... —....—

Size: px
Start display at page:

Download "... —....—"

Transcription

1 통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36

2 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36

3 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 = 어떤표본이모집단을잘대표? 확률표본 (probability sample)! 이확률표본의통계량을갖고모집단모수를추정 = 통계적추론을할때, 표본통계량의 추출분포 를이용해통계적추론을하게됨 3/ 36

4 추출분포와통계적추론 통계량의추출분포모집단분포 확률이론자체만으로도재미있지만 (?) 이확률이론을통계학적논리를이용한연구에적용하기위해서는 X 와같은표본통계량의추출분포에대해서배워야함 표본통계량은 확률변수 임. Why? 어떤표본을추출했느냐에따라통계량의값이달라지기때문에이통계량의값을사전에확실히알수없기때문 = 따라서통계량은어떤확률분포를갖고있음 이러한통계량의확률분포를통계량의추출분포라고함 4/ 36

5 통계량의추출분포모집단분포 모집단분포 통계량의추출분포를본격적으로공부하기전에모집단분포를이해하고넘어가야함 Definition 모집단분포 (Population Distribution) 변수의모집단분포 (population distribution) 란그변수가갖는모든값의분포를말함 모집단분포도확률분포임 = 즉어떤모집단에서한사람을무작위로추출했을때그사람의변수값의분포를찍은것이모집단분포임 5/ 36

6 모집단분포의예 들어가며표본평균의추출분포추출분포결론 통계량의추출분포모집단분포 학생을무작위로추출하여그대학생의학점이무엇인지기록 여기서는학생의학점이변수. 당연히이변수는확률변수! Why? 실제로어떤학생을추출하기전까지는그값을모르기때문 우리나라모든대학생의학점이평균이 3.08 그리고표준편차가 0.33 인정규분포를따른다고가정. 즉 X N(3.08, 0.33) 1. 이상태에서어떤학생을무작위로추출하고그학생의학점을기록 2. 또학생을무작위로추출하고그학생의학점을기록 3. 이런식으로학생을 무한반복해서 추출하고추출할때마다학점을기록 4. 그러면이값들의분포는어떻게될까? 모집단분포와동일해질것임 = 즉어떤학생을무작위로추출하는행위를, 어떤확률분포를갖고있는모집단에서무작위로추출하는행위로생각할수있음 이 N(3.08, 0.33) 가분포가모집단분포 6/ 36

7 통계량의추출분포 들어가며표본평균의추출분포추출분포결론 통계량의추출분포모집단분포 이강의에서는표본의여러가지통계량중에서표본평균 X 의추출분포에어떤패턴이존재하는지공부할것임 표본통계량에는여러가지가존재 : 1. 표본분산 (s 2 ), 표본표준편차 (s) 2. 표본공분산, 표본상관계수... = 다시말해, 갖고있는 표본자료 를이용해계산할수있는여러형태의값들이다통계량. 당연히이들모두확률변수!! 나중에계량경제학을배우게되는데계량경제학에서배우는내용중에하나가이회귀계수 ˆβ 이라는통계량의추출분포 = 이제왜계량경제학을배우기전에통계학을배워야하는지대충감이오시죠? 7/ 36

8 추출분포의검토 자료의분포를검토할때알아봐야할세가지는? = 분포의중앙, 산포도 ( 변이 ), 그리고모양! 이세가지를알아야분포에대한여러가지판단을할수있는데, 통계량의 추출분포 도마찬가지!!! = 추출분포의중앙, 변이, 그리고모양이어떻게되는지알아야이추출분포를토대로통계적추론을할수있음 따라서우리는우선표본평균 X 의추출분포의중앙, 변이, 그리고모양이어떻게되는지공부를할것임 8/ 36

9 모집단분포 vs. 표본평균의추출분포 왼쪽그림 오른쪽그림 고객센터에걸려온전화 n = 80인무작위표본을토대로 총통화시간 ( 초 ) X 계산 : 총 500번추출 = 모집단분포 = X 의추출분포 9/ 36

