슬라이드 1

Size: px
Start display at page:

Download "슬라이드 1"

Transcription

1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민

2 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b b x 0 Ch. 4 예측, 적합도, 모형화 /60

3 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값 ( ) ( ) f= y yˆ = β +β x + e b+ bx ( ) ( ) ( ) ( ) E f =β 1 +β x0 + E e0 E b1 + E b x0 [ x ] =β +β x + 0 β +β = 예측오차의분산 1 ( x0 x) var( f ) =σ N ( xi x) ŷ y0 는의최우수선형불편예측값 (BLUP) 0 Bes Linear Unbiased Predicor Ch. 4 예측, 적합도, 모형화 3/60

4 4.1 OLS 예측 예측오차 (forecas error) 의분산을줄이기위한방법 = 예측의정확도를높이기위한방법 1 ( x0 x) var( f ) =σ N ( xi x) 모형의전체적불확실성 ( ) 을줄임 표본의크기 ( N ) 를늘림 설명변수의변동을크게함 평균근처에서예측함 ( 평균에서벗어나서예측할수록정확도가떨어짐 ) σ Ch. 4 예측, 적합도, 모형화 4/60

5 4.1 OLS 예측 () 구간예측 ( ) yˆ 0 ± cse f 신뢰구간, 혹은예측구간 se ( f ) = var ( f ) 1 ( x0 x) var( f ) =σ ˆ N ( xi x) Ch. 4 예측, 적합도, 모형화 5/60

6 4.1 OLS 예측 구간예측 x - 가에서멀어질수록, 예측오차분산증가 예측신뢰성감소 0 x Ch. 4 예측, 적합도, 모형화 6/60

7 4.1 OLS 예측 식료품지출액모형의예측 주당소득이 $,000 인가계의식료품지출액은얼마인가? 점예측 yˆ = b+ bx = (0) = 구간예측 [ ] yˆ ± se( f) = ±.044(90.638) = , c 1 ( x0 x) var( f ) =σ ˆ N ( xi x) Ch. 4 예측, 적합도, 모형화 σˆ =σ ˆ + + ( ) σˆ x0 x N ( xi x) σˆ =σ ˆ + + ( x 0 x) var ( b) N 7/60

8 4. 적합도의측정 Y β 1 + β X + = e 이모형을추정하고분석하는이유의하나는 예측 임 X 설명변수가모형에도입된이유는 그것이종속변수 것이라고생각하기때문임 E ( Y ) = β 1 + β X 의변동을가능한많이설명할 : 체계적인요소, 설명할수있는부분 e : 무작위적교란요소, 설명할수없는부분 이두요소는실제로는관찰불가능 Y Ch. 4 예측, 적합도, 모형화 8/60

9 4. 적합도의측정 추정을통하여관찰가능한식 Y ˆ + ˆ 여기서 ˆ b + b X, = Y e Y = 1 e = Y Y ˆ ˆ Y 의총변동을측정하는합리적인방법 : ( Y Y ) p.131 < 그림 4.3> Ch. 4 예측, 적합도, 모형화 9/60

10 4. 적합도의측정 Ch. 4 예측, 적합도, 모형화 10/60

11 4. 적합도의측정 Y = ˆ Y ) ( Y Y ) + eˆ ( SST = SSR + SSE 총변동을이렇게분해하여정리한것을 분산분석표 (analysis of variance able) 라함 Ch. 4 예측, 적합도, 모형화 11/60

12 4. 적합도의측정 결정계수 (coefficien of deerminaion) : 종속변수의변동중설명변수로회귀모형내에서 설명할수있는부분의비율 SST = SSR + SSE R SSR = = 1 SST SSE SST R ˆ + 가 1에가까울수록로 Y 의변동을 Y = b1 b X 잘설명할수있다는것을의미함, 또추정된모형의예측성과 ( 능력 ) 가높다는것을의미함 Ch. 4 예측, 적합도, 모형화 1/60

13 4. 적합도의측정 R SSR = = 1 SST SSE SST 0 R 1 Ch. 4 예측, 적합도, 모형화 13/60

14 4. 적합도의측정 유의사항 R 만으로는회귀모형의질을측정할수없음 R 를극대화하는것에만초점을맞추는것은올바른회귀분석방법이아님 R 는단지회귀모형의적합도 (goodness of fi) 를측정하여나타내는척도임 Ch. 4 예측, 적합도, 모형화 14/60

