3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
|
|
- 연홍 정
- 5 years ago
- Views:
Transcription
1 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
2 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기
3 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
4 분포형태 : 왜도 정대칭 ( 한쪽으로치우치지않음 ) 왜도는 0이다. 평균과중앙값은같다..35 비대칭도 = 0.30 상대도수
5 분포형태 : 왜도 왼쪽으로치우친경우 ( 왼쪽꼬리분포 ) 왜도는음 (-) 이다. 보통평균은중앙값보다작다. 상대도수 왜도 =.31
6 분포형대 : 왜도 오른쪽으로치우친경우 ( 오른쪽꼬리분포 ) 왜도는양 (+) 이다. 보통평균은중앙값보다크다. 상대도수 왜도 =.31
7 분포형태 : 왜도 오른쪽으로심하게치우친경우 ( 심한오른쪽고리분포 ) 왜도는양 (+) 이다 ( 종종 1.0보다높다 ). 보통평균은중앙값보다크다..35 왜도 = 상대도수
8 분포형태 : 왜도 예 : 아파트임대 어느대학가에서표본으로간이아파트 (efficiency apartments ) 70 채가무작위선정되었다. 이아파트의월세는오름차순으로다음슬라이더에나타나있다.
9 분포형태 : 왜도
10 분포형태 : 왜도.35 왜도 = 상대도수
11 z- 값 z- 값을종종 표준화 ( 된 ) 값 이라고한다. 이는관찰값 x i 와평균과의거리가표준편차의몇배에해당하는지를나타낸다. z i x i s x
12 z- 값 관찰값의 z- 값은자료에서해당관찰값의상대위치를측정하는척도이다. 표본평균보다작은자료값은 0 보다작은 z- 값을갖는다. 표본평균보다큰자료값은 0 보다큰 z- 값을갖는다. 표본평균과같은자료값은 0 인 z- 값을갖는다.
13 z- 값 가장작은값 (425) 의 z- 값 x i x z s 월세값의표준화값
14 체비셰프의원리 어떤자료에있는항목들의적어도 (1-1/z 2 ) 의값은평균에서 z 표준편차크기의범위안에있어야한다. 그리고이때의 z 는 1 보다더큰값이다.
15 체비셰프의원리 (Chebyshev s theorem) 적어도자료값들의 75% 는평균에서 z = 2 표준편차범위안에있어야한다. 적어도자료값들의 89% 는평균에서 z = 3 표준편차범위안에있어야한다. 적어도자료값들의 z = 4 표준편차 94% 는평균에서 범위안에있어야한다.
16 체비셰프의원리 예 : z = 1.5 ( x = 와 s = 54.74) 적어도월세값들의 (1 1/(1.5) 2 ) = = 0.56 또는 56% 는아래의값들사이에있어야한다. x - z(s) = (54.74) = 409 와 x + z(s) = (54.74) = 573 ( 실제, 86% 의월세값들이 409 와 573 사이에있다.)
17 경험법칙 (Empirical rule) 종모양분포를가지는자료에대하여 : 정규확률변수값의 +/- 1 표준편차정규확률변수값의 +/- 2표준편차 정규확률변수값의 +/- 3 표준편차 68.26% 가평균의범위안에있다 % 가평균의범위안에있다 % 가평균의범위안에있다.
18 경험법칙 99.72% 95.44% 68.26% x
19 극단값찾기 (Detecting outliers) 극단값은자료에서특출나게큰값이나특출나게작은값들을말한다. -3보다작거나 +3보다큰 z-값에해당하는자료값을극단값으로보면된다. 극단값은다음과같은경우일수있다 : 잘못기록된자료값 자료에부정확하게포함된값 자료에제대로포함된값
20 극단값찾기 가장극단적 z- 값은 과 2.27 극단점기준으로 z > 3 을사용하면, 이자료에는극단값이없다. 월세에대한표준화값
21 탐색적자료분석 (Exploratory data analysis) 다섯수치요약 상자그림
22 다섯수치요약 (Five-number summary) 1 최소값 사분위수중앙값 3사분위수최대값
23 다섯수치요약 최소값 = 425 1사분위수 = 445 중앙값 = 475 3사분위수 = 525 최대값 =
24 상자그림 (Box Plot) 상자의양끝은 1 사분위수와 3 사분위수에위치하게한다. 상자안에수직선을중앙값위치에그린다 (2 사분위수 ) Q1 = 445 Q3 = 525 Q2 = 475
25 상자그림 사분위수간범위 (IQR=Q3-Q 1) 를사용하여상한선과하한선을그린다. 이범위밖의자료는극단값이라고할수있다. 각극단값의위치는 * 로표시한다. 계속됨
26 상자그림 하한선은 Q1 보다아래쪽 1.5(IQR) 이다. 하한선 : Q1-1.5(IQR) = (80) = 상한선은 Q3 보다위쪽 1.5(IQR) 이다. 상한선 : Q (IQR) = (80) = 아파트월세자료에서극단값 (332.5 보다작거나 보다큰값 ) 은없다.