10 모집단분포 vs. 표본평균의추출분포 두히스토그램을자세히살펴보면 X 의추출분포와관련해서두가지중요한사실을유추할수있음 : 1. 표본평균들의분포 ( 오른쪽 ) 가개별관측치값들의분포 ( 왼쪽 ) 에비해서변이가작음 2. 개별관측치값들의분포에비해표본평균의추출분포의모양이좀더정규분포에가까움 = 이제왼쪽그림에있는표본평균 X 의추출분포의중앙, 변이그리고모양에대해서배우겠음 10/ 36

11 표본평균 X 의추출분포의중앙 확률변수인통계량의추출분포의중앙을나타내는지표는? = 기대값 : E(X)! 따라서통계량 X 의추출분포의중앙을알아보기위해서는 E( X) 를계산하면됨 E( X)? 우선모집단분포가 N(µ, σ) 를따른다는가정하에 E( X) 계산하겠음 11/ 36

12 표본평균 X 의추출분포의중앙 E( X) 를계산하기위해알아야할사실 : 1. 모집단분포가 N(µ, σ) 를따르는데이모집단에서 n 개크기의표본을무작위로추출한다고하겠음 2. 이표본에는 n 명이존재. 즉총 n 개의확률변수 X 1, X 2,..., X n 이존재 3. 각각의 X i 도확률변수이기때문에 X i 별로확률분포즉추출분포가존재! 4. X 1? = N(µ, σ) 인모집단분포에서 n 명크기의표본을무작위로추출하고 n 명중에서 첫번째사람 의값 5. X 2? 6. 그럼 E(X 1)? = E(X 1) = µ! Why? 12/ 36

13 표본평균 X 의추출분포의중앙 E(X 1) = µ: 1. N(µ, σ) 인모집단분포에서 n 명크기의표본을무작위로추출하고 n 명중에서첫번째사람의값을기록 = 그값이 X 1 2. 또 n 명크기의표본을무작위로추출하고 n 명중의첫번째사람의값을기록 = 또다른 X 1 값이나옴 3. 이런식으로무한반복해서추출하고추출할때마다첫번째사람의값을기록 = 그러면무한개의 X 1 값들이수중에존재 4. 이무한개의 X 1 값들의평균은뭐가될까? = 아무래도모집단평균 (µ) 과같아질것임 5. 표본을무작위로무한반복해서추출하다보면결국모집단에있는모든사람들이뽑혔을것임 = 따라서추출한값들의평균은모집단평균과같아짐 13/ 36

14 표본평균 X 의추출분포의중앙 이제 E( X) 가뭔지계산할수있음 : X = 1 (X1 + X2 + + Xn 1 + Xn) n [ ] = E( X) 1 = E (X1 + X2 + + Xn 1 + Xn) n = 1 E (X1 + X2 + + Xn 1 + Xn) n = 1 [E (X1) + E (X2) + + E (Xn 1) + E (Xn)] n = 1 n (µ + µ + + µ + µ) }{{} µ 의개수 : n 개 = 1 n (nµ) = µ 14/ 36

15 표본평균 X 의추출분포의중앙 매우놀랍게도, E( X) = µ 즉, X 가 µ 의비편의추정량 (unbiased estimator) 이라는것임 = 간략하게해석을하면표본을여러번 무작위로 추출한후이 X 를이용해추출할때마다평균을계산하면, 그여러개의평균의평균은모집단과일치한다는것 예전에편의 (bias) 가적고변이 (variation) 가작은추정량을사용해야한다고했음 일단모집단평균을추정하는데있어서이 X 는편의가없으므로일단편의측면에서는기준을충족하는것임 = 만약추정량 X 에편의가있으면연구자들이결코모집단평균을추정하기위해사용하지않을것임 15/ 36

16 표본평균 X 의추출분포의분산 표본평균 X 의추출분포의 중앙 에대해서알아냈음 그다음에알아내야할것은? = 바로 X 의추출분포의산포도 ( 변이 )! 분포의변이를알기위해서는뭘계산하면될까? = 분산! 즉 V ar( X)! V ar( X) 를계산하기전에우선알고있어야할사실 : V ar(x 1 ) =? = V ar(x 1 ) = σ 2 Why? 16/ 36

