Microsoft Word - Chapter7.doc
|
|
- 재림 종
- 6 years ago
- Views:
Transcription
1 CHAPTER 7 요인분석과신뢰도계수 7.. 요인분석개념 요인분석 (FA: Factor Analysis 혹은인자분석이라고도함 ) 은사람의지적능력을측정하고이에연관된변수들을이해하려는노력의일환으로 Galton( 회귀분석창시자 ) 에 (888) 의해제안되었고수학적인모형은 Spearman(904 상관계수제안자 ) 에의해발전되었다. 요인분석은변수들의내재된상관관계를이용하여요인을구하고이를이용하여 () 변수들을분류하고 ( 변수그룹에는원변수일부만포함되어있다 ) () 그룹에적절한의미를부여하는 ( 그룹이름부여 ) 분석방법이다. 요인분석의예를보면, 설문조사에서동일한개념을측정하기위해설계된리커드 (Likert) 척도문항들이정말그런지알아보기위한분석방법으로요인분석이사용된다. 물론그문항들의신뢰도 ( 혹은내적일치도 ) 는 Cronbach α로측정된다. 예를들어학생들의학교만족도를측정하기위하여교수강의, 조교, 행정인력, 강의실, 도서실, 전산실습실, 체육시설, 건물만족도를조사하였다고하자. 8 개의만족도항목을그룹화할수있을까? 이에대한해답을요인분석이제공한다. A 기업지원자 48 명의능력에대해측정한 5 개항목점수들을분류 ( 그룹 ) 하고자할때사용된다. 또한기업관련지표에관해 0 개의항목을 ( 매출액, 종업원수, 부채비율, ) 유사한항목끼리분류하고할때사용한다.
2 5 Chapter 7. 요인분석과신뢰도계수 7... Spearman (904) Spearman 은학생들의 6 과목성적에대한상관계수를구한후상관계수값을이용하여각학생들의과목성적은다음과같이두부분으로나눌수있을것이라생각했다.( 언어, 수리 ) 그러나상관계수값으로과목을분류하는데한계에부딪히게된다. Classic French English Math Discover Music Classic French English Math.45.5 Discover.4 Music 각시험점수 ( 변수 ) 는그림과같이변수간에내재된공통개념 (f: 이를 factor 라함 ) 부분과랜덤부분에해당하는 (η) 부분으로나눌수있을것이다. 물론 f 와 η j 들은서로독립이라고가정하였다. 또한그는학생들의과목성적은일반적재능으로해석되는인자 f 와과목에대한특별재능으로나눌수있다고믿었다. 각점수가설문조사에서는척도문항에해당된다. 아래그림위의까만색부분은공통개념이하나 (fact: 초록부분 ) 인경우를도식화한것이다. 이전페이지관계식을도식화한것이다. 아래부분은 6 개과목에 개의공통개념 (factor: 빨간색 factor: 파란색 ) 이존재할때도식화한그림이다. 굵은선은영향을많이미치는것을의미하므로무엇인지는모르지만공통개념이영향을주는정도가같은과목끼리 ( 변수끼리 ) 묶으면될것이다. 즉고전 (classic), 불어 (French), 영어 (English) 를하나로묶고수학 (Math), 과학 (Discovery), 음악 (Music) 하나로묶을수있을것이다.
3 7.. 요인분석개념 53 factor Mu cl Di fr en ma λ λ λ 3 λ 4 λ 5 λ 6η 6 η η 5 η η 3 η 4 classic = λ f 4 6 french = λ f english = λ f 3 math = λ f dis cover = λ f music = λ f + η + η η + η 6 + η 3 + η 5 factor factor 7... 상관계수 상관계수 (correlation coefficient) 의의미는두변수간의선형관계 (linear relationship) 정도를 계산한값으로 에서 사이의값을갖는다. 두변수간의선형상관관계정도를나타내 는상관계수계산식은다음과같다. ( xi x)( yi y) r = = ( x x) ( y y) i i S S xx xy S yy 상관계수가완벽한 이면양의상관관계가있는데한변수의값이증가 ( 감소 ) 하면다른 변수의값도증가 ( 감소 ) 할뿐아니라직선을따라움직인다. 이면완벽한음의상관관계 가있는데한변수값이증가 ( 감소 ) 하면다른변수의값이감소 ( 증가 ) 하고직선을따라움직 인다. 0 이면상관관계가전혀없다. 그럼상관계수의값이얼마이면상관관계가존재한 다고할수있나? 이는표본의크기, 변수의분산에따라다라지므로다음방법에의해모 집단상과계수에대한 t- 검정을하면된다. 귀무가설 : 두변수간의상관관계는없다. 상관계수는 0이다. ρ = 0 대립가설 : 두변수간의상관관계가존재한다. ρ 0 검정통계량 t = r ~ t( df = n ) ( r ) /( n )
4 54 Chapter 7. 요인분석과신뢰도계수 요인분석의목적및예제 요인분석은 p 개의변수들이상호어떤관계가있는지결정하여변수들을 m 개의변수그룹으로 (subset) 나누는데목적이있다. 변수에내재된관계를설명할상호독립인인자를얻고몇개의인자로내재된관계를충분히설명할수있는가살펴본다. 인자의부하 (loading) 값에의해변수를그룹화하고 ( 다소 subjective) 변수그룹에적절한이름을붙인다.
