Microsoft Word - SPSS_MDA_Ch6.doc

Size: px
Start display at page:

Download "Microsoft Word - SPSS_MDA_Ch6.doc"

Transcription

1 Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 ( X 1, X,..., X m ) 변수군과 ( Y 1, Y,..., Yn ) 변수군의선형관계를분석한다. p 개원변수를 개의변수군으로나눌수있다고가정하자. x1 x x3 x1 μ 1 Σ11 x = = ~ Normal(, x4 x μ Σ 1... x p Σ1 ) Σ 다음은정준상관분석의특수한예이다. 1) 벡터변수 ( x 1, x ) 에변수가하나이면단순상관계수가된다. ) 하나의벡터변수만변수가하나이면이는다중회귀모형에서결정계수이다. 다중회귀의결정계수는종속변수 ( 변수가하나인벡터 ) 와설명변수의선형결합 ( a X1 + a X a p X p 1 ) 간상관계수가된다. R 정준변수구하기 제일정준변수 두변수군의선형결합간상관계수를가장크게하는선형결합을생각해보자. ρ 1 = max corr( V1, W1 ) where V 1 = a1 x1, W1 = b1 x a= b 0

2 위의조건을만족하는 a 1, b 1 를제일정준변수 (first canonical variate) 라하고그중다음식을만족하는 a 1, b 1 을구하면된다. 이때 ρ1 을제일정준상관계수 (first canonical correlation) 라한다. var( V 1 ) = var( W1 ) = 1 a1σ 11a1, b1σ b1 제이정준변수 = a x1 W b 이라놓고다음조건을만족하는, b V, = x a 를제이정준변수라한다. (1)V 와 W 은각각 V 1 과 W 1 들과독립이다. () var( V ) = var( W ) = 1 ρ = corr V, ) 을제이정준상관계수라한다. ( W 다른정준변수도같은방법으로구하면된다. 해석의어려움이있어실제사용되는정준변수의수는 개를넘지않는다 정준상관계수개수 두벡터변수의차수중낮은차수수만큼존재한다. 즉변수군을형성하는변수의수가적은변수군의변수수만큼정준상관계수값이존재한다. 한변수군의변수수가 p 이면다른변수군의변수수는 q 이면정준상관계수의수는 min( p, q) 이다. 정준상관계수의유의성검정은다음과같이실시하면된다. (1) H ρ 0 vs. H ρ 0 H Σ 0 vs. H Σ 0 01 : 1 = 01 : 1 () H : ρ 0 vs. H : ρ 0 0 r r = 01 : 1 = 01 : 1 Σˆ k 검정통계량 (1 ˆ T = = Π ρ ) ˆ ˆ i, k = min( q, p q) Σ Σ i= 1 0r r 11 k 검정통계량 T = Π (1 ˆ ρ ), 검정통계량분포 r i= r i α log( Tr ) ~ χ α,( q r+ 1)( p q r + 1) 예제 밀예제자료 (WHEAT.txt) 에서밀의오른쪽면의측정변수 ( 면적, 원주, 길이폭 ) 와아래쪽면의측정변수 ( 면적, 원주, 길이폭 ) 간에상관관계를분석해보자.

3 6.1 정준상관분석 3 SPSS 에는정준상관분석을위한메뉴가없다. 대신매크로프로그램을실행할수있도록했다. 우선 WHEAT.SAV 데이터를열고매크로프로그램작성을위해편집기를연다. 편집기창이나타나면아래프로그램을작성하고실행한다. Canonical Correlation.sps 파일은 SPSS 가설치된루트파일에있다. SET1, SET 는집단내변수를지정해주면된다. 마침표 (.) 는프로그램문장이끝났음을알려주는것이다. 프로그램이실행되면출력창에가저장된다. 엄청나게많은결과가출력되고데이터에는정준변수 원변수상관계수 변수그룹내의변수들간의상관계수, 변수그룹간변수들의상관계수가된다. 정준상관분석의개략적인결과를예상할수있다. SET1 군에서는 D4 가다른변수와상관관계가낮고, SET 에서는 R4 가군내다른변수와상관관계가낮음을알수있다.