17 표본평균 X 의추출분포의분산 V ar( X): X = 1 (X1 + X2 + + Xn 1 + Xn) n [ ] = V ar( X) 1 = V ar (X1 + X2 + + Xn 1 + Xn) n = 1 V ar (X1 + X2 + + Xn 1 + Xn) n2 ( 주의!) = = 1 [V ar (X1) + V ar (X2) + + V ar (Xn 1) + V ar (Xn)] (why?) n2 = 1 n 2 (σ2 + σ σ 2 + σ 2 ) }{{} σ 2 의개수 : n 개 = 1 n 2 (nσ2 ) = σ2 n 17/ 36

18 표본평균 X 의추출분포의분산 즉 V ar( x) = σ2 임을증명함 n 위분산식을보면왜 x 를이용해 µ 를추정하는지알수있음 = n 하면 V ar( x) = σ2 n 0 이기때문 이말은 n 이커질수록표본평균 x 와모집단평균 µ 와의차이가적어진다는것을의미 = 따라서 n 이매우큰경우에는어떤표본을갖고있든그한개표본의평균과 µ 는비슷할것이다라는얘기! 18/ 36

19 표본평균 X 의추출분포의중앙과변이관련결론 E( x) = µ V ar( x) = σ2 n = SD( x) = σ n 위결과의함의 : 1. n 개크기의표본을무작위로반복적으로추출했을때각각의표본평균값 ( 즉 X 1, X 2,..., X n) 들은대체로 µ 주변에몰려있을것임. Why? X 가 µ 의 비편의추정량 이기때문 2. 그런데각각의표본평균값들이얼마나 µ 와비슷할까? 만약추출분포의분산이작다면, 어떤표본을모집단에서추출했든그하나의표본평균값은 µ 와비슷할것임 = 위결과에따르면추출분포의분산은 n 이클수록작아짐. 극단적으로만약 n 이무한대이면추출분포의분산은 0. 따라서이경우에는어떤표본을갖고있든그표본평균은모집단평균과일치할것임 19/ 36

20 표본평균 X 의추출분포의중앙과변이관련결론 E( x) = µ V ar( x) = σ2 n = SD( x) = σ n 위결과의함의 : 3. E( x) = µ, 이결과를차분하게보면표본의크기 n 은추정량 x 의편의에전혀영향을끼치지않는것을알수있음 = 표본을무작위로추출할때 n 이크든적든편의에는전혀영향을끼치지않는다는것임 4. 마지막으로추출분포의분산은 n 에영향을받지만 σ 의크기에도영향을받는다는것을알수있음 = 직관적으로명백. 모집단값의변이가클수록어떤한개의표본을갖고모집단모수를추정하는게어려워질것이기때문 20/ 36

21 표본평균 X 의추출분포의모양 이제마지막으로 x 의추출분포의 모양 에대해서알아보도록하겠음 당연한얘기인지는모르겠지만 X 의추출분포의모양은 모집단 분포의모양에영향을받을것임 N(µ, σ) 를따르는모집단에서 n 개크기의표본을무작위로추출한다고하겠음 = 이정규분포인모집단에서 n 개크기의표본을여러번추출하고 x 들의추출분포를찍어보면이추출분포의모양도모집단을따르게됨!! 그러나 모집단분포 가정규분포를따를때 x 들의추출분포도정규분포를따른다는위사실은그렇게유용한사실이아님. Why? = 모집단분포가정규분포를따르지않는경우가굉장히많기때문 ( 임금, 주택가격등 ) 21/ 36

22 표본평균 X 의추출분포의모양 다행스럽게도우리의똑똑한수학자와통계학자들이모집단분포가 어떤모양을갖고있든 i) 한개표본의크기 (n) 가충분히크고, ii) 표본을무작위로추출하면, x 의추출분포가정규분포가된다는것을증명하는확률이론을발견!! 이놀라운이론을중심극한정리 (Central Limit Theorem) 라고함 = 아마여러가지수학적정리중에서이중심극한정리가가장중요하다고할만큼세상에큰영향을끼친정리 정리 (Theorem) 란? = 정리란항상참인명제를말함 22/ 36

23 표본평균 X 의추출분포의모양 정리예 1: i) 만득이는사람이다. ii) 모든사람은죽는다. = i) 과 ii) 에의해만득이는죽는다 정리예 2: i) 모집단평균이 µ 인모집단에서 ii) 표본을무작위로추출하면 = E( x) = µ 이된다 23/ 36