5 7.. 요인분석개념 55 요인분석의가장전형적인예는설문분석에서리커드척도문항 ( 변수 ) 들을유사한문항으로분류할때사용한다. 예를들어학생들의학교만족도를측정하기위하여교수강의, 조교, 행정인력, 강의실, 도서실, 전산실습실, 체육시설, 건물만족도를조사하였다고하자. 8 개의만족도항목을그룹화할수있을까? A 기업지원자 48 명의능력에대해측정한 5 개항목점수들을분류 ( 그룹 ) 하고자할때사용된다. 또한기업관련지표에관해 0 개의항목을 ( 매출액, 종업원수, 부채비율, ) 유사한항목끼리분류하고할때사용한다 요인분석모형및가정 x = L f +η x x... x p l l l l =... l p l p... l... l m... l m pm f f... fm η η +... η p x 는원변수벡터이다. f k, f,..., f m 들은공통인자 ( 요인 : common factor) l ij 들은인자부하 (factor loading) i 번째변수에 j번째요인이미치는영향 η, η,..., η p 특정인자 (specific factor) 한다. η j 는 j번째변수에한정된오차변동 방정식풀기 원변수의상관계수행렬 ( R ) 에대해 R = LL + ψ 성립하므로 R = LIL + ψ = R = ( LP)( LP) + ψ 에의해이를만족하는 L 은무수히많다. ( 무수히많은성질을이용하여요인의부하값을잘구별할수있도록요인회전방법을사용할수있게된다. 가장흔히사용되는방법이 VARIMAX 방법이다.) 요인방정식의해를구하는방법으로가장많이사용되는것이 principal factoring 방법이다.
6 56 Chapter 7. 요인분석과신뢰도계수 Principal factoring w/ or w/o iteration 변수의상관계수행렬 R 에대한 eigen-value( 고유치 ) 와 eigen-vector( 고유벡터 ) 를구하여 그것을각각 λ... λ λ p, e, e,..., e p 라고하자. 그리고여기서부터구한주성분을 y, y,..., y p 라하자. 그러면요인방정식은다음과같이쓸수있다. x = ye + ye y pe p x = ye + ye y pe p : x p = ye p + ye p y pe pp 요인은 f = y / λ, f = y / λ,, f p = y p / λ p 이므로 x x : x p = = = λ e λ λ e f f + e p f + + λ e λ e λ f f e p f λ p e p f p λ λ p e p f p p e pp f p 요인의부하값은 lij = λ j eij 이고특정인자 ( 오차 ) 는 ψ j = σ j ( l j + l j l jm) 이다 요인의개수와부하 부하 (loading) 값의의미는각요인이원변수를설명하는정도 ( 크기 ) 를나타내며요인은변 수들에내재된관계에서공통부분에해당된다. x x... x p l l l l =... l p l... lm... lm p... l pm f f... fm η η +... η p factor factor Error Common factors 그러므로각요인에서부하값의절대값이큰것들만 ( 음의부호는동일개념의반대척도 ) 선택하여변수들을그룹화하면된다. ()trivial 한요인은제외하자. 원변수 - 개에만부하값이큰요인은제외하자. 이요인에의해묶을수있는변수는 - 개이므로그룹의의미가없기때문이다.