4 CANONICAL 상관계수 ˆρ 1 ˆρ ˆρ 3 정준상관계수의수는 4 개이다. ( 각그룹내의변수의개수가각각 4 개이므로 ) 정준상관계수는 Corr ( V1, W1) = 0.88, Corr( V, W ) = 0.398, Corr( V 3, W 3) = 0.5, Corr( V 4, W 4) = 상관계수이다. 그럼 Corr( V1, W ) 는얼마인가? 당연히 0이다. CANONICAL 상관계수유의성검정 각열은정준상관계수의유의성을검정한다. 귀무가설은 현재열포함이후정준상관계수는 0 이다 이다. 그러므로귀무가설이기각된다는것은그열의정준상관계수는 0 이아니라는것을포함하고있다. 3 번째열의유의확률이 0.03 으로일반적인유의수준 0.05 보다작으므로귀무가설이기각된다. 그러므로제삼정준상관계수는유의하다. 4 열의유의확률은 이므로제사정준상관계수는유의하지않다.

5 6.1 정준상관분석 5 제일, 제이정준변수 RAW( 원점수 ) 와 STANDARDIZED( 표준화점수 ) 개의출력결과가나타나는데 RAW 는변수의원래값으로구한것이고 STANDADIZED 는원변수를표준화하여구한것이다. 밀예제의경우원변수는측정단위다르므로표준화변수를사용하는것이좋다. 다음 V 출력결과는 1 = a1 x1, W1 = b1 x V, = a x1, W = b x a, a, b 이다. 의 1, b 1 아래면변수그룹의제일정준변수 V1 = DOWN1 = 0.016* Z _ D * Z _ D 0.16* Z _ D * Z _ D4 오른쪽면변수그룹의제일정준변수 W 1 = RIGHT1 = 08* Z _ D * Z _ D 0.54* Z _ D * Z _ D4 단. Z _* = * 평균로각변수의표준화값이다. 표준펀차 이계수를이용하여정준변수이름을붙일수있다. SET1 군의제일정준변수는 D, 제이정준변수 (D1, D3), SET 군의제일정준변수는 R, 제이정준변수는 R3 영향이크므로이를고려하여이름을부여할수있다. 이름을부여하는것은주성분이름부여처럼다소주관적이다. 정준변수와동일군집원변수간의상관관계 계수를이용하기보다는정준변수의이름은정준변수와그그룹변수들간의상관계수값을이용하여명명하는것이좋다. 다시한번강조하지만 V1 과 V, W1 과 W 는서로독립이다. 공통된정보가없다.

6 아래면변수그룹제일정준변수는면적, 원주, 길이와상관관계가높으므로크기로아래면제이정준변수는길이로이름붙이면적절할것같다. 오른쪽면제일정준변수도크기로이름을붙일수있다. 제일정준변수와제이정준변수의상관계수는 0.88 이었다. 즉오른쪽면의크기가커지면아래면크기도커진다고해석할수있다. 정준변수와다른군집원변수간의상관관계 아래면의크기 ( 제일주성분 ) 는오른쪽면의면적, 원주, 길이, 폭과양의상관관계가존재한다. 상관계수는부호가음인이유는정준변수가반대개념으로계산되었기때문이다. 제일주성분과군내다른변수들간의상관계수를보라. 음이다 (-0.835, , , ). 정준변수가계산될때계수가음인것의영향을많이받았기때문이다. 오른쪽면의크기 ( 제일주성분 ) 는아래면의면적, 원주, 길이와양의상관관계가있다. 데이터에는정준변수들이저장되어있다. S1_CV001 은 SET1 의제일정준변수, S_CV001 은 SET 의제일정준변수를의미한다. 산점도행렬을그려보자.

7 6.1 정준상관분석 7 제일정준변수간상관관계가가장높고 ( 1 ) 그다음은제이정준변수간상관관계 ( ) 이다. 제일과제이정준변수간상관관계는 0이다. (1), () 산점도에서떨어진한두개의점들은변수들간의상관관계면에서이상치이다.

8 다음은정준변수들간의 Pearson 상관계수를구한결과이다. 위의상관관계를값으로나타낸것이다. 제일, 제이, 제삼, 제사정분변수간상관계수는앞의결과와동일하다.

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

R

R R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.

More information

4 장주성분분석 ( PCA: Principal Component Analysis) 예 1 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변

4 장주성분분석 ( PCA: Principal Component Analysis) 예 1 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변 4 장주성분분석 ( PCA: Prnca Comonnt Anayss) 예 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변수에의해주성분변수를구하고일부주성분에의해원변수의변동을충분히설명되는지알아보는것을주성분분석이라한다. 예 ) 주성분개념

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾

¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾ Chapter 1 Chapter 1 Chapter 1 Chapter 2 Chapter 2 Chapter 2 Chapter 2 Chapter 2 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 4 Chapter 4

More information

01....b74........62

01....b74........62 4 5 CHAPTER 1 CHAPTER 2 CHAPTER 3 6 CHAPTER 4 CHAPTER 5 CHAPTER 6 7 1 CHAPTER 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