24 표본평균 X 의추출분포의모양 Theorem 중심극한정리 (CLT) 평균이 µ 이고표준편차가 σ인모집단에서 ( 모집단모양이무엇이든상관없이 ) n개크기의표본을 무작위 로추출한다고하겠음. 그러면표본평균 x 의추출분포의중앙은 µ, 분산은 σ/ n, 그리고모양은정규분포에가깝게됨. 단, n이 충분히 클때만성립함. 이를간략하게표기하면 : ( ) x 근사 σ N µ, n 24/ 36

25 표본평균 X 의추출분포의모양 CLT 덕분에표본평균의추출분포의모양을알수있게되어, 어떤표본평균이모집단분포 ( 모양을모르는 ) 에서추출될확률을계산할수있게됨 CLT 가정말세상에큰획을그은정리임에는틀림없으나, 한가지한계가있음 = CLT 가적용되려면 n 이충분히커야되는데도대체얼마나커야하는지에대한답을알려주지는않음 x 의추출분포가정규분포에얼마나근사하게될지는모집단분포의모양에큰영향을받는데, 만약 모집단 분포가정규분포를따른다면아마 n 의크기는 10 이면충분하지않을까함 반면모집단분포가한쪽으로치우쳐있거나분포가굉장히지져분하면 n 의크기가상당히커야 CLT 가성립할것임 25/ 36

26 표본평균 X 의추출분포의모양 아까 CLT 가세상에큰영향을끼친정리라고했는데그이유는이 CLT 가성립하기위해서그렇게큰표본크기가필요하지않기때문 물론 CLT 가성립하기위한정확한표본크기는 case-by-case 이나, 수많은연구와시뮬레이션에서이 CLT 가적용되기위해필요한표본의크기가대략 30 에서 50 이면충분하다는것이밝혀짐 물론모집단분포가굉장히지져분하면표본크기가 50 보다는커야될것임. 하지만아무리지져분해도 100 이면성립한다고함 CLT 와관련해서한가지강조할것은표본의크기보다더중요한것은표본을 무작위 로추출해야한다는것임 = 많은연구자들이표본의크기가중요하다고생각하는데그것보다더중요한것은표본을무작위로추출하는것임. 표본을추출할때무작위로추출하지않으면아무리표본의크기가커도 CLT 는성립안함 26/ 36

27 표본평균 X 의추출분포의모양 n 의변화에따라 x 의추출분포의모양에어떤변화가생기는지 : 27/ 36

28 CLT 적용예 예 : A 대학교통계학과의학과장은최근학과졸업생들의초봉이얼마나되는지추정하려고함. A 대학교통계학과를최근에졸업한모든졸업생들의평균, 즉 모집단 평균은 6,000 만원그리고표준편차는 500 만원이라고가정. 물론학과장은이값들을모르기때문에무작위표본을추출해서추정을하려고함. 실제학과장이추출한한개의표본으로구한표본평균이실제모집단평균과 100 만원내로차이날확률이얼마나될까? = 우선그림과같은모집단에서무작위표본을추출하는것임 : 28/ 36

29 CLT 적용예 우리가알고싶은확률은표본평균이모집단평균과 100 만원내로차이가날확률 = 즉, 문제는 P (5900 x 6100) 을구하라고하는것임 이확률을구하기위해서는 x 의추출분포의중앙, 분산, 그리고모양을알아야함. 이문제에서이정보를알수있는지? Yes! Why? CLT 덕분에! CLT 적용할수있는지? Yes! Why? = i) 표본을무작위로추출했고 ii) 표본의크기가 40 으로상당히크기때문에 CLT 를적용할수있음 CLT 에따르면무작위표본평균의추출분포는정규분포를따르고중앙은 µ 그리고분산은 σ/ n 29/ 36

30 CLT 적용예 30/ 36

31 CLT 적용예 확률을계산해보면 : ( P (59, 000 x 61, 000) = P 500/ x / 40 = P ( 1.26 Z 1.26) = P (Z 1.26) P (Z 1.26) = = ) / 40 즉학과장이추출한한개표본의평균이모집단평균과 100 만원내로차이가날확률은 79.24% = CLT 가없었다면우리는이확률을결코구할수없었음! Why? CLT 없이는 x 의추출분포의모양을모르므로 31/ 36