27 상자그림 상자의양끝에서한계선내에최소값과최대값까지점선 (whiskers) 을그린다 한계선내최소값 = 425 한계선내최대값 = 615
28 두변수간의연관성측정 (Measures of association between two variables) 공분산 상관계수
29 공분산 (covariance) 공분산은두변수의선형관계를측정하는척도이다. 양의값은양의관계를나타낸다. 음의값은음의관계를나타낸다.
30 공분산 공분산은아래와같이계산된다 : s xy ( x i x )( y i y ) n 1 표본의경우 xy ( x )( y ) i x i y N 모집단의경우
31 상관계수 (correlation coefficient) 상관계수는 -1 에서 +1 사이의값을갖는다. -1 값에가까울수록강한음의선형관계를나타낸다. +1 값에가까울수록강한양의선형관계를나타낸다.
32 상관계수 상관계수는아래와같이계산된다 : r xy s xy ss x y xy xy x y 표본의경우 모집단의경우
33 상관계수 상관관계는변수들간의선형관계를측정하는것이지반드시인과관계를측정하는것은아니다. 두변수가높은상관관계를갖는다고해도, 한변수가다른변수의원인이된다는것을의미하지는않는다. 예, 식당의일반적인식사가격과음식의질
34 공분산과상관계수 어떤골프선수가드라이빙거리와 18 홀점수간에서로관계가있는지에대하여조사하고자한다. 평균드라이빙거리 (yds.) 평균 18 홀점수
35 공분산과상관계수 x y ( x x ) ( y y ) ( x x )( y y ) i i i i 평균표준편차 합계
36 공분산과상관계수 표본공분산 s xy ( ( x i x )( y i y ) n 표본상관계수 r xy s xy 7.08 ss (8.2192)(.8944) x y
37 가중평균과그룹화자료 (The weighted mean and working with grouped data) 가중평균 그룹화자료의평균 그룹화자료의분산 그룹화자료의표준편차
38 가중평균 (weighted mean) 관찰값의중요도를반영한가중치를각각의자료값에부여하여평균을계산할때, 이러한평균을 가중평균 이라고한다. 학점 (GPA) 을계산할때, 가중치는각등급 (grade) 에해당하는학점수이다. 관찰값이중요도에있어서서로다를때, 분석자는각관찰값이가지는중요도를가장잘반영할수있는가중치를선택하여야한다.
39 가중평균 x wx i i w i 여기서 : x i = i 번째관찰값 w i = i 번째관찰값의가중치
40 그룹화된자료 (grouped data) 가중평균계산법이그룹화된자료의평균, 분산, 표준편차의대략적인값을구하는데사용된다. 가중평균을계산하기위해, 각계급의중간점을그계급의평균처럼가정하여사용한다. 계급의도수를가중치로사용하여계급중간점들의가중평균을계산한다. 분산과표준편차를계산할때도유사한방법으로계급의도수를가중치로사용한다.
41 그룹화자료의평균 표본평균 x fm i n i 모집단평균 f i N M i 여기서 : f i = i 계급의 ( 빈 ) 도수 M i = i 계급의중간점
42 그룹화자료의표본평균 앞선예에서본 70 채의아파트표본월세자료가아래와같이도수분포형식으로그룹화되어있다. Rent ($) Frequency
43 그룹화자료의표본평균 Rent ($) f i Total 70 M i f i M i ,525 x 이런근사값은실제평균인 $490.80과는 $2.41 정도차이가있다.
44 그룹화된자료의분산 표본의경우 s 2 f i ( M i x ) n 1 2 모집단의경우 2 f i ( M i ) N 2
45 그룹화자료에서표본분산 Rent ($) f i Total 70 M i M i - x (M i - x) f i (M i - x) 계속
46 그룹화자료에서표본분산 표본분산 표본표준편차 s 2 = 208,234.29/(70 1) = 3, s 3, 이러한근사값은실제표준편차인 $54.74와는겨우 $.20 정도차이가난다.