7 7.. 요인분석개념 57 ()Kaiser 판단 ( 가장많이이용 ): 변수들의상관관계가 0 이면 ( 관계가없으면 ) 상관계수행렬은 R 은항등행렬 I 이다이경우원변수의개수와주성분의개수가같아지고주성분의분산은모두 이므로각주성분이가지는분산평균도 이다. 그러므로상관계수행렬로부터구한고유치가평균인 이상인되어야한다는판단하에고유치가 이상인것만으로요인의개수를정한다. SAS 도이방법에의해요인의개수출력한다. 이방법에의해요인의개수를결정하는것이가장보편적인방법이다. (3)SCREE 그림사용 : 고유치를 y-축, 개수를 x-축으로한산점도인 SCREE 그림을사용하여인자의개수를예상한다. 총변동 80% 에연연하지말고주성분분산설명변동의크기 ( 고유치 ) 가갑자기줄어들기바로전까지의개수로적절한인자개수로사용하면된다. 70 eigen 요인회전 (Factor Rotate) 요인분석에서요인의부하값은요인 ( 공통개념 ) 과원변수의상관관계정도를나타내는크기로해석될수있으므로부하값에의해원변수를그룹화한다. 그러나 () 요인의복합성 : 하나의원변수에부하값이큰요인이 개이상존재하거나 () 인자의크기가 0 을중심으로 ± 의작은값이있는경우부하값으로변수를그룹화하는것은불가능하다. 요인회전은각요인이상대적으로큰부하값을갖도록요인을회전 (rotate) 하는것으로 QUARTIMAX rotation, OBLIQUE rotation, PROMAX rotation 방법이있는데가장많이사용되는것은직교회전방법인 VARIMAX 방법이다. VARIMAX 방법은 Kaiser 가제안한것으로간단한구조의측정치로요인행렬의각열내의부하제곱의분산의합을제안하고이분산을최대화하는회전방법이다.
8 58 Chapter 7. 요인분석과신뢰도계수 7. 설문분석에요인분석이용 7... 사용방법 요인분석이언제설문분석에이용될수있을까? 리커드 (Likert) 척도로조사된문항들을그룹화하는데사용된다. 몇문항들을합쳐하나의지표 (index) 점수로사용할수있느냐를 알아볼때요인분석이사용된다. 위에서원변수 x, x,..., xp 가설문조사의각리커드척 도문항에해당된다. 예제설문에서시설물관련만족정도를묻는문항이 Q4-Q3 으로열문항이다. 이 0 문항을하나로혹은 -3 그룹으로묶어어떤항목을측정하는점수로사용할수있느냐가궁금할것이다. 만약하나로묶어진다면그 0 개문항의 ( 평균 ) 점수가응답자들의시설물만족도점수가되는것이다. 만약 개이상으로묶어진다면각그룹을구성하는문항을고려하여조사자가이름을부여하면된다. 문항을몇개의그룹으로묶을수있느냐는고유치가 이상인요인의수에의해결정되고그룹에어떤문항이묶여지느냐는 loading( 부하 ) 값에의해결정된다. 설문분석에서요인분석이가능하려면다음 조건이만족되어야한다. () 리커드척도문항이어야한다. () 여러문항들을몇개의그룹으로묶으려는목적에서실시해야한다. 7.. 통계소프트웨어사용 [SAS] 예제설문시설물에대한 Q4-Q 번문항을어떻게그룹화할지요인분석하여보자. 요인분석은그룹으로나눌필요가있는리커드 (Likert) 척도문항에 (4 점, 5 점, 7 점척도 ) 대해가능하다. 다음프로그램은리커드척도문항에대한요인분석을실시할때사용되는전형적인프로그램이다. 다른부분은그대로사용하고 DATA = ~ 부분과 VAR = ~ 의 ~ 부분만적절히고쳐주면된다.
9 7.. 설문분석에요인분석이용 59 ROTATE=VARIMAX 옵션은요인을직교변환하는방법중 VARIANCE 를최대한방법을사용하라는것으로부하값을잘구별할수있다. REORDER 옵션은부하값의크기순서대로출력하라는명령으로변수 ( 문항 ) 를그룹화하는데편리하다. COVARIANCE 변수 ( 문항 ) 들의공분산행렬을이용하여요인을추정한다. 변수들의측정단위가다를경우는상관행렬 (COVARIANCE 를사용하지않으면된다. default) 을사용해야하나설문분석에서문항들은리커드척도이고같은점수척도이므로공분산행렬을권한다. 요인추정방법 (METHOD) 은 default= 주성분방법을선택하였다. 실험실자료나측정자료인경우고유치가 이상인경우만택해도누적설명비율이 80% 이지만리커드척도문항과같이,, 3, 4, 5 이산형데이터인경우누적설명비율이매우낮다.(53%) 그러나설문조사에서요인분석은리커드척도문항분류하는데사용되므로걱정하지말자. 이부분결과를이용하면된다 부하의값의크기가 0.6 이상인 ( 크기값이유사하고 ) 변수 ( 문항 ) 를묶으면 ( 분류하면 ) 된다. 요인 (factor ) 이주로설명하는변수는 Q5-Q8 이므로묶으면되고, 요인 의부하값에
10 60 Chapter 7. 요인분석과신뢰도계수 의해서는 Q0-Q 을하나로묶을수있을것이다. Q4, Q 도요인 에의해묶을수있을것같으나 0.75 에비해 0.55 면차이가많으므로안묶는것이좋다. 그러므로문항은 ( 강의실만족도 : Q5, Q6, Q7, Q8), ( 정보시설만족도 : Q0, Q) 을묶고나머지문항들은개별문항으로간주하여분석한다. [SPSS] 요인들을구할때상관계수행렬을사용해야변수의변동을사용하는 것을권하다. 요인수를제한하는방법으로고유값이 이상인것만출력하게한다. 아래 와같이설정하기바란다.