32 CLT 관련유용한사실 CLT 와관련해서유용한사실 : = 정규분포를따르는두개의 독립적인 확률변수를선형결합한확률변수또한정규분포를따름 X 와 Y 가서로독립이고각각정규분포를따르면, ax + by 또한정규분포를따른다는것임 = 여기서 a 와 b 는상수 물론두개뿐만아니라여러개의독립적인확률변수를선형결합한확률변수또한정규분포를따름 32/ 36

33 CLT 적용예 2 예 : 김경래연구원은집에서연구원까지버스를타고다님. 출근에걸리는시간은매일매일다르기때문에집에서연구원까지걸리는시간을 X 라고할때이 X 는확률변수임. 이 X 는 N(20, 4) 를따름. 반면연구원에서집까지걸리는시간을 Y 라고할때이 Y 는 N(18, 8) 를따름. 이 X 와 Y 가서로독립이라고할때, 어떤날에 집에서연구원으로가는시간 (X) 이 연구원에서집으로가는시간 (Y ) 보다덜걸릴확률이어떻게될까? 1. 이문제는다음과같은확률을구하라고하는것 : P (X < Y ) = P (X Y < 0) 2. 위확률을구하기위해서는뭘알아야할까? = X 와 Y 의선형결합으로만들어지는확률변수 X Y 의추출분포가어떻게되는지를알아야함! 33/ 36

34 CLT 적용예 2 우선 X 와 Y 가각각정규분포를따르고있다고문제에주어졌음 그리고두확률변수는서로독립이라고주어졌음 따라서이두개의서로독립인확률변수를 선형결합 해서도출되는 X Y 또한정규분포를따른다는것을알수있음 = X Y Normal 그다음으로해야할것은이확률변수 X Y 의중앙과분산을알아야함 = Why? 그래야표준화를해서확률을계산을할수있기때문 34/ 36

35 CLT 적용예 2 X Y 의기대값과분산을구해보겠음 : 1. E(X Y ) = E(X) E(Y ) = = 2 2. V ar(x Y ) = V ar(x) + V ar(y ) 2Cov(X, Y ) = = 80 = Why Cov(X, Y ) = 0? X 와 Y 는독립이므로! X Y N(2, 80) = X Y 를표준화하기위한모든정보가도출됨 : ( (X Y ) 2 P (X Y < 0) = P < 0 2 ) = P (Z < 0.22) = 계산한확률 41.3% 해석 : 확률이 40% 정도이기때문에 5 일중에약 2 일정도는출근하는데걸리는시간이더걸린다는것임 35/ 36

36 추출분포결론 들어가며표본평균의추출분포추출분포결론 추출분포결론 36/ 36

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ 수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지

More information

... —... ..—

...   —... ..— 통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.

More information

10. ..

10. .. 점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드] 제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

LaTeX. [width=1em]Rlogo.jpg Sublime Text. ..

LaTeX. [width=1em]Rlogo.jpg Sublime Text. .. L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime

More information

... — —

...   — — 통계학 추출설계와통계적추론의기초 한국보건사회연구원 2017 년 4 월 24 일 ( 월요일 ) 강의슬라이드 4 1/ 86 목차 1 2 2/ 86 지난시간복습 자료의주요출처 : 1. 일화 2. 공용자료 3. 표본조사 : 관측연구 (observational study) 4. 실험 : 무작위통제실험 (randomized controlled trial, RCT) 3/

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임.   가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. 마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는 제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

모수검정과비모수검정 제 6 강 지리통계학

모수검정과비모수검정 제 6 강 지리통계학 모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다 통계학 : 자료의분포 (Distribution) 검토 자료폭탄을맞았다고할만큼현재우리주변에는자료가산재해있습니다. 문제는이렇게곳곳에널려있는자료중에서중요하고유용한정보를끄집어내기가참힘들다는점입니다. 통계학은수리과학의한분과학문으로 ( 물론이주장에동의를안하는수학자도있습니다 ), 이러한자료의홍수속에서귀중한정보를추출할수있게끔도와주는방법을연구하는학문입니다. 따라서통계학을잘이해를하고또올바로응용을하면우리가갖고있는자료에서유의미한정보와무의미한정보를분리할수있게되어

