10. ..

Size: px
Start display at page:

Download "10. .."

Transcription

1 점추정구간추정표본크기

2 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기

3 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm 였을때, 모수 µ 에대한점추정값은 135cm 이다. ˆµ = X = 135cm 피그미족의키는평균이 120cm 에서 150cm 사이이다 라고표현하는것은구간추정이다. ˆµ = (120cm, 150cm)

4 모수의추정 점추정구간추정표본크기 모수 (parameter): 모집단의특성을나타내는상수 = 주로사용하는모수는모평균 µ, 모분산 σ 2 그리고모비율 p 모평균추정의예 : 어느할인매장의연간매출액, 새로개발된자동차의연비, 서울에서대전까지자동차로걸리는시간모분산추정의예 : 특정주가의유동성 ( 변동성 ) 모비율추정의예 : 등록된벤처기업중파산하는비율 추정 (estimation): N 개의원소로된모집단에서크기가 n 인표본을추출한후, 이를토대로모집단의모수의값을추측하는것

5 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기

6 점추정구간추정표본크기점추정 (point estimation) 점추정 (point estimation) : 추출된표본자료의값을선정된추정량에대입하여얻은단일추정값에의하여모수를추정하는방법 점추정량 (point estimator) : 점추정에사용된통계량, 예 ) ˆµ = X, ˆσ 2 = S 2 추정값 (estimate) : 실제표본에서계산된값, 예 ) x, s 2 표본오차 (sampling error) : 모집단전체를관측하지않고, 부분집합인표본에서만관측함으로써생기는오차

7 점추정구간추정표본크기점추정 (point estimation) 모집단의관심모수 θ 에대한추정량을 ˆθ 이라하면, 추정량의표본오차는 ˆθ θ 로정의되고이는변동 (variation) 과편향 (bias) 으로분해될수있음추정량 ˆθ 의표본오차 = 변동 + 편향변동 = ˆθ E( ˆθ) 편향 = E( ˆθ) θ 불편추정량 : 편향이 0 인추정량

8 점추정구간추정표본크기점추정량의바람직한성질 1 불편성 (unbiasedness) : 추정량의기대값이모수와같아짐 2 효율성 (efficiency) : 추정량의분산이작음 3 일치성 (consistency) : 표본크기가점차커짐에따라점추정량의값이모수에근접합 ( 확률적수렴 ) 위의세가지가대표적인기준이며이외에다른기준도있음

9 불편성 (unbiasedness) 점추정구간추정표본크기 불편성 (unbiasedness) 추정량의기대값이모수와같음 E( ˆθ) = θ 이면, ˆθ 은 θ 에대한불편추정량임편향이없는추정량주어진표본추출방법으로표본을뽑고그추정량의값을표본으로부터계산하는작업을무한히반복하였을경우, 그렇게해서얻어지는추정량값들이평균적으로는모수와일치하게됨을의미 편향 (bias) = E( ˆθ) θ

10 불편성 (unbiasedness) 점추정구간추정표본크기 예 ) 점추정량 X 는모수 µ 에대해불편성을만족하는가? ( 풀이 ) 표본평균 X 의기대값을구하면모수 µ 와일치. 불편성만족!!! E( X) = E( X X n ) = 1 (µ + + µ) = µ n n 표본중위수 X med : 모평균 µ 에대한불편추정량 표본비율 ˆp: 모비율 p 의불편추정량 표본분산 S 2 : 모분산 σ 2 의불편추정량

11 효율성 (efficiency) 점추정구간추정표본크기 효율성 (efficiency) : 추정량의분산 ( 추정량변동의제곱의기대값 ) 이적은통계량은 상대적으로더효율적 (relative efficient) 예 ) 두추정량모두비편향추정량으로좋은추정량이지만, X 1 의경우 X 2 보다안정적으로모평균에가까운값이나올가능성이있음 = X 1 의표본분포가 X 2 의표본분포보다실제모수에가까이조밀하게몰려있으므로 ( 분산이작으므로 ) 더좋은추정량