11 7.. 설문분석에요인분석이용 6 다. VARIMAX 방법을권한다. 요인의부하값을잘구별하기위하여직교회전방법을택하는것이좋 회전된성분행렬 V4 V5 V6 V7 V8 V9 V0 V V 성분 출력결과는 SAS 와동일하다 E E-0.553
12 6 Chapter 7. 요인분석과신뢰도계수 보고서작성 리커드척도문항들에대한요인분석결과는다음과같이정리하면된다. Factor Factor Q Q Q Q Q Q Q Q Q 신뢰도계수 이제분류된리커드척도문항사용에대해설명해보자. 요인 (factor ) 에의해 Q5-Q8 을묶고강의실만족도라하고요인 에의해 Q0, Q 을묶어정보시설만족도라하였다. 향후분석 ( 회귀분석, 분산분석, 기초통계량분석 ) 에서는묶은변수집단 ( 묶은변수는합보다는평균을이용하는것이바람직하다. 이유는 () 단위맞추기 () 결측치있는경우 ) 을하나로사용하는것이좋다. 물론개별적으로보기도하지만 요인을 개선택하였음에도불구하고누적변동이 55% 밖에되지않는것은 Q8 이빠져있고요인 에서 Q4, Q6, Q8 의부하값이다른문항에비해작기때문이다. 그러나이부분에대해서는굳이언급할필요가없다. 설문분석시요인분석을이용하는주된이유는문항분류라는사실을잊지말아야할것이다. 그리고리커드척도문항과같이실험실측
13 7.3. 문항의내적일치도 ( 신뢰도계수 ) 63 정자료가아니면누적변동이낮을수밖에없다. 마지막행에는묶은문항의신뢰도계수 ( 내적일치도 ) 를적어주면된다. 이값을구하는방법은다음절에있다 문항의내적일치도 ( 신뢰도계수 ) 내적일치도개념 문항이요인분석에문항이그룹화되면문항들이하나의개념 (index) 을얼마나잘표현하는지를알아보는것을내적일치도 (internal consistency) 를알아본다고하는데이개념을계산한값이 Cronbach alpha(α ) 라한다. 이를문항의신뢰도라하기도한다. 응답자로부터얻은설문응답결과 ( 측정치 : observed value) 는실제응답자의만족점수와측정오차 (measurement error) 로구성되어있다. Y = T + E, cov( T, E) = 0. 그러므로측정치의신뢰계수 (reliability coefficient) 는다음과같이정의된다. cov( Y, T ) σ ( Y, T ) = var( Y ) var( T ) var( T ) = var( Y ) var( T ) var( T ) = var( Y ) 위의측정치신뢰계수는변수가하나인경우인데, 이를변수가여러개인경우 ( 문항이여 러개 ) 로일반화시킨것이 Cronbach α 값이다. p 개문항이있을경우 Y j = T j + E j ( j =,, K, p) 이고 YO = Y j, T0 = T j 라고놓으면다음이성립한다. p α = p i j p = p cov( Y, Y var( Y j i O ) var( Y var( Y O j ) j ) )
14 64 Chapter 7. 요인분석과신뢰도계수 Cronbach α 는 0 과 사이의값이고 에가까울수록내적일치도가높다. 얼마면높다고할수있는가? 0.6 이상? 0.7 이상? 그러나이런기준에는나는수긍할수없다. 왜냐하면 Cronbach α 값은문항의수가많을수록, 응답자수가많을수록높아지는경향이있기때문이다. 그러므로값의크기가판단의근거가되는것이아니라한문항을제외했을때 Cronbach α 값이적어지느냐, 커지느냐를를보고그문항을제외하느냐그대로두느냐를판단하기바란다. 그러나보고서나논문작성과같이내적일치도값을제시해야하는경우에는전체내적일치도값 (Cronbach α ) 을제시할수밖에는없다. 다시강조하지만이값의크기가중요한것이아니라문항을제외하였을때 CRONBACH 값의변화가더중요하다. 문항의보기가 개 (binary, dichotomous (0,)) 한경우 Cronbach α 신뢰계수는 Kuder- Richardson 0 (KR-0) 신뢰계수가된다 통계소프트웨어사용 [SAS] 요인분석에의해묶은리커드척도문항에대해서만내적일치도 Cronbach α 를구하면된다. NOCORR 은변수 ( 문항 ) 들의상관계수값을출력하지말라는옵션이다. NOSIMPLE 은변수들의기초통계량 ( 평균, 표준편차 ) 을출력하지말라는옵션이다. ALPHA 는 CRONBACH 값을계산하라는옵션이다.