More information

1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F

More information

<3230303420B0B3C0CEC1A4BAB8BAD0C0EFC1B6C1A4BBE7B7CAC1FD2E687770>

<3230303420B0B3C0CEC1A4BAB8BAD0C0EFC1B6C1A4BBE7B7CAC1FD2E687770> 인터넷 전화/팩스/이메일 방문 접수통보 분쟁조정 신청 및 접수 Case Screening 불만의 해소, 타기관 이첩 등 증거수집, 전문가 자문 등 사실조사 조정전 합의권고 YES 합의 NO 조정결정 NO 민사소송 또는 포기 YES 종료 200 180 190 180 160 163 140 120 100 80 60 40 20 116 100 57 93

More information

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

슬라이드 제목 없음

슬라이드 제목 없음 계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.

More information

제 12강 함수수열의 평등수렴

제 12강 함수수열의 평등수렴 제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.

More information

확률과통계6

확률과통계6 확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > . 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

Microsoft PowerPoint - PDF3 SBE 20080417.pptx

Microsoft PowerPoint - PDF3 SBE 20080417.pptx 연속형 확률밀도함수 연속형 확률분포함수? 데이터 히스토그램의 정상을 연결하면 확률분포함수가 된다. 이를 이용하여 데이터(표본)의 분포(이는 모집단의 분포와 동일)를 구 하게 된다. 그러나 함수를 구하는 것은 불가능해 보인다. 그래서 현실에서는 확률분포를 가정하게 된다. (예)기다리는 시간: 지수분포, 측정 오 차: 정규분포 Gauss(천문학자): 행성들간 거리

More information

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의 제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배

More information

R

R R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.

More information

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로 3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2

Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 통계학 - CAS0001 7 주차 이산확률분포 이석준 Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 학습목표 확률변수가연속적인지이산적인지구분한다. 이항분포, 초기하분포,

More information

i

i 저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ

More information

Microsoft PowerPoint - LN05 [호환 모드]

Microsoft PowerPoint - LN05 [호환 모드] 계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected

More information

슬라이드 1

슬라이드 1 예제 7-6 어떤전기조립품을만들어내는전자회사에서완성품의잡음을측정하여그평균값과산포를관리하고자한다. 각로트에서의시료를뽑아잡음레벨을측정한데이터는 < 표 7.5> 와같다. 미니탭을사용하여 -R 관리도를그리고관리상태를판정하라. X 풀이 ) 1. C1(x1), C2(x2), C3(x3), C4(x4), C5(x5) 에데이터를입력 2. 통계분석 > 관리도 > 부분군에대한계량형관리도

More information

01

01 2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,

More information

실험 5

실험 5 실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.

More information

untitled

untitled R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

qme1-qm-4.toler&cp(1)-출판★-1?!?]đ??????????

qme1-qm-4.toler&cp(1)-출판★-1?!?]đ?????????? 제 4 장 규격 공차및공정능력 1. 규격 / 4-0. 공차 / 4-04 3. 공정능력 / 4-10 4. 품질경영기사과년도필기 [ 기출문제 ] / 4-1 5. 품질경영기사과년도실기 [ 기출문제 ] / 4-34 3. 공정능력 / 4-13 3.3. 공정능력도를보는방법 * 공정능력도를보는방법은다음사항들에대하여유의하도록한다. 1 규격의한계밖에나가는점은얼마나있는가. 점이늘어선모양에버릇은없는가.

More information

Microsoft PowerPoint Predicates and Quantifiers.ppt

Microsoft PowerPoint Predicates and Quantifiers.ppt 이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 (   ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각 JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 강의개괄및수학복습 I. 강의개괄 A. 들어가며 제가강의노트를준비한이유는세가지입니다. 하나는제가강의를잘못할확률이크기때문에이강의노트를통해서라도수강자분들이도움이되는내용을얻길바라는마음이있어서이고,

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 강의개괄및수학복습 I. 강의개괄 A. 들어가며 제가강의노트를준비한이유는세가지입니다. 하나는제가강의를잘못할확률이크기때문에이강의노트를통해서라도수강자분들이도움이되는내용을얻길바라는마음이있어서이고, 강의개괄및수학복습 I. 강의개괄 A. 들어가며 제가를준비한이유는세가지입니다. 하나는제가강의를잘못할확률이크기때문에이를통해서라도수강자분들이도움이되는내용을얻길바라는마음이있어서이고, 또다른이유는이강의가끝난후에수강자분들이양적연구를수행하는과정에서혹시개념이나논리에대해서다시복습을해야할필요성이생겼을때이노트가도움이되었으면하기때문입니다. 그리고예전에했던강의에서를배분했을때와배분하지않았을때의수강생의성취도를비교해보았었는데,