47 3 장끝, Part B
statistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed
중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),
More informationPowerPoint Presentation
09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationMicrosoft PowerPoint - SBE univariate5.pptx
이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재
More information슬라이드 1
27 제 3 장수치요약 상자그림 1. 다섯수치요약평균 (Mean) 어떤경우에는상당히불확실하다. 예를들면점수분포가작은값에편중되고큰값쪽으로길게꼬리를뻗고있는경우점수분포가큰값쪽에편중되고작은값쪽으로길게꼬리를뻗고있는경우분포의대칭성여부를알지못하는경우평균은대표값의역할을할수없다. 작은값에편중, 큰값쪽으로꼬리가긴모형 큰값에편중, 작은값쪽으로꼬리가긴모형 28 중위수 (Median)
More informationMicrosoft PowerPoint - Stat03_Numerical technique(New) [Compatibility Mode]
Descriptive Statistics Describing data with tables and graphs (quantitative or categorical variables) Descriptive Statistics (Numerical techniques) Numerical descriptions of center, variability, position
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More informationR
R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information통계학입문
통계학입문 ( 기초통계학 ) 1. 1 개요 통계학 (statistics) 관심의대상에대해관련된자료를수집하고그 자료를요약, 정리하여이로부터불확실한사실에 대한결론이나일반적인규칙성을추구하는학문 Statistic : 통계치, 통계량 CH 1-2 1. 1 개요 통계학 (statistics) 기술통계학 (descriptive stat) 수집된자료의정리및요약방법을다룸
More information장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정
. 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More information비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2
비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,
More information기술통계
기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,
More informationPART 8 12 16 21 25 28
PART 8 12 16 21 25 28 PART 34 38 43 46 51 55 60 64 PART 70 75 79 84 89 94 99 104 PART 110 115 120 124 129 134 139 144 PART 150 155 159 PART 8 1 9 10 11 12 2 13 14 15 16 3 17 18 19 20 21 4 22 23 24 25 5
More informationMicrosoft Word - EDA_Univariate.docx
일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,
More information..(..) (..) - statistics
수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More informationPowerPoint Presentation
자바프로그래밍 1 배열 손시운 ssw5176@kangwon.ac.kr 배열이필요한이유 예를들어서학생이 10 명이있고성적의평균을계산한다고가정하자. 학생 이 10 명이므로 10 개의변수가필요하다. int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9; 하지만만약학생이 100 명이라면어떻게해야하는가? int s0, s1, s2, s3, s4,
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More information고객관계를 리드하는 서비스 리더십 전략
제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0
More information10. ..
점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm
More information통계학입문
확률및통계특강 세부사항 교수님 성함 : 김홍기 연락처 : 821-5433 E-mail : honggiekim@cnu.ac.kr 교재 : 통계학입문 ( 정익사 / 김주한외 ) 강의자료 ppt 파일은정보통계학과홈페이지 -> 대학원 -> 수업자료 또는사이버캠퍼스자료실 이사이트에서기출문제도얻을수있습니다. 중간고사 (closed book) : 45%, 기말고사 (open
More information... —....—
통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information전자회로 실험
전자회로실험 2 조 고주현허영민 BJT의고정바이어스및 부품 * 실험목적 1) 고정바이어스와 회로의직류동작점을결정한다. 다이오드의특성 * 실험장비 계측장비 - Digital Multi Meter 부품 -저항 다이오드의특성 부품 - 트랜지스터
More informationPowerPoint 프레젠테이션
실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3
More informationMicrosoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationLaTeX. [width=1em]Rlogo.jpg Sublime Text. ..
L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime
More information<4D F736F F F696E74202D20BBF3B0FCBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D>
상관분석 (Correlation) 목차 1. 상관분석은? 2. 분산, 공분산, 상관 3. 상관계수 4. 상관분석해석의유의점 5. 상관분석실제 상관분석은? 상관관계는서열척도, 등간척도, 비율척도로측정된변수들간의관련성정도를알아보기위한것 하나의변수가다른변수와의어느정도밀접한관련성을갖고변화하는가를알아보기위해사용 두변수간의관련성을구할경우단순상관관계를실시하며, 부분또는편상관관계는어떤변수를통제한상태에서두변수의상관관계를구하는것
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More information모수검정과비모수검정 제 6 강 지리통계학
모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More information- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
More information마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.
마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf
More information31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37
21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More information실험 5
실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.
More information설계란 무엇인가?