15 7.3. 문항의내적일치도 ( 신뢰도계수 ) 65 일반적으로변수를표준화시킨후구한신뢰도계수값이크므로이를이용한다. Q5-Q8 4 개문항모두사용할경우신뢰도계수는 0.69 이다. Q5 를제외하고 Q6-Q8 만사용하면신뢰도계수가 0.59 로떨어진다.( 생략 ) Q8 를제외하고 Q5-Q7 만사용하면신뢰도계수가 0.68 로떨어진다. 그러므로 4 개변수 ( 문항 ) 를묶는것이옳으며신뢰도계수 ( 내적일치도 ) 는 0.68 이다. 변수가 개인경우는제외신뢰도계수가계산될수없다. (Q0, Q) 문항의신뢰도계 수는 0.68 이다.
16 66 Chapter 7. 요인분석과신뢰도계수 [SPSS] 보고서작성 신뢰도계수에대한보고서작성은요인분석결과와같이하면된다. 그러므로 7..9 절에있는표하나로요인분석과신뢰도분석정리는충분하다. 어떤책에는신뢰도계수가 0.7 이상되어야문항들을신뢰할만하다고하여 0.7 이하가나오면숫자를고치는경향이있는데그럴필요없다. 묶이는문항수가많고응답자수가많으면신뢰도계수는올라가므로상대적인것이다. 걱정할필요없다. 앞절에서언급하였듯이향후분석에서는각리커드척도문항을따로분석하는것이아니라요인분석결과묶인문항을하나로하여분석을실시하면된다. 리커드척도문항에대한개별정리가필요하면아래와같이정리하면된다.
17 7.3. 문항의내적일치도 ( 신뢰도계수 ) 67 강의실 (lecture) 만족도는.75(00 점만점에 30 점 ) 이고강의실관련하위만족도가운데강의실시설만족도가가장낮으므로학생들의강의실만족도를높이기위하여강의실시설에많은투자가있어야할것이다. 강의실하위 4 개문항간만족도차이검정을굳이하려면분산분석이아니라 6.4 절에서언급한방법을사용해야한다.
18 68 Chapter 7. 요인분석과신뢰도계수 [ 연습문제 ] () 예제설문 Q8-Q 문항 ( 교양과목만족도 ) 에대한요인분석을실시하시오. () 요인분석결과묶인문항에대해내적일치도계산하시오. (3)() 에서사용된자료를복사하여 ( 동일자료두번사용 ) 내적일치도계산하고결과에대해논하시오. (4) 팀프로젝트설문지에서리커드척도문항 ( 동일개념을설문한문항들끼리 ) 에대해요인분석을실시하시오. (5)(4) 의결과묶인문항에대해내적일치도 (Cronbach α ) 를계산하시오.
Microsoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
More informationChapter 5. Factor Analysis ( 요인분석 ) 5.1 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 1) 변수들을분류 2) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48
Chater 5. Factor Anaysis ( 요인분석 ) 5. 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 ) 변수들을분류 ) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48 명의능력측정 5 개항목점수분류 * 기업관련지표 0 개항목 ( 매출액, 종업원수, 부채비율 ) Cassic
More information슬라이드 1
Coyright c 0 CalebABC Co., Ltd. All Rights Reserved. 구조방정식 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved. 구조방정식모형 (/) 구조방정식모형이란? SEM(Structure Equation Model) 공분산구조분석 (Covariance Structure Analysis)
More informationMicrosoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx
Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp
More informationR
R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More information4 장주성분분석 ( PCA: Principal Component Analysis) 예 1 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변
4 장주성분분석 ( PCA: Prnca Comonnt Anayss) 예 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변수에의해주성분변수를구하고일부주성분에의해원변수의변동을충분히설명되는지알아보는것을주성분분석이라한다. 예 ) 주성분개념
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More informationMicrosoft Word - Chapter9.doc
CHAPTER 9 분산분석 9.1. 분산분석개념 분산분석 (ANOVA: Analysis of Variance) 이란종속변수 (dependent variable: 반응변수 : response variable) 의분산 (variation: 변동 통계에서는이를변수가가진정보라한다 ) 을설명하는독립변수 (independent: 설명변수 : explanatory) 의유의성
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More information슬라이드 제목 없음
계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.