More information

(291)본문7

(291)본문7 2 Chapter 46 47 Chapter 2. 48 49 Chapter 2. 50 51 Chapter 2. 52 53 54 55 Chapter 2. 56 57 Chapter 2. 58 59 Chapter 2. 60 61 62 63 Chapter 2. 64 65 Chapter 2. 66 67 Chapter 2. 68 69 Chapter 2. 70 71 Chapter

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

LM_matrix.pages

LM_matrix.pages 설명변수가 개이상인경우이를다중회귀라한다. 물론종속변수는하나이다. 종속변수가하나이상인회귀모형을 Simulteous Equtio( 연립방정식모형 ) 이라한다. 설명변수가 개존재하는경우선형다중회귀모형을다음과같다. Y i α + βx i + βxi +... + β Xi + ei i,,..., ( 모형 ), --- () α, β, β,..., β X 는회귀계수이고 i,

More information

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자 시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.

More information

외국인투자유치성과평가기준개발

외국인투자유치성과평가기준개발 2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.

More information

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

Microsoft PowerPoint - Info R(3) pptx

Microsoft PowerPoint - Info R(3) pptx Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다 이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

- 1 -

- 1 - - 1 - - 2 - χ loglog log - 3 - σ - 4 - - 5 - ψφ θθ - 6 - σ 월이윤년인경우 월이윤년이아닌경우 α - 7 - - 8 - π π π - 9 - - 10 - - 11 - - 12 - 모형 모형 - 13 - 모형 모형 - 14 - - 15 - - 16 - - 17 - σ σ - 18 - σ MSR 크기 MSR 2.5 3.5

More information

Microsoft PowerPoint - ANOVA pptx

Microsoft PowerPoint - ANOVA pptx 분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

exp

exp exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx 판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

<4D F736F F F696E74202D20BBF3B0FCBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D>

<4D F736F F F696E74202D20BBF3B0FCBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D> 상관분석 (Correlation) 목차 1. 상관분석은? 2. 분산, 공분산, 상관 3. 상관계수 4. 상관분석해석의유의점 5. 상관분석실제 상관분석은? 상관관계는서열척도, 등간척도, 비율척도로측정된변수들간의관련성정도를알아보기위한것 하나의변수가다른변수와의어느정도밀접한관련성을갖고변화하는가를알아보기위해사용 두변수간의관련성을구할경우단순상관관계를실시하며, 부분또는편상관관계는어떤변수를통제한상태에서두변수의상관관계를구하는것

More information

KSKSKSKS SKSKSKS KSKSKS SKSKS KSKS SKS KS KS C 3004 KS C

KSKSKSKS SKSKSKS KSKSKS SKSKS KSKS SKS KS KS C 3004 KS C KSKSKSKS SKSKSKS KSKSKS SKSKS KSKS SKS KS KS C 3004 KS C 3004 2002 2002 12 27 ICS 2906020 2904020 KS Testing methods for rubber or plastic insulated wires and cables ( ) KS B 5202 KS B 5203 KS B 5206 KS

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - sbe13_reg.docx

Microsoft Word - sbe13_reg.docx Statstcs 4 Busness and Economcs (Regresson) 상관계수 상관계수정의 두변수간의선형관계정도를나타내는값 COV ( X, Y ) E( X E( X ))( Y E( Y )) 정의 : V ( X ) V ( Y ) V ( X ) V ( Y ) 표본상관계수 : r ˆ ( ( x ( x x) x) ( x x x)( y x)( y /( n 1)

More information

Microsoft Word - 동태적 모형.doc

Microsoft Word - 동태적 모형.doc 동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x

More information

Microsoft PowerPoint - ch02-1.ppt

Microsoft PowerPoint - ch02-1.ppt 2. Coodinte Sstems nd Tnsfomtion 20 20 2.2 Ctesin Coodintes (,, ) () (b) Figue 1.1 () Unit vectos,, nd, (b) components of long,, nd. 직각좌표계에서각변수 (,, ) 들의범위 < < < < < < (2.1) 직각좌표계에서임의의벡터 는,, 가그림 1.1 에서와같이,,

More information

Microsoft PowerPoint - LA_ch6_1 [호환 모드]

Microsoft PowerPoint - LA_ch6_1 [호환 모드] Chapter 6 선형변환은무질서한과정과공학제어시스템의설계에관한연구에사용된다. 또한전기및음성신호로부터의소음여과와컴퓨터그래픽등에사용된다. 선형변환 Liear rasformatio 6. 6 변환으로서의행렬 Matrices as rasformatios 6. 변환으로서의행렬 6. 선형연산자의기하학 6.3 핵과치역 6.4 선형변환의합성과가역성 6.5 컴퓨터그래픽 si