금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지수학영역 1 5 지선다형 1. 의값은? [2점] 일차방정식 의해는? [2 점 ] 두수, 의최대공약수는? [2 점 ] 일차함수 의그래프에서
제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지 1 5 지선다형 1. 의값은? [2점] 1 2 3 4 5 3. 일차방정식 의해는? [2 점 ] 1 2 3 4 5 2. 두수, 의최대공약수는? [2 점 ] 1 2 3 4 5 4. 일차함수 의그래프에서 절편과 절편의합은? [3 점 ] 1 2 3 4 5 1 12 2 5. 함수 의그래프가두점, 를지날때,
More information슬라이드 제목 없음
계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.
More information실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터
실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터의전면패널에꼽는다. 통상적으로검은색프로브는전면패널의검은단자 (COM) 에꼽으며, 빨간색프로브는빨간색단자에꼽는다.
More information제 4 장수요와공급의탄력성
제 4 장수요와공급의탄력성 탄력성 (elasticity) 의개념 u 탄력성 (elasticity) è 탄력성은소비자와생산자가시장환경의변화에어떻게 반응하는가를보여주는지표임. è 현실경제에는무수히많은현상들이원인과결과로 연결되어있음. è 즉, 탄력성은원인변수에대해결과변수가얼마나민감하게 반응하는가를나타내는지표임. è 원인변수 ( 독립변수 ) 와결과변수 ( 종속변수
More information이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는
제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More information(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰
제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다.
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More informationi
저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More informationPowerPoint Presentation
5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information- 459 - 유신익 김동철 - 460 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질, 정보의비대칭성, 업종집중도및스타일간의영향분석 - 461 - 유신익 김동철 - 462 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질, 정보의비대칭성, 업종집중도및스타일간의영향분석 - 463 - 유신익 김동철 - 464 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질,
More information시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 (
시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 ( 흐름 ) 에따라순서대로 (ordered in time) 관측되는자료를시계열자료 (time
More informationMicrosoft Word - Chapter6.doc
CHAPTER 6 기초통계량분석 분류형 ( 범주형 ) 변수데이터에대한정리방법으로는숫자요약인빈도분석과그래프요약인파이차트, 바차트가이용된다. 측정형변수에대한숫자요약은일반적으로자료의중앙위치와자료의흩어진정도를나타내는두개의값으로축약된다. 즉, 크기 n 개의데이터의가진정보가 2 개숫자요약으로축약 (data reduction) 된다. 데이터의중앙위치에대한통계량평균 (mean)
More information2015 경제ㆍ재정수첩
Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Part 01 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Part 02 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
More information모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ
수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지
More informationCONTENTS SUMMARY PART 1 MARKET MARKET STRATEGY MARKET ISSUE MARKET ISSUE PART 2 CREDIT CREDIT ISSUE CREDIT ISSUE CREDIT ISSUE CREDIT ISSUE CREDIT STRA
CONTENTS SUMMARY PART 1 MARKET MARKET STRATEGY MARKET ISSUE MARKET ISSUE PART 2 CREDIT CREDIT ISSUE CREDIT ISSUE CREDIT ISSUE CREDIT ISSUE CREDIT STRATEGY 4 CREDIT ISSUE 89 90 91 92 93 94 95 96 97 98 99
More informationMicrosoft PowerPoint - chap06-2pointer.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More information제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s
제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.
More information<28C0E5B7C129B9DABCBAB1D92DBBE7B8C1C8AEB7FC20BAB8C1A4B9E6B9FDC0FBBFEBBFA120B5FBB8A520B1E2B4EBBFA9B8ED20BAF1B1B32E687770>
사망확률보정방법적용에따른기대여명비교 * 박성근 * 1) < 요약 > 사망확률은 세의 사람이 세에 도달하지 못하고 사망할 확 률을 말하며 생명표 작성의 근간이 된다. 생명표 작성에 사용되는 사망확률은 원 자료의 사망확률이 아닌 좀 더 안정적인 형태로 보 정된 사망확률을 사용한다. 현재 미국 보건 센터 (NCHS) 와 우리나라 통계청에서는 각각 다 른 방식으로
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물
저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information연구실안전사례집-내지
Laboratory Safety CONTENTS 01 02 05 08 12 16 19 20 23 25 27 29 33 34 37 39 41 Laboratory Safety 45 46 49 51 54 56 58 61 62 65 68 71 72 75 78 80 84 86 88 92 95 99 100 103 106 109 111 113 115 117 119 123