15 4. 적합도의측정 4..3 식료품지출액추정식의적합도측정 ( i ) SST = y y = ( ) i i i SSE = y yˆ = eˆ = SSE R = 1 = 1 = SST 해석 식료품지출액변동은약 39% 가소득변동으로설명가능 추정된회귀모형은식료품지출액변동의약 39% 를설명할수있으나, 변동의 61% 는이모형으로설명할수없다는의미 Ch. 4 예측, 적합도, 모형화 15/60

16 4. 적합도의측정 <EViews Regression Oupu> Ch. 4 예측, 적합도, 모형화 16/60

17 <Excel Regression Oupu> 4. 적합도의측정 SSE R = 1 = 1 = SST Ch. 4 예측, 적합도, 모형화 17/60

18 4. 적합도의측정 유의사항 R = Ch. 4 예측, 적합도, 모형화 18/60

19 4. 적합도의측정 4.. 상관계수와결정계수의관계 correlaion coefficien ρ beween X and Y sample correlaion coefficien r XY = R r Y Yˆ = R R : is called a measure of goodness of fi. Ch. 4 예측, 적합도, 모형화 19/60

20 4. 적합도의측정 r = R = YYˆ Ch. 4 예측, 적합도, 모형화 0/60

21 4. 적합도의측정 4..4 회귀분석결과를보고하는방법 회귀분석컴퓨터 SW는다양한정보를제공함 회귀분석결과를보고할때는그러한정보를아래와같이요약하여표시함 FOOD_EXP = + INCOME R = (se) (43.41) (.09) * *** FOOD_EXP = + INCOME R = (- 값) (1.9) (4.88) * *** *, **, *** indicaes significan a he 10%, 5%, 1% level, respecively. Ch. 4 예측, 적합도, 모형화 1/60

22 4.3 모형화문제 통계자료를일정한비율로조절하면? 통계수치가너무큰경우는편리한측정단위로조절하여발표함 ( 예 ) X * = 93,491,400,000,000 ( 원 ) X = ( 조원) 이경우자료를다음과같은비율로조절한것임 * X = X 1,000,000,000,000 자료를일정한비율로조절하는경우, 추정결과에어떤영향을미치는가? 추정결과의해석에는어떤영향을미치는가? Ch. 4 예측, 적합도, 모형화 /60

23 4.3 모형화문제 X 의측정단위변화경우 * ( 예 ) X = 100 로조절한경우 X 소득이 $100 증가하면, 식료품지출은 $1.83 증가함 if X = 100 즉 X * = 1, hen Y = 1.83., se( ) 해당회귀계수및표준오차 ( ) 도 100 배증가 b 다른모든회귀분석통계량은불변 b Ch. 4 예측, 적합도, 모형화 3/60

24 4.3 모형화문제 Y 의측정단위변화경우 * ( 예 ) Y =100 로조절한경우 Y 100 Y ˆ = ( ) + ( ) X ˆ * = X Y 83 소득이 $1 증가하면, 식료품지출은 1.83 센트증가함 소득이없는사람은식료품지출에 4,077센트사용함 모든회귀계수및표준오차도 100배증가 다른모든회귀분석통계량 ( R, 값등 ) 은불변 모수에대한해석은측정단위와관련지어이루어져야함 Ch. 4 예측, 적합도, 모형화 4/60

25 4.3 모형화문제 회귀분석결과, 그리고수치들사이의상호관계 Ch. 4 예측, 적합도, 모형화 5/60

26 4.3 모형화문제 회귀분석결과, 그리고수치들사이의상호관계 ( 계속 ) Ch. 4 예측, 적합도, 모형화 6/60

27 4.3 모형화문제 회귀분석결과, 그리고수치들사이의상호관계 ( 계속 ) Ch. 4 예측, 적합도, 모형화 7/60

28 4.3 모형화문제 회귀분석결과, 그리고수치들사이의상호관계 ( 계속 ) Ch. 4 예측, 적합도, 모형화 8/60

29 4.3 모형화문제 4.3. 함수형태의선택 단순선형회귀모형 Y β 1 + β X + = e 선형 이라는용어는 변수들사이의선형 이아니라 모수들사이의선형 을의미함 이경우 변수들사이의비선형 모형은적절한변형을통하여 변수들사이의선형 모형으로전환될수있으며, OLS를적용하여추정할수있음 Ch. 4 예측, 적합도, 모형화 9/60