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

Microsoft Word - ch2_simple.doc

Microsoft Word - ch2_simple.doc REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

에듀데이터_자료집_완성본.hwp

에듀데이터_자료집_완성본.hwp 단위학교성과제고를위한 교육여건개선방안탐색 모시는글 2012 년도에듀데이터활용학술대회프로그램 목차 n n [ 주제 1] 교육지원청수준에서기초학력결정요인분석연구 천세영 이성은 3 [ 주제 2] 비용함수모형에의한국 공립중학교적정교육비및가중치산출연구 오범호 윤홍주 엄문영 37 n n [ 주제 1] 토론 김영애 67 [ 주제 2] 토론 김성식 73 n n [ 주제

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음

프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음 프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음 CHAPTER 9 둘중하나선택하기 관계연산자 두개의피연산자를비교하는연산자 결과값은참 (1) 아니면거짓 (0) x == y x 와 y 의값이같은지비교한다. 관계연산자 연산자 의미 x == y x와 y가같은가? x!= y

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

Microsoft Word - sbe_anova.docx

Microsoft Word - sbe_anova.docx ANOVA 기본개요세집단이상인평균비교 => 일원분산분석집단을요인 (factor) 혹은처리효과 (treatment effect) 라하고집단의개별값을수준 (level) 이라한다. 요인이하나인경우 one-way ANOVA 분산분석 (ANOVA Analyss Of VArance) 은실험설계로부터유래, 분산 ( 변동 ) 에의해요인 ( 모형 ) 의유의성를검증한다. 실험관심대상에대한정보를얻기위한계획된테스트나관측절대실험

More information

Microsoft PowerPoint - chap04-연산자.pptx

Microsoft PowerPoint - chap04-연산자.pptx int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); } 1 학습목표 수식의 개념과 연산자, 피연산자에 대해서 알아본다. C의 를 알아본다. 연산자의 우선 순위와 결합 방향에

More information

슬라이드 1

슬라이드 1 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved. 구조방정식 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved. 구조방정식모형 (/) 구조방정식모형이란? SEM(Structure Equation Model) 공분산구조분석 (Covariance Structure Analysis)

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

PowerPoint Presentation

PowerPoint Presentation 09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical

More information

i f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)

More information

OBJ_DOKU fm

OBJ_DOKU fm DFG / TFG 540s - 550s 04.12-51300959 03.13 c DFG 540s DFG 545s DFG 550s TFG 540s TFG 545s TFG 550s c 3 4 t o 5 6 A... 11 1... 11 2... 11 3... 12 4... 13 5... 13 B... 15 1... 15 1.1... 15 2... 16 2.1...

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의

.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의 lrognis II 전자기학 제 장 : 전자파의전파 Prof. Young Cul L 초고주파시스템집적연구실 Advnd RF Ss Ingrion ARSI Lb p://s.u..kr/iuniv/usr/rfsil/ Advnd RF Ss Ingrion ARSI Lb. Young Cul L .4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄.

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

Microsoft Word - Chapter7.doc

Microsoft Word - Chapter7.doc CHAPTER 7 요인분석과신뢰도계수 7.. 요인분석개념 요인분석 (FA: Factor Analysis 혹은인자분석이라고도함 ) 은사람의지적능력을측정하고이에연관된변수들을이해하려는노력의일환으로 Galton( 회귀분석창시자 ) 에 (888) 의해제안되었고수학적인모형은 Spearman(904 상관계수제안자 ) 에의해발전되었다. 요인분석은변수들의내재된상관관계를이용하여요인을구하고이를이용하여

More information

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt

More information

14-X25-JSJ.hwp

14-X25-JSJ.hwp 지경택 송영호 * 정국삼 ** ( 주 ) 한라 * 충북대학교대학원안전공학과 ** 충북대학교안전공학과 (2001. 9. 12. 접수 / 2001. 10. 30. 채택 ) Categorical Analysis for the Factors of Industrial Accident Cases Kyung-Tek Jhee Young-Ho Song * Kook-Sam Chung

More information

Chapter 5. Factor Analysis ( 요인분석 ) 5.1 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 1) 변수들을분류 2) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48

Chapter 5. Factor Analysis ( 요인분석 ) 5.1 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 1) 변수들을분류 2) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48 Chater 5. Factor Anaysis ( 요인분석 ) 5. 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 ) 변수들을분류 ) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48 명의능력측정 5 개항목점수분류 * 기업관련지표 0 개항목 ( 매출액, 종업원수, 부채비율 ) Cassic