More informationPowerPoint Presentation
09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical
More information장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정
. 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계
More informationMATLAB and Numerical Analysis
School of Mechanical Engineering Pusan National University dongwoonkim@pusan.ac.kr Review 무명함수 >> fun = @(x,y) x^2 + y^2; % ff xx, yy = xx 2 + yy 2 >> fun(3,4) >> ans = 25 시작 x=x+1 If문 >> if a == b >>
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More information<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D>
5. 상평형 : 순수물질 이광남 5. 상평형 : 순수물질 상전이 phase transition 서론 ~ 조성의변화없는상변화 5. 상평형 : 순수물질 전이열역학 5. 안정성조건 G ng ng n G G 자발적변화 G < 0 G > G or 물질은가장낮은몰Gibbs 에너지를갖는상 가장안정한상 으로변화하려는경향 5. 상평형 : 순수물질 3 5. 압력에따른Gibbs
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More informationMicrosoft PowerPoint - ANOVA pptx
분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More informationPython과 함께 배우는 신호 해석 제 5 강. 복소수 연산 및 Python을 이용한 복소수 연산 (제 2 장. 복소수 기초)
제 5 강. 복소수연산및 을이용한복소수연산 ( 제 2 장. 복소수기초 ) 한림대학교전자공학과 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 1 배울내용 복소수의기본개념복소수의표현오일러 (Euler) 공식복소수의대수연산 1의 N 승근 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 2 복소수의 4 칙연산 복소수의덧셈과뺄셈에는직각좌표계표현을사용하고,
More information이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다
이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,
More information제 3강 역함수의 미분과 로피탈의 정리
제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationPowerPoint Presentation
5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음
프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음 CHAPTER 9 둘중하나선택하기 관계연산자 두개의피연산자를비교하는연산자 결과값은참 (1) 아니면거짓 (0) x == y x 와 y 의값이같은지비교한다. 관계연산자 연산자 의미 x == y x와 y가같은가? x!= y
More information비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2
비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,
More information제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라
제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을
More information5. 회 의내용 < 제 1호 안 : 2011학년도 법 안 회 제 철 산(안 )> 법인 사무국장의 성왼 보고에 이이 의장이 이사회 개회 용 선언하고 회계판려부장에 게 제 l 호 안인 20 11 학년도 입인 회계 결산(안)에 대한 성명융 지시함 회계판리부장이 2011 학년
학교법언한성학원 2012학년도 제 2차 이사 회 회 의 록 구 ss 01 사 감사 일원징수 8인 2인 재적잉윈 7인 2인 참석잉원 5인 인 1. 연 시 : 2012년 5월 22일(화) 10:30 11:10 (회의소집 상보일 : 2012.5.10.) 2. 장 소 경성대학교 정보판 10충 회의실 3. 엄원 출 결 사항 참석임웬 (5명) : 김대성, 이동철, 김순칭,
More informationMicrosoft Word - Chapter8.doc
CHAPTER 8 교차분석 8.1. 교차분석 (cross-tabulation) 개요 8.1.1. 교차분석개념 두분류형 ( 범주형 ) 문항 ( 변수 ) 간의연관관계 (association) 를볼때교차표 ( 분할표 ) 를작성하 여변수들간관계를분석하게된다. 이를교차분석혹은 χ (chi-square) 검정이라한다. 교차분석의의미는두변수의빈도표를교차시켰다는의미이며교차분석에사용되는검
More informationMicrosoft PowerPoint - chap06-2pointer.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information클라우드사회과학연구자동화 사용자매뉴얼 http://ssra.or.kr 알림 목 차 1. 클라우드사회과학자동화란? 1. 1 목적및의의 1) 교육심리학용어사전 (2000) - 8 - 1. 2 주요기능및특징 설문지작성자동화 - 9 - 자료수집자동화 통계분석자동화 - 10 - - 11 - 2. 클라우드사회과학연구자동화시작하기 2.2 시작하기 2.2 절차및지원기능
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More informationPowerPoint 프레젠테이션
Lec. 2 : Introduction to R Part 2 Big Data Analytics Short Course 17. 07. 04 R 의데이터구조 : Factor factor() : factor 생성하기 > region = c("a","a","b","c","d") > region [1] "A" "A" "B" "C" "D" > class(region)