30 4.3 모형화문제 Ch. 4 예측, 적합도, 모형화 30/60

31 4.3 모형화문제 ( 예 ) 식료품지출액 아래와같은비선형관계일가능성이높음 선형모형으로추정하면적절치못할수있음 변수간의비선형관계 Ch. 4 예측, 적합도, 모형화 31/60

32 4.3 모형화문제 변수간의비선형관계 자연대수 :, 역수 :, lny 1 Y 1 X ln X Y 제곱 :, X e Y 지수 :, e X 위와같은대수학적인변형을통하여 다양한형태의변수간비선형관계를나타낼수있음 Ch. 4 예측, 적합도, 모형화 3/60

33 비선형관계, 그렇지만선형모형으로변환가능한모형 들 4.3 모형화문제 Ch. 4 예측, 적합도, 모형화 33/60

34 4.3 모형화문제 함수형태의선택 : 실증적인논의 최선의함수형태를어떻게고를수있을까? - 모든상황에적용될수있는원칙은없음 실증분석을할때유용한방법들 - 경제이론이의미하는함수형태 - 단순회귀모형의기본가정이준수되는함수형태 - 자료의산포도를그려보고그것을잘반영할수있는함수형태 Ch. 4 예측, 적합도, 모형화 34/60

35 4.3 모형화문제 식료품지출액사례의모형화방법 1 FOOD _ EXP =β 1 +β + e INCOME FOOD _ EXP =β +β ln( INCOME) + e 1 Ch. 4 예측, 적합도, 모형화 35/60

36 4.3 모형화문제 함수형태를선택하는기준 만족스러운함수형태를선택할경우, 회귀모형의기본가정이준수되는데도움이됨 함수형태를선택하거나변수를변형시키는주요한목적은오차항이다음과같은특성을갖는모형을설정하기위한것. 이경우에 OLS 추정량은타당한통계적특성을가짐 R 가높다고꼭좋은모형은아님 Ch. 4 예측, 적합도, 모형화 36/60

37 4.3 모형화문제 잔차는정규분포를하는가? OLS 추정량을이용한가설검정과구간추정은잔차가정규분포를한다는가정에의존함. 따라서함수형태를선택할때, 잔차가정규분포를하는것이바람직함 잔차의정규성 (normaliy) 을검정하는통계량들이대부분의컴퓨터 SW에서계산되어제공됨 ( 예 ) J-B 통계량 Ch. 4 예측, 적합도, 모형화 37/60

38 4.3 모형화문제 잔차는정규분포를하는가? Ch. 4 예측, 적합도, 모형화 38/60

39 4.3 모형화문제 쟈크 - 베라검정 (Jarque-Bera es, J-B es) 귀무가설 : 잔차는정규분포를한다 JB = T 6 s + ( k 3) 4 ~ χ () s 는왜도 ( 비대칭도, skewness) k 는첨도 ( 첨예도, kurosis) Ch. 4 예측, 적합도, 모형화 39/60

40 4.3 모형화문제 왜도 (skewness) 분포의비대칭도를나타냄 정규분포에서는 s = 0 s < 0 s > 0, 왼쪽꼬리분포 ;, 오른쪽꼬리분포 Ch. 4 예측, 적합도, 모형화 40/60

41 4.3 모형화문제 첨도 (kurosis) 분포의첨예도, 자료가얼마나뾰족한가를판단하는척도 정규분포에서는 k = 3 (execss kurosis = 0) 첨도가클수록분포는뾰족한모습 Ch. 4 예측, 적합도, 모형화 41/60

42 4.3 모형화문제 잔차는정규분포를하는가? Ch. 4 예측, 적합도, 모형화 4/60

43 4.3 모형화문제 식료품비지출액잔차의정규성검정 JB ( ) = = χ () 의 5% 임계값은 5.99 (1% 임계값은 9.1) 0.063<5.99 이므로, 잔차가정규분포를한다는귀무가설을기각할수없음 p-값 =0.9688>0.05( 유의수준 ), 귀무가설을기각할수없음 Ch. 4 예측, 적합도, 모형화 43/60