12 효율성 (efficiency) 점추정구간추정표본크기 분산이최소가되는것중편향을최소로하는추정량을찾게되면, 극단적인경우분산이 0 이되어좋은추정값을찾지못하게되므로, 비편향추정량중에서분산을최소로하는추정량을찾는전략을쓰게된다 최소분산불편추정량 (minimum variance unbiased estimator): 같은표본에서도출된불편추정량중에서분산이최소가되는추정량

13 일치성 (consistency) 점추정구간추정표본크기 일치성 (consistency) : 표본크기가점차커짐에따라점추정량의값이모수에근접해지는경우 ( 무한모집단가정 ) 예 ) 표본평균 X 표본평균의분산은표본크기가커지면 0 으로수렴함. 따라서, 표본평균 ( 추정량 ) 의표본추출로인한변동이줄어들고결국모평균으로수렴 대수의법칙 (Law of large numbrs) : X 가모평균에서조금이라도벗어날확률은표본크기가커짐에따라점차 0 으로작아진다. 즉, X 는모평균으로확률적수렴 (convergence in probability) 함

14 일치성 (consistency) 점추정구간추정표본크기 확률변수의수렴 X 가 µ 로확률적수렴 (convergence in probability) : 임의의양수 ε 에대하여 점추정량 (point estimator) lim P( X µ > ε ) = 0 n 모수 점추정량 µ X σ 2 S 2 σ p = 모평균, 모분산, 모표준편차, 모비율에대한추정량은비편향성, 효율성, 일치성등을종합적으로고려하였을때, 위와같은점추정량을선택하는것이일반적 S ˆp

15 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기

16 점추정구간추정표본크기구간추정 (interval estimation) 모집단평균추정하기

17 점추정구간추정표본크기구간추정 (interval estimation) 구간추정 (interval estimation): 모수를하나의값으로추정하는것이아니라표본오차의크기를반영한구간으로나타내는것 신뢰구간 (confidence interval): 구간추정을통하여얻어지는구간을의미하며신뢰수준과구간의크기가중요 신뢰수준 (confidence level): 여러번구한신뢰구간중추정하고자하는모수를포함하는신뢰구간의비율 신뢰구간및신뢰수준의의미 모평균 µ 에대한 95% 신뢰구간이 (a,b) = 똑같은방법으로 100 차례표본을추출하여신뢰구간을구하였을때, 그 100 개의신뢰구간중 95 개가모수 µ 를포함하게됨을의미신뢰구간이모수를포함할확률, 즉 95% 를구간추정의신뢰수준이라함

18 점추정구간추정표본크기구간추정 (interval estimation) 모수는모르는숫자이지만불변의값인반면, 신뢰구간은표본에따라달라질수있으므로, 모수가신뢰구간에포함될비율 이아니라, 여러번표본을뽑아신뢰구간을구하였을때 신뢰구간이모수를포함할비율 을고려하는것 = 그비율이신뢰수준

19 점추정구간추정표본크기구간추정 (interval estimation) 구간의크기 (interval size): 신뢰구간의폭을의미 ˆµ = (a,b) = b a = 2d 오차한계 (error bound): 신뢰구간폭의절반인 d 를의미 신뢰수준과구간의크기 신뢰수준은높을수록, 구간의크기는작을수록바람직신뢰수준과구간의크기는서로상충됨 = 신뢰수준을높이고자하면구간이커지게되고, 반대로정교한구간추정을위하여구간의크기를작게하면신뢰수준이떨어지는문제발생일반적으로문제에따라신뢰수준을고정, 신뢰수준을만족하면서구간의크기를가장작게하는신뢰구간을도출일정신뢰수준하에서신뢰구간의크기는점추정량의분산과관련, 분산은표본수에의해좌우 = 신뢰구간을작게하기위해서는표본수를늘려야함