More information

Microsoft Word - ch3_residual.doc

Microsoft Word - ch3_residual.doc REGRESSION / 3 장. 잔치분석 50 Chapter 3 잔차분석 이론이나경험에의해변수간의회귀모형을설정하고 y = α + βx ( 선형 : lnearty), 관측치가 ( x, y ), = 1,,..., n 얻어지면이를이용하여회귀분석을실시한다. 설정된회귀모형에 는오차항에대한 3가지가정 e ~ dnormal(0, σ ) 을한다. ( 정규성 normalty,

More information

Microsoft PowerPoint - chap06-2pointer.ppt

Microsoft PowerPoint - chap06-2pointer.ppt 2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.

More information

Statistics Basic_ko_chapter_04

Statistics Basic_ko_chapter_04 11. 교차분석 연구자가복잡한자료를상황표로만들어서, 변수사이의상관관계를파악할수있는것이교차분석이다. 교차분석에서두변수가상호독립적인지아니면관련성이있는지를분석하는것이 ( 카이제곱 ) 검정이다. 11.1 가설검정 휴대폰만족도에관한조사에서성별에따라대학서열화구조에대한차이가있는지를알아보기위한카이제곱검정의가설은다음과같다. : 성별에따라대학서열화구조에대한의식에차이가없다. :

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS

제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS 제장 비모수 검정(nonparametric analysis) 모집단의 분포를 알 수 없거나 모집단이 정규분포를 따른다고 가정할 수 없는 경우에는 모수적 검정을 사용할 수 없다. 이 경우에 자료의 부호나 순위로 가설 검정을 실시하며 이러한 검정 방법을 비모수 검정이라고 한다. 제절 적합도 검정(goodness of fit test) 주어진 자료가 어떠한 통계적

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

예제 1.1 ( 경기값과공정한경기 ) >> A = [5 3 9; 8 10 11; 6 2 8], P = [0 1 0], Q = [1 0 0]' % 3x3 행렬경기 A = 5 3 9 8 10 11 6 2 8 P = 0 1 0 Q = 1 0 0 >> E = P * A * Q % 경기자 R은항상 2행을선택하고 C는항상 1열을선택하면, % R은 $8을얻는것이보장되고

More information

2011년 제 9회 최우수상.hwp

2011년 제 9회 최우수상.hwp 1) 고려대학교교육학과석사과정 (nayoung725@yahoo.co.kr) 2) 고려대학교교육학과박사과정 (seo2jin@hanmail.net) 3) 고려대학교교육학과석사과정 (premier110@hanmail.net) 성별지역계열학업진행여부 총사례수 일주일평균아르바이트시간 ( 시간 ) 남 1510 8.9 여 1457 8.4 동지역 2573 8.5

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

Microsoft Word - ch4_multiple.doc

Microsoft Word - ch4_multiple.doc REGRESSION / 4 장. 다중회귀 89 Chapter 4 다중회귀 장에서는설명변수가하나인단순회귀모형에대한추론과분석방법에관해다루었 다. 간편성 회귀분석개념에대한이해 그러나현실세계에서는 설명변수하나만으로 설명력이부족하고 유의한설명변수간영향력비교가요구된다. 이로인하여설명변수 가 개이상인회귀모형에대한분석이필요하게된다. 이를다중회귀분석이라한다. 동일설명변수의

More information

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

LIDAR와 영상 Data Fusion에 의한 건물 자동추출 i ii iii iv v vi vii 1 2 3 4 Image Processing Image Pyramid Edge Detection Epipolar Image Image Matching LIDAR + Photo Cross correlation Least Squares Epipolar Line Matching Low Level High Level Space

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx SPSS 2 집단 ( 데이터및준비 ) 데이터 TURKEY.SAV 미국 Kansas 주립대학 Dr. Michael Finnegan 교수는야생칠면조와사육칠면조를구별하기위하여수컷칠면조 82마리에대해 9개항목을조사하였다. ID: 칠면조 id HUM: 상완골길이 ULN: 척골길이 CAR: car metacarus 길이 COR: 오탁상길이 RAD: 요골길이 FEMUR:

More information

*) α ρ : 0.7 0.5 0.5 0.7 0.5 0.5-1 - 1 - - 0.7 (**) 0.5 0.5-1 - (**) Max i e i Max 1 =150 kg e 1 = 50 g xxx.050 kg xxx.050 kg xxx.05 kg xxx.05 kg Max 2=300 kg

More information