44 4.3 모형화문제 밀산출량산포도 (p.143 사례 ).5 밀산출량 시간 Ch. 4 예측, 적합도, 모형화 44/60

45 4.3 모형화문제 선형모형으로추정 Y β 1 + β X + = e 회귀분석통계량 다중상관계수 결정계수 조정된결정계수 ˆ Y = X R = (0.064) (0.00) ( s. e.) 표준오차 관측수 48 분산분석 자유도 제곱합 제곱평균 F 비 유의한 F 회귀 E-1 잔차 계 계수표준오차 통계량 P- 값 Y 절편 E-13 X E-1 Ch. 4 예측, 적합도, 모형화 45/60

46 4.3 모형화문제 밀산출량표본회귀선의추정.5 밀산출량 Y = X R² = 시간 Ch. 4 예측, 적합도, 모형화 46/60

47 4.3 모형화문제 잔차계산.5 실제값잔차추정된회귀선 1.5 밀산출량 시간 Ch. 4 예측, 적합도, 모형화 47/60

48 잔차가 (+), (-), (+) 형태로집중되어있음 4.3 모형화문제 밀산출량의증가속도가빠르다는의미, 비선형모형필요함 잔차 0. E Ch. 4 예측, 적합도, 모형화 48/60

49 4.3 모형화문제 비선형모형으로추정 3 Y = β 1 + β X + e 회귀분석통계량 다중상관계수 결정계수 조정된결정계수 표준오차 관측수 48 ˆ 3 Y = Z R = (0.036) (0.84) ( s. e.) Z = 3 3 X 1,000,000 분산분석 자유도 제곱합 제곱평균 F 비 유의한 F 회귀 E-15 잔차 계 계수표준오차 통계량 P- 값 Y 절편 E-8 X E-15 Ch. 4 예측, 적합도, 모형화 49/60

50 4.3 모형화문제 잔차의집중화개선, R 증가 실제값 잔차 추정된회귀선 Yha= Z 3 R =0.751 밀산출량 시간 Ch. 4 예측, 적합도, 모형화 50/60

51 4.4 대수 - 선형모형 (log-linear model) lny β + β X + = 1 e Slope: β Y if β > 0, 체증하는율로증가 β > 0 Elasiciy: β X 해석 : X 가 1단위증가할때, Y 는대략 100 β % 변화함 β < 0 Ch. 4 예측, 적합도, 모형화 51/60

52 4.4 대수 - 선형모형 성장모형 앞의밀생산사례에서기술이진보함에따라 ( 즉, 시간이흐름에따라 ) 밀생산은체증하는율로증대되었음 밀생산량이연간일정한율 ( g ) 로증가한다면, YIELD ( 1 g ) YIELD 1 = + 이런관계를반복적으로대체시키면, ( ) = ( ) + ( + ) ln YIELD ln YIELD ln 1 g YIELD 0 =β +β 1 - 여기서는 0 연도의생산량 ( 몰라도좋음, 추정가능 ) 0 Ch. 4 예측, 적합도, 모형화 5/60

53 4.4 대수 - 선형모형 밀생산사례 : 대수 - 선형모형 밀생산통계자료를대수 - 선형모형으로추정해보면, ln = ( YIELD ) (se) (0.0584) (0.001) 추정치 b = ln ( 1+ g) = x 가작은경우 ln(1 + x) x 라는사실을이용하면, 밀생산의증가율은대략 g = 또는연간약 1.78% 로추정됨 100 β % Ch. 4 예측, 적합도, 모형화 53/60

54 4.4 대수 - 선형모형 4.4. 임금방정식 교육을추가적으로 1 년더받으면, 임금이일정율 ( r ) 로증가 한다면 WAGE ( 1 ) = + r WAGE 1 0 ( 1 ) ( 1 ) WAGE = + r WAGE = + r WAGE 1 0 교육받은기간 ( 년 ) 을 EDUC 라고나타내면, 다음이성립함 ( ) = ( ) + ( + ) ln WAGE ln WAGE ln 1 r EDUC =β +β 1 0 EDUC 교육을추가적으로 1 년더받으면, 임금은대략 100 β % 증가 Ch. 4 예측, 적합도, 모형화 54/60