20 점추정구간추정표본크기구간추정 (interval estimation) 모집단의분포가대칭인경우모평균에대한신뢰구간은 ( X ± d) 의형태로표본평균을중심으로같은거리만큼가감하는것이효율적 ( 최소거리 ) 신뢰구간 (a,b) 도신뢰수준은만족하나, 구간의크기가 ( X ± d) 의경우보다크다 = 같은신뢰수준에서구간의크기를최소화하는것은 ( X ± d)

21 점추정구간추정표본크기모평균 µ 에대한구간추정 모평균의점추정량은표본평균 X 모평균의구간추정량은일반적으로 ˆµ = ( X ± d), d: 오차한계 µ 에대한 100(1 α)% 신뢰구간 오차한계 d 를구할때모표준편차 σ 를알면표준정규분포의 z 값을사용모표준편차 S 로대체하면, t 분포의 t 값을사용

22 점추정구간추정표본크기모평균 µ 에대한구간추정 µ 에대한 100(1 α)% 신뢰구간 σ 를알고있는경우 : σ 를모르는경우 : ( X z α/2 σ n, X + z α/2 σ n ) ( X t α/2,n 1 S n, X + t α/2,n 1 S n ) n: 표본크기, 표본표준편차 S = n i=1 (X i X) 2 /(n 1) 가정사항 1. 모집단은정규분포이다 2. 모집단이정규분포가아니라면표본의수가충분히크다. n 30

23 점추정구간추정표본크기모평균 µ 에대한구간추정

24 t 분포 점추정구간추정표본크기 표준정규분포와유사한모양, 단꼬리부분이표준정규분포보다두꺼움 0 을중심으로좌우대칭 자유도 (degree of freedom) 는분포가퍼져있는정도를결정, 자유도가클수록가운데로모이고, 표준정규분포로수렴

25 t 분포 점추정구간추정표본크기 자유도 =20

26 점추정구간추정표본크기모평균 µ 에대한구간추정 예 ) 베어링의평균직경을알아보고자 9 개의베어링표본을조사한것으로평균직경에대한 95% 신뢰구간을구하시오 ( 베어링의직경에대한모집단은정규분포를가정 ) 과거자료로부터 σ = 0.4 로알려져있다면 95% 신뢰구간은 ˆµ = X ± z σ n = 4.0 ± = 4.0 ± 0.26 만약 σ 가알려지지않있다면 S 를이용한 95% 신뢰구간은 ˆµ = X ± t 0.025,8 S n = 4.0 ± = 4.0 ± 0.37 S 2 = n i=1 (X i X) 2 /(n 1) = 0.225

27 점추정구간추정표본크기모평균 µ 에대한구간추정 유의사항 신뢰구간에서 σ 를모르는경우의 t 값은 t 분포표에서찾는데, 이때자유도는 n 1, α/2 는확률값을나타냄 σ 를모르더라도표본크기 n 이커지면 S 가 σ 에근접하고, 또 t 분포는 Z 분포로수렴한다. 따라서표본크기가크면 ( 일반적으로 n 30), σ 를모르는경우의신뢰구간은 σ 를아는경우의신뢰구간과비슷해짐 모집단이정규분포를따를때, 위의결과는정확함 그러나 X i 가정규분포를따르지않더라도표본크기가크면, 중심극한정리에의하여 X 의분포는정규분포에근접함. 따라서표본크기가클때에는 X i 의분포에민감하지않으나표본크기가작을때에는 X i 의분포가최소한대칭에가까워야하고, 특히표본크기가 15 보다작을때에는 X i 의분포가정규분포에근접해야함