More information

05 ƯÁý

05 ƯÁý Special Issue 04 / 46 VOL. 46 NO. 4 2013. 4 47 Special Issue 04 / 48 VOL. 46 NO. 4 2013. 4 49 S pecial Issue 04 / IHP 7단계 연구사업 구분 1970년대 1980년대 1990년대 2000년대 연최대 강우량 침수면적 인명피해 재산피해 그림 4. 시군구별 연 최대 강우량과

More information

용역보고서

용역보고서 여러고장모드를갖는자료분석방법 2009. 1. ( 주 ) 한국신뢰성기술서비스 목차 여러고장모드를갖는자료분석방법...3 1. 개요...3 2. 분석방법및예제...4 2.1 CFM(Competing Failure Mode) 분석...4 2.2 Mixed Weibull 분석...4 2.3 Mixed Weibull 예제...5 3. 요약정리...9 ii http://www.korts.co.kr

More information

Microsoft Word - Chapter6.doc

Microsoft Word - Chapter6.doc CHAPTER 6 기초통계량분석 분류형 ( 범주형 ) 변수데이터에대한정리방법으로는숫자요약인빈도분석과그래프요약인파이차트, 바차트가이용된다. 측정형변수에대한숫자요약은일반적으로자료의중앙위치와자료의흩어진정도를나타내는두개의값으로축약된다. 즉, 크기 n 개의데이터의가진정보가 2 개숫자요약으로축약 (data reduction) 된다. 데이터의중앙위치에대한통계량평균 (mean)

More information

PowerPoint Presentation

PowerPoint Presentation 09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical

More information

i - ii - iii - 1 - 연도 보험급여 총계 (A) 장해급여 유족급여 일시금연금일시금연금 연금계 (B) 연금비중 (B/A, %) 기타 급여 1) 1998 14,511 3,377 979 1,657 30 1,009 7.0 8,467 1999 12,742 2,318 1,120 1,539 38 1,158 9.1 7,727 2000 14,563 2,237 1,367

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

<B1B3C0B0B0FAC1A45FC3E2B7C22E687770>

<B1B3C0B0B0FAC1A45FC3E2B7C22E687770> 확률및통계 확률및통계 1 성격 본과정은과학기술특성화대학의 확률및통계 ( 또는 기초통계학 ) 과목에해당하는내용을다룬다. 이과정을통하여학생들은대학과정이수에필요한정성적 / 정량적자료분석을위한통계적사고의기초를습득하게된다. 또한수학, 통계학, 또는계량적분석을많이요구하는학문을전공하고자하는학생들에게는과학적분석방법의수리적토대를갖추도록하여상위교과목을수강할수있는능력을기르도록한다.

More information

PowerPoint Presentation

PowerPoint Presentation 5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.

More information

버퍼오버플로우-왕기초편 3.c언어에서버퍼사용하기 버퍼는 임시기억공간 이라는포괄적인개념이기때문에여러곳에존재할수있습니다. 즉, CPU 에도버퍼가존재할수있으며, 하드디스크에도존재할수있고, CD- ROM 이나프린터에도존재할수있습니다. 그리고앞의예제에서보신바와같이일반프로그램에도

버퍼오버플로우-왕기초편 3.c언어에서버퍼사용하기 버퍼는 임시기억공간 이라는포괄적인개념이기때문에여러곳에존재할수있습니다. 즉, CPU 에도버퍼가존재할수있으며, 하드디스크에도존재할수있고, CD- ROM 이나프린터에도존재할수있습니다. 그리고앞의예제에서보신바와같이일반프로그램에도 버퍼는 임시기억공간 이라는포괄적인개념이기때문에여러곳에존재할수있습니다. 즉, CPU 에도버퍼가존재할수있으며, 하드디스크에도존재할수있고, CD- ROM 이나프린터에도존재할수있습니다. 그리고앞의예제에서보신바와같이일반프로그램에도존재할수있습니다. 이번시간엔프로그램에서버퍼를사용하는법, 그중에서도 C 언어에서버퍼를사용하는방법에대해배워보겠습니다. C 언어에서버퍼를사용하는가장쉬운방법은바로변수를선언하는것인데,

More information

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s 제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.