55 4.4 대수 - 선형모형 미국통계를이용한임금방정식추정결과 ln = ( WAGE) (se) (0.0849) (0.0063) EDUC 교육을추가적으로 1 년더받으면, 임금은대략 10.4% 증가함 Ch. 4 예측, 적합도, 모형화 55/60

56 4.4 대수 - 선형모형 대수 - 선형모형에서의예측 소표본경우 : 대표본경우 : ( ( )) ( 1 ) yˆ = exp ln y = exp b+ bx n ( ) exp( 1 ) yˆ = E y = b+ bx+σ ˆ = ye ˆ σ c ˆ n ( 교과서부록 4C에증명참조 ) 교육받은기간이 1년인근로자의임금은얼마인가? ln = EDUC = =.0335 ( WAGE) ( ( y) ) ( ) yˆ = exp ln = exp.0335 = ( 시간당 7.64 달러 ) 수정된예측값은 Ch. 4 예측, 적합도, 모형화 ( ) ˆ yˆ ˆ c = E y = ye σ n = = ( 시간당 8.61 달러 ) 56/60

57 4.4 대수 - 선형모형 R 일반화된의측정 ( ˆ ) R = corr yy, = r g yy, ˆ 임금방정식의사례 R ( ) ln WAGE = EDUC R = (se) (0.0849) (0.0063) ( yyˆ ) = corr, = = 0.46 g c Ch. 4 예측, 적합도, 모형화 57/60

58 대수 - 대수모형 대수 - 대수모형 (log-log model) Y = β 1 β ln X + ln + e Slope β Y X Elasiciy β Ch. 4 예측, 적합도, 모형화 58/60

59 대수 - 대수모형 대수 - 대수모형 (log-log model)- 계속 Y = β 1 β ln X + ln + e Slope β Y X β < 1 Elasiciy β Ch. 4 예측, 적합도, 모형화 59/60

60 < 과제 > Eviews oupu을출력하고, 출력물의빈여백에간단하게답을적으시오. 참고 : 필요한 daa 는 WILEY 교과서홈페이지에있음 hp://principlesofeconomerics.com/ Ch. 4 예측, 적합도, 모형화 60/60

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

슬라이드 1

슬라이드 1 Prncples of Econometrcs (3e) 013 년 1 학기 윤성민 8.1. 이분산의본질 ( 예 ) 식료품지출 / 식료품지출과소득에관한 40 개표본 8.1 이분산의본질 3 8.1 이분산의본질 4 8.1 이분산의본질 동분산가정 5 8.1 이분산의본질 이분산가정 6 8.1

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics) 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion) 고검정 (es) 하는학문 거시소비함수 (Keynse). C=f(Y), 0

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft PowerPoint - Info R(3) pptx

Microsoft PowerPoint - Info R(3) pptx Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) Ch. 6 다중회귀모형에관한 추가적인논의 013 년 1 학기 윤성민 6장의주요내용 다중회귀모형의모수에관한둘이상의가설로구성된귀무가설을동시에검정하는경우 ( 결합가설의검정 ) F-검정 표본의정보이외에비표본정보도함께이용하는경우 제한최소제곱법 모형설정의오류를찾는방법 RESET 검정 다중공선성문제의탐지와해결방법

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

시스템경영과 구조방정식모형분석

시스템경영과 구조방정식모형분석 2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

Microsoft Word - ch2_simple.doc

Microsoft Word - ch2_simple.doc REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - 동태적 모형.doc

Microsoft Word - 동태적 모형.doc 동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -

More information

슬라이드 1

슬라이드 1 회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 9 동태모형, 자기상관, 예측 2013 년 1 학기 윤성민 9.1 서론 경제적인과관계의시차효과 x 변화는여러기간에걸쳐종속변수에영향을미칠수있음 x y, y+1, y+ 2, 2 9.1 서론 경제변수의동태적관계를모형화할수있는세가지방법 시차설명변수의도입 x y, y+1, y+ 2, 이관계를달리표현하면,