28 점추정구간추정표본크기모평균 µ 에대한구간추정 유의사항 σ 를아는경우란일반적으로과거의데이터나연구결과에의하여 σ 에대한믿을만한정보다있다는뜻 신뢰구간공식에서표본크기 n 이커지면, 구간이좁아지는것을알수있음. 다라서오차한계의크기를어떤범위안에들도록해야되는경우라면표본수 n 을필요한만큼늘릴수있음 신뢰구간에서많이사용되는 Z 값

29 점추정구간추정표본크기모비율 p 에대한구간추정 모비율 p 를추정하기위하여 n 개의표본을추출하여조사한결과, 성공 의수가 X 라면, = 모비율의점추정량표본비율 (sample proportion) ˆp = X n, X = 0,1,...,n 표본크기 n 이커진다면확률변수 X 는평균 np, 분산 np(1 p) 인정규분포로근사 np 5, n(1 p) 5 따라서, 표본비율 ˆp 은근사적으로다음의정규분포를따름 ( ) p(1 p) ˆp N p, n

30 점추정구간추정표본크기모비율 p 에대한구간추정 모비율 p 에대한 100(1 α)% 신뢰구간 ˆp ± z α/2 ˆp(1 ˆp) n 모비율에대한신뢰구간은표본의크기가충분히클때즉 np 5 와 n(1 p) 5 를동시에만족할때에만의미있음 하지만 p 를추정하려고하는상황이므로, p 의추정값인표본비율 ˆp 을이용하여표본크기의조건을점검 nˆp 5, n(1 ˆp) 5

31 점추정구간추정표본크기모비율 p 에대한구간추정 예 ) 소형자동차생산을계획하는데소비자들의반응을알아보려고표본조사를하였다. 1,000 명의표본을추출하여, 향후 5 년내에소형자동차구매의사를조사한결과 40 명이소형자동차를살의사가있는것으로판단되었다. 향후 5 년간소형자동차를구매하려는고객의비율 p 에대한 95% 신뢰구간을구하라구매비율의추정값 ˆp = X n = = 0.04 표본크기의조건 nˆp = = 40 5 n(1 ˆp) = = p 의 95% 신뢰구간 ˆp ± z ˆp(1 ˆp) n 0.04(1 0.04) = 0.04 ± 1.96 = 0.04 ±

32 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기

33 표본크기결정 점추정구간추정표본크기 오차한계 d 는표본크기 n 이증가할수록줄어듬 σ 를알때모평균에대한 100(1 α)% 신뢰구간 X ± z α/2 σ n 이때, 오차한계 d d = z α/2 σ n n 이커지면 d 는 1 n 배가됨 n = (z α/2 σ d )2

34 표본크기결정 점추정구간추정표본크기 오차한계 d 를만족시키는표본크기 n 추정모수및조건 오차한계 (d) 표본수 (n) σ를알경우의 µ σ d = z α/2 n σ n = (z α/2 d ) 2 S σ를모를경우의 µ d = t α/2,n 1 n S n = (t α/2,n 1 d ) 2 p(1 p) 모비율 p d = z α/2 n n = z 2 p(1 p) α/2 d 2 표본크기계산시, 아직표본을추출하지않은상태이므로, S 나 p 등을모른다. 따라서근사값을활용하여대략적인 n 값을구하는데, 요령은다음과같음 S, σ 또는 p 는과거의경험이나연구결과, 또는파일럿연구로부터얻어지거나대략짐작되는값을이용. p 의경우사전정보가전혀없다면 0.5 를이용 σ 를모르는경우에서표본크기 n 을모르면 t α/2,n 1 을구할수없다. 이때는개략적인 n 값을이용하여새로운 n 을구하고, 반복하면 t α/2,n 1 에사용되어진 n 값과새로구한 n 값을접근시킬수있음

35 점추정구간추정표본크기

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

... —....—

...   —....— 통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ 수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지

More information

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s 제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