More information<4D F736F F F696E74202D20BBF3B0FCBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D>
상관분석 (Correlation) 목차 1. 상관분석은? 2. 분산, 공분산, 상관 3. 상관계수 4. 상관분석해석의유의점 5. 상관분석실제 상관분석은? 상관관계는서열척도, 등간척도, 비율척도로측정된변수들간의관련성정도를알아보기위한것 하나의변수가다른변수와의어느정도밀접한관련성을갖고변화하는가를알아보기위해사용 두변수간의관련성을구할경우단순상관관계를실시하며, 부분또는편상관관계는어떤변수를통제한상태에서두변수의상관관계를구하는것
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾
Chapter 1 Chapter 1 Chapter 1 Chapter 2 Chapter 2 Chapter 2 Chapter 2 Chapter 2 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 3 Chapter 4 Chapter 4
More information01....b74........62
4 5 CHAPTER 1 CHAPTER 2 CHAPTER 3 6 CHAPTER 4 CHAPTER 5 CHAPTER 6 7 1 CHAPTER 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
More information(291)본문7
2 Chapter 46 47 Chapter 2. 48 49 Chapter 2. 50 51 Chapter 2. 52 53 54 55 Chapter 2. 56 57 Chapter 2. 58 59 Chapter 2. 60 61 62 63 Chapter 2. 64 65 Chapter 2. 66 67 Chapter 2. 68 69 Chapter 2. 70 71 Chapter
More information이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는
제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의
More information- 89 -
- 89 - - 90 - - 91 - - 92 - - 93 - - 94 - - 95 - - 96 - - 97 - - 98 - - 99 - 있다 장정임 ( 2009). Toylor 와 Betz(1983) 의 진로결정자기효능감 척도 와 및 등이 개발 (career 와 한 진로결정자기효능감 척도 단축형 은 미래계획수립 문제해결과 같은 자신에 대한 이해를 바탕으로
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More information에듀데이터_자료집_완성본.hwp
단위학교성과제고를위한 교육여건개선방안탐색 모시는글 2012 년도에듀데이터활용학술대회프로그램 목차 n n [ 주제 1] 교육지원청수준에서기초학력결정요인분석연구 천세영 이성은 3 [ 주제 2] 비용함수모형에의한국 공립중학교적정교육비및가중치산출연구 오범호 윤홍주 엄문영 37 n n [ 주제 1] 토론 김영애 67 [ 주제 2] 토론 김성식 73 n n [ 주제
More information동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More informationMicrosoft PowerPoint - MDA DA pptx
판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례
More information슬라이드 1
Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값
More information행정학석사학위논문 사회에대한공정성인식도가 행복에미치는영향 서울시주민을중심으로 년 월 서울대학교대학원 행정학과행정학전공 정영아
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More informationMicrosoft Word - Chapter6.doc
CHAPTER 6 기초통계량분석 분류형 ( 범주형 ) 변수데이터에대한정리방법으로는숫자요약인빈도분석과그래프요약인파이차트, 바차트가이용된다. 측정형변수에대한숫자요약은일반적으로자료의중앙위치와자료의흩어진정도를나타내는두개의값으로축약된다. 즉, 크기 n 개의데이터의가진정보가 2 개숫자요약으로축약 (data reduction) 된다. 데이터의중앙위치에대한통계량평균 (mean)
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 3, June, 30, 2016:pp. 93~116 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 06. 12 2016. 06. 20 2016. 06. 26 ABSTRACT e-
More information31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37
21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각
More information<B0A3C3DFB0E828C0DBBEF7292E687770>
초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),
More information[ 마이크로프로세서 1] 2 주차 3 차시. 포인터와구조체 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Functi
2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Function) 1. 함수의개념 입력에대해적절한출력을발생시켜주는것 내가 ( 프로그래머 ) 작성한명령문을연산, 처리, 실행해주는부분 ( 모듈 ) 자체적으로실행되지않으며,
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More informationMicrosoft Word - LectureNote.doc
5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd
More information<B3EDB4DC28B1E8BCAEC7F6292E687770>
1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information실험 5
실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.