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

가능한연구가설제시 가설 1 : 지지후보의선택은유권자의나이에따라차이가있을것이다. 유권자의나이는지지후보의선택에영향을미칠것이다. 유권자의나이에따라지지후보는다를것이다. 가설 2 : 유권자의사회생활만족도는지지후보의선택에영향을미칠것이다. 지지후보의선택은유권자의사회생활만족도에따라차

가능한연구가설제시 가설 1 : 지지후보의선택은유권자의나이에따라차이가있을것이다. 유권자의나이는지지후보의선택에영향을미칠것이다. 유권자의나이에따라지지후보는다를것이다. 가설 2 : 유권자의사회생활만족도는지지후보의선택에영향을미칠것이다. 지지후보의선택은유권자의사회생활만족도에따라차 가능한연구가설제시 가설 1 : 지지후보의선택은유권자의나이에따라차이가있을것이다. 유권자의나이는지지후보의선택에영향을미칠것이다. 유권자의나이에따라지지후보는다를것이다. 가설 2 : 유권자의사회생활만족도는지지후보의선택에영향을미칠것이다. 지지후보의선택은유권자의사회생활만족도에따라차이가있을것이다. 가설 3 : 유권자의학력수준에따라지지후보는다를것이다. 지지후보의선택은유권자의학력수준에따라차이가있을것이다.

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

Microsoft Word - sbe13_reg.docx

Microsoft Word - sbe13_reg.docx Statstcs 4 Busness and Economcs (Regresson) 상관계수 상관계수정의 두변수간의선형관계정도를나타내는값 COV ( X, Y ) E( X E( X ))( Y E( Y )) 정의 : V ( X ) V ( Y ) V ( X ) V ( Y ) 표본상관계수 : r ˆ ( ( x ( x x) x) ( x x x)( y x)( y /( n 1)

More information

R

R R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.

More information

exp

exp exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

Microsoft Word - ch3_residual.doc

Microsoft Word - ch3_residual.doc REGRESSION / 3 장. 잔치분석 50 Chapter 3 잔차분석 이론이나경험에의해변수간의회귀모형을설정하고 y = α + βx ( 선형 : lnearty), 관측치가 ( x, y ), = 1,,..., n 얻어지면이를이용하여회귀분석을실시한다. 설정된회귀모형에 는오차항에대한 3가지가정 e ~ dnormal(0, σ ) 을한다. ( 정규성 normalty,

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

임정연 이영민 1) 주저자, 숙명여자대학교인력개발정책학박사과정, 2) 교신저자, 숙명여자대학교여성 HRD 대학원부교수,

임정연 이영민 1) 주저자, 숙명여자대학교인력개발정책학박사과정,   2) 교신저자, 숙명여자대학교여성 HRD 대학원부교수, 임정연 이영민 1) 주저자, 숙명여자대학교인력개발정책학박사과정, E-mail: jungyon82@naver.com 2) 교신저자, 숙명여자대학교여성 HRD 대학원부교수, E-mail: ymlee@sookmyung.ac.kr 규모 재직근로자대상교육훈련실시 ( 개소,%) 1 인당평균집체훈련시간 1 인당평균집체훈련비용 ( 천원 ) 전체수강료시설비기타비용 전체

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

Chapter 8 단순선형회귀분석과 상관분석

Chapter 8 단순선형회귀분석과 상관분석 Chapter 9 회귀모형 regression analysis 9.1 머리말 (Intro) Sir Francis Galton (18-1911) s studies on genetics Heights of parents and children: 부모의신장에비해 세의신장이일반평균치에복귀 (revert to the pop mean) 하는특성을발견하였다. 복귀 (revert)

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i

More information

Microsoft Word - Ch3_Derivative2.docx

Microsoft Word - Ch3_Derivative2.docx 통계수학 Chapter. 미분.5 미분응용.5. 최대값과최소값 지역 (local) 과절대 (absolute) 의의미 f 절대최소지역최대지역최소절대최대지역최소 차미분정리함수 f 가일정구간안의모든점에서미분가능하고구간내임의의점 c 에서 차미분이 0 이면 ( c) 0 ) 함수 f 는점 c 에서지역최대값이나최소값을갖는다. 증가함수와감소함수정의만약 > f ( ) > f