모수검정과비모수검정 제 6 강 지리통계학

모수검정과비모수검정 제 6 강 지리통계학 모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

... —... ..—

...   —... ..— 통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

Microsoft PowerPoint - PDF3 SBE 20080417.pptx

Microsoft PowerPoint - PDF3 SBE 20080417.pptx 연속형 확률밀도함수 연속형 확률분포함수? 데이터 히스토그램의 정상을 연결하면 확률분포함수가 된다. 이를 이용하여 데이터(표본)의 분포(이는 모집단의 분포와 동일)를 구 하게 된다. 그러나 함수를 구하는 것은 불가능해 보인다. 그래서 현실에서는 확률분포를 가정하게 된다. (예)기다리는 시간: 지수분포, 측정 오 차: 정규분포 Gauss(천문학자): 행성들간 거리

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

untitled

untitled R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

<4D F736F F F696E74202D20C1A636C1D620C7A5BABBC3DFC3E2B9E6B9FD20B0ADC0C72E >

<4D F736F F F696E74202D20C1A636C1D620C7A5BABBC3DFC3E2B9E6B9FD20B0ADC0C72E > 제 6 장표본추출방법 전광희교수 jkh96@cnu.ac.kr 학습목표 본장에서는표본조사의장단점을보고, 기본용어와그개념을이해하며, 특히확률추출법과비확률추출법의장단점을보고이들확률추출법의기본원리를파악한다. 또표본오차의영향에영향을미치는요인들이무엇인가를살펴보고, 표본크기의결정에영향을미치는요인들을살펴본다. 주요용어 : 전수조사, 표본조사, 기본단위, 모집단, 추출단위,

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

LaTeX. [width=1em]Rlogo.jpg Sublime Text. ..

LaTeX. [width=1em]Rlogo.jpg Sublime Text. .. L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime

More information

Microsoft PowerPoint - LN05 [호환 모드]

Microsoft PowerPoint - LN05 [호환 모드] 계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt

More information

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번 친절한하영쌤의 수학 A형 약점체크집중공략오답률 Best 5 정복 하기! - 보충문제 행렬 2015학년도대학수학능력시험 9월모의평가 19번두이차정사각행렬 가 를만족시킬때, < 보기 > 에서옳은것만을있는대로고른것은? ( 단, 는단위행렬이고, 는영행렬이다.) [4점] < 보기 > ㄱ. 의역행렬이존재한다. ㄴ. ㄷ. 2015학년도대학수학능력시험 6월모의평가 19번두이차정사각행렬

More information

01

01 2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,

More information

슬라이드 1

슬라이드 1 1 강 통계조사개요 정보통계학과이기재교수 Copyright c 2013 한국방송통신대학교 All Rights Reserved. 학 / 습 / 목 / 차 1. 통계의영광과좌절 2. 통계조사 3. 표본조사의특성 4. 표본조사의기본용어 5. 표본추출법 영광 : 2012 년 12 월제 18 대대통령선거예측조사 여론조사결과 실제개표결과 박근혜 ( 새누리당 ) 경합 박근혜

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임.   가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. 마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf

More information

용역보고서

용역보고서 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ) 9.. ( 주 ) 한국신뢰성기술서비스 목차 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ).... 개요.... 기호및용어정의.... 샘플링검사의설계방법... 3. 정수중단시샘플링검사설계방법...4 4. 신뢰성샘플링시험계획예제...5 hp://www.kors.co.kr 신뢰성샘플링검사의설계방법 ( 정수관측중단시험

More information

..(..) (..) - statistics

..(..) (..) - statistics 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)

More information

제 12강 함수수열의 평등수렴

제 12강 함수수열의 평등수렴 제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

슬라이드 제목 없음

슬라이드 제목 없음 계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

목 록( 目 錄 )

목 록( 目 錄 ) 부 附 록 錄 목록( 目 錄 ) 용어설명( 用 語 說 明 ) 색인( 索 引 ) 목 록( 目 錄 ) 278 고문서해제 Ⅷ 부록 목록 279 1-1 江 華 ( 內 可 面 ) 韓 晩 洙 1909년 10월 11일 1-2 江 華 ( 內 可 面 ) 韓 晩 洙 洪 元 燮 1909년 10월 2-1 江 華 ( 府 內 面 ) 曺 中 軍 宅 奴 業 東 고종 18년(1881) 11월