More information

(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰

(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰 제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다.

More information

v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은

v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은 통계와응용 (15 강 ) 담당교수 : 손창균 v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은지역에있던아기들에비해약 12그램정도가볍다고말했다.

More information

의사결정기준 왈드기준 (Wald Criterion) 최대최소 (maximin) 기준 최소값중에서가장나은값을가지는전략을선택. 일이잘안되었을때만생각함비관론자들에게적합 일이잘되었을때 일이잘안되었을때 조건1 1,800원 1,600원 <--선택 조건2 2,000원 1,500원

의사결정기준 왈드기준 (Wald Criterion) 최대최소 (maximin) 기준 최소값중에서가장나은값을가지는전략을선택. 일이잘안되었을때만생각함비관론자들에게적합 일이잘되었을때 일이잘안되었을때 조건1 1,800원 1,600원 <--선택 조건2 2,000원 1,500원 의사결정기준 왈드기준 (Wald Criterion) 최대최소 (maximin) 기준 최소값중에서가장나은값을가지는전략을선택. 일이잘안되었을때만생각함비관론자들에게적합 일이잘되었을때 일이잘안되었을때 조건1 1,800원 1,600원

More information

Microsoft Word - Lab.4

Microsoft Word - Lab.4 Lab. 1. I-V Lab. 4. 연산증폭기 Characterist 비 tics of a Dio 비교기 ode 응용 회로 1. 실험목표 연산증폭기를이용한비교기비교기응용회로를이해 응용회로를구성, 측정및평가해서연산증폭기 2. 실험회로 A. 연산증폭기비교기응용회로 (a) 기본비교기 (b) 출력제한 비교기 (c) 슈미트트리거 (d) 포화반파정류회로그림 4.1. 연산증폭기비교기응용회로

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

½½¶óÀ̵å Á¦¸ñ ¾øÀ½

½½¶óÀ̵å Á¦¸ñ ¾øÀ½ 하나의그룹 FH/FDMA 시스템에서 겹쳐지는슬롯수에따른성능분석 구정우 jwku@eve.yonsei.ac.kr 2000. 4. 27 Coding & Information Theory Lab. Department of Electrical and Computer Engineering, Yonsei Univ. 차례 (Contents) 1. 도입 (Introduction)

More information

제 5강 리만적분

제 5강 리만적분 제 5 강리만적분 리만적분 정의 : 두실수, 가 을만족핚다고가정하자.. 만일 P [, ] 이고 P 가두끝점, 을모두포함하는유핚집합일때, P 을 [, ] 의분핛 (prtitio) 이라고핚다. 주로 P { x x x } 로나타낸다.. 분핛 P { x x x } 의노름을다음과같이정의핚다. P x x x. 3. [, ] 의두분핛 P 와 Q 에대하여만일 P Q이면 Q

More information

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770>

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770> 통계적가설검증의절차와문제점그리고대안 서울대학교심리학과, 인지과학협동과정교수조사연구편집위원장조사연구학회이사서울대사회과학대학교무부학장역임 주요연구 : Self-efficacy in information security : Its influence on end users information security practice behavior When fit indices

More information

Microsoft Word - logic2005.doc

Microsoft Word - logic2005.doc 제 8 장 Counters 실험의목표 - Catalog counter 의동작원리에대하여익힌다. - 임의의 counter를통하여 FSM 구현방법을익힌다. - 7-segment display 의동작원리를이해한다. 실험도움자료 1. 7-segment display 7-segment는디지털회로에서숫자를표시하기위하여가장많이사용하는소자이다. 이름에서알수있듯이 7개의 LED(

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

Microsoft PowerPoint - chap04-연산자.pptx

Microsoft PowerPoint - chap04-연산자.pptx int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); } 1 학습목표 수식의 개념과 연산자, 피연산자에 대해서 알아본다. C의 를 알아본다. 연산자의 우선 순위와 결합 방향에

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx 판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information