More information

歯

歯 (in % of EU GNI) G i n i C V u w T 1 Gini = ( 2n 2 CVuw = T = n X i i =1 n i

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

<4D6963726F736F667420576F7264202D20B1E2BBF3C5EBB0E85F36C0E55FC7D0BBFD2E646F6378>

<4D6963726F736F667420576F7264202D20B1E2BBF3C5EBB0E85F36C0E55FC7D0BBFD2E646F6378> 6. Relaton and Statstcal Weather Forecastng (관 계와 통계적인 일기예보) 6.1 Background 대기운동은 비선형이므로 결정론적인 의미에서 완벽하게 예측될 수 없다. 보완책으 로 통계적인 방법이 유용하고 예보의 일부로 사용된다. 1 수치예보모델 없이 순수하게 통계 모형만을 이용하는 경우 단시간 예보나 아주 긴 시간(수주이상)

More information

제 4 장수요와공급의탄력성

제 4 장수요와공급의탄력성 제 4 장수요와공급의탄력성 탄력성 (elasticity) 의개념 u 탄력성 (elasticity) è 탄력성은소비자와생산자가시장환경의변화에어떻게 반응하는가를보여주는지표임. è 현실경제에는무수히많은현상들이원인과결과로 연결되어있음. è 즉, 탄력성은원인변수에대해결과변수가얼마나민감하게 반응하는가를나타내는지표임. è 원인변수 ( 독립변수 ) 와결과변수 ( 종속변수

More information

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생

More information

1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ

More information

Microsoft Word - LectureNote.doc

Microsoft Word - LectureNote.doc 5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd

More information

Microsoft Word - multiple

Microsoft Word - multiple Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj

More information

<4D F736F F F696E74202D FC0E5B4DCB1E220BCF6BFE4BFB9C3F8205BC8A3C8AF20B8F0B5E55D>

<4D F736F F F696E74202D FC0E5B4DCB1E220BCF6BFE4BFB9C3F8205BC8A3C8AF20B8F0B5E55D> 생산관리론 장단기수요예측 서강대학교경영학부 경영전문대학원교수서창적 -1-1 학습내용 수요예측기법 예측오차의측정과통제 수요예측기법의선정 수요예측의의의 수요예측 (demand forecasting) 이란? 기업의제품과서비스에대한수요의양과시기를예측하는것 수요예측이이루어지면수요를충족시키기위해필요한자원에대한예측이이루어지는데이는구매되는부품과원자재뿐만아니라기업의설비, 기계,

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

슬라이드 1

슬라이드 1 계량경제학강의소개 2013 년 1 학기 윤성민 < 교재 > Principles of Econometrics / 계량경제학 (3판) 저자 : Hill, Griffiths and Lim / 이병락역 출판사 : Wiley / 시그마프레스 http://principlesofeconometrics.com/poe3/poe3.htm - 예제 program, data 등등

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

1. 연구배경 2. 선행연구및차별성 1. 실증분석방법론 2. 설비투자결정요인 3. 자료 1. 원시계열분석 2. 변동주기별분석

1. 연구배경 2. 선행연구및차별성 1. 실증분석방법론 2. 설비투자결정요인 3. 자료 1. 원시계열분석 2. 변동주기별분석 2017-11 한국은행경기본부 글로벌금융위기이후의 설비투자결정요인변화 박영준 1), 엄주영 2) 1) 아주대학교경제학과교수 2) 한국은행경기본부경제조사팀과장 1. 연구배경 2. 선행연구및차별성 1. 실증분석방법론 2. 설비투자결정요인 3. 자료 1. 원시계열분석 2. 변동주기별분석 글로벌금융위기이후의설비투자결정요인변화 < 요약 > 211 2017-11 한국은행경기본부

More information

에듀데이터_자료집_완성본.hwp

에듀데이터_자료집_완성본.hwp 단위학교성과제고를위한 교육여건개선방안탐색 모시는글 2012 년도에듀데이터활용학술대회프로그램 목차 n n [ 주제 1] 교육지원청수준에서기초학력결정요인분석연구 천세영 이성은 3 [ 주제 2] 비용함수모형에의한국 공립중학교적정교육비및가중치산출연구 오범호 윤홍주 엄문영 37 n n [ 주제 1] 토론 김영애 67 [ 주제 2] 토론 김성식 73 n n [ 주제