More informationMicrosoft Word - ntasFrameBuilderInstallGuide2.5.doc
NTAS and FRAME BUILDER Install Guide NTAS and FRAME BUILDER Version 2.5 Copyright 2003 Ari System, Inc. All Rights reserved. NTAS and FRAME BUILDER are trademarks or registered trademarks of Ari System,
More information<4D F736F F F696E74202D20BFE4C0CEBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D>
요인분석 (Factor analysis) 목차 1. 요인분석은? 2. 요인분석수행과정 3. 요인분석의실제 4. 요인분석의해석 요인분석은? 질문문항들, 변수들혹은측정대상들간의상관관계를고려해서이들측정치사이에공유하는구조를파악해내는기법을말함 자료및변수의감축기법으로변수가독립변수 / 종속변수인가를구분하지않음 요인분석의구체적목적 자료요약 불필요한자료제거 변수의구조파악 측정도구의타당성평가
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information<4D F736F F D20B1B8C1B6BFAAC7D0325FB0ADC0C7C0DAB7E15F34C1D6C2F75F76332E646F63>
구조역학 5. 모멘트분배법 (oment Distribution ethod) Objective of this chapter: 모멘트분배법의개념이해와 다차부정정구조물해석에 의적용. What will be presented: 모멘트분배법용어와개념이해 모멘트분배법을 모멘트분배법을 이용한연속보해석 이용한골조해석 Theoretical background 미국 Univ.
More information(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1
More informationPowerPoint Presentation
RL 과 RC 회로의완전응답 기초회로이론 학습목표 2/42 RL 혹은 RC 회로를해석하는방법 완전해, 등차해, 특수해 RL 혹은 RC 회로에서완전응답, 과도응답, 정상상태응답을얻는방법 목차 3/42 1. RL 혹은 RC 회로의해석 2. 1차미분방정식의해 3. 무전원응답 4. 시정수 5. RL 혹은 RC 회로의 DC 전원응답 6. 연속스위칭회로 Section
More informationMicrosoft Word - ch2_smoothing.doc
FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.
More informationMicrosoft Word - Lab.4
Lab. 1. I-V Lab. 4. 연산증폭기 Characterist 비 tics of a Dio 비교기 ode 응용 회로 1. 실험목표 연산증폭기를이용한비교기비교기응용회로를이해 응용회로를구성, 측정및평가해서연산증폭기 2. 실험회로 A. 연산증폭기비교기응용회로 (a) 기본비교기 (b) 출력제한 비교기 (c) 슈미트트리거 (d) 포화반파정류회로그림 4.1. 연산증폭기비교기응용회로
More informationMicrosoft PowerPoint - Info R(3) pptx
Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information차 례. 서론. 선행연구고찰. 학교생활기록부신뢰도제고를위한설문조사결과. 학교생활기록부신뢰도제고를위한면담조사결과 Ⅴ. 학교생활기록부신뢰도제고를위한개선방안제언 169 Ⅵ. 결론 195 참고문헌 부록 표차례 그림차례 서 론 1 Ⅰ. 서론 Ⅰ. 서론 1. 연구의필요성및목적 3 학교생활기록부신뢰도제고방안연구 4 Ⅰ. 서론 2. 연구의내용및범위 5 학교생활기록부신뢰도제고방안연구
More informationMicrosoft PowerPoint - LA_ch6_1 [호환 모드]
Chapter 6 선형변환은무질서한과정과공학제어시스템의설계에관한연구에사용된다. 또한전기및음성신호로부터의소음여과와컴퓨터그래픽등에사용된다. 선형변환 Liear rasformatio 6. 6 변환으로서의행렬 Matrices as rasformatios 6. 변환으로서의행렬 6. 선형연산자의기하학 6.3 핵과치역 6.4 선형변환의합성과가역성 6.5 컴퓨터그래픽 si
More information<322EBCF8C8AF28BFACBDC0B9AEC1A6292E687770>
연습문제해답 5 4 3 2 1 0 함수의반환값 =15 5 4 3 2 1 0 함수의반환값 =95 10 7 4 1-2 함수의반환값 =3 1 2 3 4 5 연습문제해답 1. C 언어에서의배열에대하여다음중맞는것은? (1) 3차원이상의배열은불가능하다. (2) 배열의이름은포인터와같은역할을한다. (3) 배열의인덱스는 1에서부터시작한다. (4) 선언한다음, 실행도중에배열의크기를변경하는것이가능하다.
More information슬라이드 1
한국산업기술대학교 제 5 강스케일링및회전 이대현교수 학습안내 학습목표 3D 오브젝트의확대, 축소및회전방법을이해한다. 학습내용 3D 오브젝트의확대및축소 (Scaling) 3D 오브젝트의회전 (Rotation) 변홖공갂 (Transform Space) SceneNode 의크기변홖 (Scale) void setscale ( Real x, Real y, Real z)
More information