기계설비공사제 1 장 공통공사제 2 장 공기조화설비공사제 3 장 위생및소화설비공사제 4 장 가스설비공사제 Ⅲ 편 플랜트설비공사제 1 장 공통공사제 2 장 화력발전기계설비공사제 3 장 수력발전기계설비공사제 4 장 제철기계설비공사제 5 장 쓰레기소각기계설비공사제

More information

A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong* Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes th

A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong* Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes th A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong*Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes that the factors which influence the apartment price are

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

<2D3828C8AE29B9DAC3B5B1D42E687770>

<2D3828C8AE29B9DAC3B5B1D42E687770> 부동산학연구 제16집 제1호, 2010. 3, pp. 131~146 Journal of the Korea Real Estate Analysts Association Vol.16, No.4, 2010. 3, pp. 131~146 주택시장 체감지표의 주택시장지표 예측력 분석 * 1) Analysis on the Predictive Power of the Housing

More information

<C6EDC1FDBCF6C1A42D312E20C1A6C1D6BCB1B9DAB5EEB7CFC6AFB1B8C1A6B5B5C0C720C1A4C3A5C8BFB0FA202020BAD0BCAE28B9DABCBAC8AD2C20B1E8C5C2C0CF2C20B1C7C0E5C7D1292E687770>

<C6EDC1FDBCF6C1A42D312E20C1A6C1D6BCB1B9DAB5EEB7CFC6AFB1B8C1A6B5B5C0C720C1A4C3A5C8BFB0FA202020BAD0BCAE28B9DABCBAC8AD2C20B1E8C5C2C0CF2C20B1C7C0E5C7D1292E687770> 제주선박등록특구제도의정책효과분석 Analysis of Policy Effect of Jeju International Ship Register System 1) 박성화 * 김태일 ** 권장한 *** Park, Sung Hwa Kim, Tae Il Kwon, Chang Han 목 Ⅰ. 서론 Ⅱ. 제주선박등록특구제도현황 Ⅲ. 선행연구및본연구의차별성 Ⅳ. 정책효과분석

More information

슬라이드 1

슬라이드 1 Prncples of Econometrcs (3e) 013 년 1 학기 윤성민 8.1. 이분산의본질 ( 예 ) 식료품지출 / 식료품지출과소득에관한 40 개표본 8.1 이분산의본질 3 8.1 이분산의본질 4 8.1 이분산의본질 동분산가정 5 8.1 이분산의본질 이분산가정 6 8.1

More information

외국인투자유치성과평가기준개발

외국인투자유치성과평가기준개발 2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.

More information

노동경제논집 38권 3호 (전체).hwp

노동경제논집 38권 3호 (전체).hwp * ** ***. (18-24 ), (18-22 ), (60 ), (60 ) 4..,,, OLS VAR VEC., VEC (-)., : 2015 7 9, : 2015 9 1, : 2015 9 7 * 2.. ** () (kangsb7077@naver.com) *** (cheolsung@hanyang.ac.kr). 勞動經濟論集第 卷第 號.,. 1980 1990

More information

Microsoft Word - ch2_simple.doc

Microsoft Word - ch2_simple.doc REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?

More information

시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 (

시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 ( 시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 ( 흐름 ) 에따라순서대로 (ordered in time) 관측되는자료를시계열자료 (time

More information

Microsoft Word - ch3_residual.doc

Microsoft Word - ch3_residual.doc REGRESSION / 3 장. 잔치분석 50 Chapter 3 잔차분석 이론이나경험에의해변수간의회귀모형을설정하고 y = α + βx ( 선형 : lnearty), 관측치가 ( x, y ), = 1,,..., n 얻어지면이를이용하여회귀분석을실시한다. 설정된회귀모형에 는오차항에대한 3가지가정 e ~ dnormal(0, σ ) 을한다. ( 정규성 normalty,

More information

2011년 제 9회 최우수상.hwp

2011년 제 9회 최우수상.hwp 1) 고려대학교교육학과석사과정 (nayoung725@yahoo.co.kr) 2) 고려대학교교육학과박사과정 (seo2jin@hanmail.net) 3) 고려대학교교육학과석사과정 (premier110@hanmail.net) 성별지역계열학업진행여부 총사례수 일주일평균아르바이트시간 ( 시간 ) 남 1510 8.9 여 1457 8.4 동지역 2573 8.5

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia

벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia 제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous

More information

nonpara1.PDF

nonpara1.PDF Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710)

More information

164

164 에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter Radar Cross Section ( R C S ) 엄효준교수 한국과학기술원 Contents.1. RCS Definition.. RCS Prediction Methods.3. RCS Dependency on Aspect Angle and Frequency.4. RCS Dependency on Polarization.5. RCS of Simple

More information

untitled

untitled 5.8 PROC UNIVARIATE (hitogram, tem and leaf plot, box-whiker plot), (p- ). Univariate( ).. NORMAL (Shapiro- Wilk Kolmogorov-Smirno D- OUTPUT( SAS ). PROC MEANS PROC MEANS. (moment) E( X ). k Sehyug Kwon,

More information

에너지경제연구 제12권 제2호

에너지경제연구 제12권 제2호 에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세

More information

<3131BFF92D3828C6D0B3CEBFACB1B82DC0CCBBF3C8A D38302E687770>

<3131BFF92D3828C6D0B3CEBFACB1B82DC0CCBBF3C8A D38302E687770> - 가구소득을중심으로 - 이상호 * Ⅰ. 들어가며 ) 30..,, (Unobserved Heterogenety).. NLS(966~) PSID(968~), BHPS(99~), GSOEP(984~). 990 994 998, (998~). 2~3...,. * (shlee@kl.re.kr). 66_ 노동리뷰 (Korean Labor and Income Panel

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

review050829.hwp

review050829.hwp 한국무역협회 무역연구소 서울시 강남구 삼성동 무역센터 트레이드타워 4801호 Tel: 6000-5174~9 Fax: 6000-6198 홈페이지 : http://tri.kita.net - 1 - 5 4 (% ) 경상수지(G DP 대 비) 추 이 일본 독일 3 네덜란드 2 1 아일랜드 0-1 -2 [1만불 - 2 만불 달성기간 ] -일본(80-88) -독일(79-90)

More information