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 제 4 장 회귀분석 Chapter 4 Regression Analysis 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례

More information

외국인투자유치성과평가기준개발

외국인투자유치성과평가기준개발 2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 - 1. 분산분석 2. 회귀분석 준비 R과 R studio 설치 https://cran.r-project.org/bin/windows/base/ R 다운로드후설치 https://www.rstudio.com/products/rstudio/download/#download

More information

아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP

More information

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770>

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770> 1. 만화경 만들기 59 2. 물 속에서의 마술 71 3. 비누 탐험 84 4. 꽃보다 아름다운 결정 97 5. 거꾸로 올라가는 물 110 6. 내가 만든 기압계 123 7. 저녁 노을은 맑은 날씨? 136 8. 못생겨도 나는 꽃! 150 9. 단풍잎 색깔 추리 162 10. 고마워요! 지렁이 174 1. 날아라 열기구 188 2. 나 누구게? 198 3.

More information

Microsoft Word - ch4_multiple.doc

Microsoft Word - ch4_multiple.doc REGRESSION / 4 장. 다중회귀 89 Chapter 4 다중회귀 장에서는설명변수가하나인단순회귀모형에대한추론과분석방법에관해다루었 다. 간편성 회귀분석개념에대한이해 그러나현실세계에서는 설명변수하나만으로 설명력이부족하고 유의한설명변수간영향력비교가요구된다. 이로인하여설명변수 가 개이상인회귀모형에대한분석이필요하게된다. 이를다중회귀분석이라한다. 동일설명변수의

More information

4 _ 한국지역정보화학회기획세미나발표논문집

4 _ 한국지역정보화학회기획세미나발표논문집 스마트워크업무성과결정요인에관한연구 _ 3 4 _ 한국지역정보화학회기획세미나발표논문집 스마트워크업무성과결정요인에관한연구 _ 5 6 _ 한국지역정보화학회기획세미나발표논문집 스마트워크업무성과결정요인에관한연구 _ 7 구분 내용 연구자 기존스마트워크 집단지성 ( 협력성, 창의성 ) 고객중심의창의적가치창출 원 ICT를활용한시, 공간에자유로운업무환경 (Nilles, 1973)

More information

벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia

벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia 제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous

More information

제 14 장생산요소시장의이론

제 14 장생산요소시장의이론 제 14 장생산요소시장의이론 u 생산요소시장의특성 è 생산요소시장또는요소시장이란생산요소가거래되는 시장 ( 예 : 토지, 노동, 자본등 ) è 생산물시장과생산요소시장에서는수요자와공급자의 위치와역할이바뀜. è 생산요소에대한수요의크기는생산물에대한수요의 크기에달려있음. 즉, 생산요소는재화를생산하기위해 필요한것이기때문에재화 ( 생산물 ) 에대한수요가우선 정해지고, 2

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

2011년 제 9회 최우수상.hwp

2011년 제 9회 최우수상.hwp 1) 고려대학교교육학과석사과정 (nayoung725@yahoo.co.kr) 2) 고려대학교교육학과박사과정 (seo2jin@hanmail.net) 3) 고려대학교교육학과석사과정 (premier110@hanmail.net) 성별지역계열학업진행여부 총사례수 일주일평균아르바이트시간 ( 시간 ) 남 1510 8.9 여 1457 8.4 동지역 2573 8.5

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 제공카페 : Daum 사회조사분석사 G

Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 제공카페 : Daum 사회조사분석사 G Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 1 사회조사분석사 2 급조사방법론 1 상반기 4. 비표준화 ( 비구조화 ) 면접의장점을모두짝지은것은? 5. 종단연구와비교한횡단연구의장점과가장거리가먼것은?

More information

통계적 학습(statistical learning)

통계적 학습(statistical learning) 통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과

More information

에너지경제연구 제12권 제2호

에너지경제연구 제12권 제2호 에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세

More information

행정학석사학위논문 공공기관기관장의전문성이 조직의성과에미치는영향 년 월 서울대학교행정대학원 행정학과행정학전공 유진아

행정학석사학위논문 공공기관기관장의전문성이 조직의성과에미치는영향 년 월 서울대학교행정대학원 행정학과행정학전공 유진아 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information