More informationVisual Basic 반복문
학습목표 반복문 For Next문, For Each Next문 Do Loop문, While End While문 구구단작성기로익히는반복문 2 5.1 반복문 5.2 구구단작성기로익히는반복문 3 반복문 주어진조건이만족하는동안또는주어진조건이만족할때까지일정구간의실행문을반복하기위해사용 For Next For Each Next Do Loop While Wend 4 For
More information... —... ..—
통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :
More information<4D F736F F F696E74202D20C4C4C8B031B1DEC7CAB1E22DC0FCC3BCB1B3C0E72D D3133B3E232C8B8B1EEC1F6202D20BAB9BBE7BABB2E707074>
[ 엑셀총정리 (3)] 구분 주요 정보 ISBLANK, ISERROR, CELL, ISERR, ISEVEN, ISLOGICAL, ISNONTEXT, ISNUMBER, ISODD, ISTEXT, N, TYPE 데이터베이스 DSUM, DAVERAGE, DCOUNT, DCOUNTA, DMAX, DMIN, DVAR, DSTEDEV, DGET, DPRODUCT VLOOKUP,
More information예제 1.1 ( 경기값과공정한경기 ) >> A = [5 3 9; 8 10 11; 6 2 8], P = [0 1 0], Q = [1 0 0]' % 3x3 행렬경기 A = 5 3 9 8 10 11 6 2 8 P = 0 1 0 Q = 1 0 0 >> E = P * A * Q % 경기자 R은항상 2행을선택하고 C는항상 1열을선택하면, % R은 $8을얻는것이보장되고
More informationResampling Methods
Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )
More information제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악
More information<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>
본 작품들의 열람기록은 로그파일로 남게 됩니다. 단순 열람 목적 외에 작가와 마포구의 허락 없이 이용하거나 무단 전재, 복제, 배포 시 저작권법의 규정에 의하여 처벌받게 됩니다. 마포 문화관광 스토리텔링 공모전 구 분 내 용 제목 수상내역 작가 공모분야 장르 어린이들의 가장 즐거웠던 나들이 장소들 마포 문화관광 스토리텔링 공모전 장려상 변정애 창작이야기 기타
More informationchap 5: Trees
5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경
More informationyscec.yonsei.ac.kr Useful information 통계학입문 2013 년겨울학기 v 교수 : 정보통계학과박동권교수 v v 연구실 : 창조관 153호 / 교내 2247 v v Pdf file 은정보통
yscec.yonsei.ac.kr Useful information 통계학입문 03 년겨울학기 v 교수 : 정보통계학과박동권교수 v v 연구실 : 창조관 53호 / 교내 47 v E-mail : statpdk@yonsei.ac.kr v Pdf file 은정보통계학과 Homepage infostat.yonsei.ac.kr 에서다운받음 v 교재 : 통계학입문 v
More informationPowerPoint Presentation
컴퓨터프로그래밍 Computer Programming 08 포인터기초 목차 1. 포인터변수와선언 2. 간접연산자 * 와포인터연산 3. 포인터형변환과다중포인터 컴퓨터프로그래밍 (Computer Programming) - 08 포인터기초 3 1. 포인터변수와선언 주소개념 주소 address 메모리공간은 8비트인 1 바이트마다순차적인고유한번호 메모리주소는저장장소인변수이름과함께기억장소를참조하는또다른방법
More information<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770>
통계적가설검증의절차와문제점그리고대안 서울대학교심리학과, 인지과학협동과정교수조사연구편집위원장조사연구학회이사서울대사회과학대학교무부학장역임 주요연구 : Self-efficacy in information security : Its influence on end users information security practice behavior When fit indices
More information?
01 02 03 04 05 01 02 03 01 02 03 01 02 PART 8 9 10 11 PART 12 14 15 16 17 18 19 20 21 22 23 24 25 PART 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ppm 50 51 PART 52 54 55 56 57 58
More information01
2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,
More information통계학입문 Introduction to Statistics 통계학입문 Introduction to Statistics 김동일홍익대학교 Philosophy & Art 통계학입문 저자 김동일 발행인 이미애 발행처 Philosophy & Art 출판등록 2008년 1월 8일제152호주소 대전시유성구도룡동 380-39 전화 070-7893-4471 홈페이지 http://philosophy-art.com
More informationMicrosoft Word - FunctionCall
Function all Mechanism /* Simple Program */ #define get_int() IN KEYOARD #define put_int(val) LD A val \ OUT MONITOR int add_two(int a, int b) { int tmp; tmp = a+b; return tmp; } local auto variable stack
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More information¸ðÅä·Î¶ó ÃÖÁ¾ÆÇ.PDF
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 39 41 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 67 68 69 70 71 73 74 75 76 77 78 79
More information위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞
줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면
More informationPoison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3
Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Example 3.1 Files 3.2 Source code 3.3 Exploit flow
More information