More information

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는 제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은

v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은 통계와응용 (15 강 ) 담당교수 : 손창균 v 사례연구 오염노출된아기들 2005년 7월 28일자시드니모닝해럴드에 1998년에서 2000년사이에태어난아기 138,000명모두에대한연구결과를인용하였다. 뉴사우스웨일즈주보건부환경보건과에있는Vicky Sheppeard 박사는출생전에최고수준의오염에노출된아기는가장요염수준낮은지역에있던아기들에비해약 12그램정도가볍다고말했다.

More information

BOX 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 01 02 01 02 03 04 01 02 03 04 03 04 05 06 07 08 09

BOX 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 01 02 01 02 03 04 01 02 03 04 03 04 05 06 07 08 09 정답 및 풀이 1. 경제생활과 바람직한 선택 02`쪽 2. 사회 변화와 우리 생활 11`쪽 3. 지역 사회의 발전 20`쪽 1. 경제생활과 바람직한 선택 28`쪽 2. 사회 변화와 우리 생활 35쪽 3. 지역 사회의 발전 42쪽 BOX 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 01 02 01

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

2020 학년도랑데뷰실전모의고사문제지 - 시즌 3 제 1 회 제 2 교시 수학영역 ( 나형 ) 1 5 지선다형 3. 그림은함수 를나타낸것이다 학년도 9월모의평가나형과싱크로율 99% 학년도수학영역대비랑데뷰실전모의고사가형-시즌1~ 시즌6, 나형-시즌

2020 학년도랑데뷰실전모의고사문제지 - 시즌 3 제 1 회 제 2 교시 수학영역 ( 나형 ) 1 5 지선다형 3. 그림은함수 를나타낸것이다 학년도 9월모의평가나형과싱크로율 99% 학년도수학영역대비랑데뷰실전모의고사가형-시즌1~ 시즌6, 나형-시즌 2020 학년도랑데뷰실전모의고사문제지 - 시즌 3 제 1 회 제 2 교시 1 5 지선다형 3. 그림은함수 를나타낸것이다. - 2020학년도 9월모의평가나형과싱크로율 99% - 2020학년도수학영역대비랑데뷰실전모의고사가형-시즌1~ 시즌6, 나형-시즌1~ 시즌2 ( 각시즌 4회분 ) 오르비전자책에서구매가능 - 오타, 오류수정파일은랑데뷰수학카페자료실에서무료다운로드가능

More information

<B1B3C0B0B0FAC1A45FC3E2B7C22E687770>

<B1B3C0B0B0FAC1A45FC3E2B7C22E687770> 확률및통계 확률및통계 1 성격 본과정은과학기술특성화대학의 확률및통계 ( 또는 기초통계학 ) 과목에해당하는내용을다룬다. 이과정을통하여학생들은대학과정이수에필요한정성적 / 정량적자료분석을위한통계적사고의기초를습득하게된다. 또한수학, 통계학, 또는계량적분석을많이요구하는학문을전공하고자하는학생들에게는과학적분석방법의수리적토대를갖추도록하여상위교과목을수강할수있는능력을기르도록한다.

More information

통계적 표본조사론 소개

통계적 표본조사론 소개 통계적표본조사론소개 김호 서울대학교보건대학원 표본의대표성 (1) 2 표본의대표성 (2) 3 표본의대표성 (2) 4 표본의대표성 (2) 5 기초개념 전수조사혹은총조사 (census) vs. 표본조사 (sampling survey) : 전수조사가불가능하거나혹은더정확하지않을수도있음 대상모집단 (target population) and 추출모집단 (sampling

More information

<C3D1C1A4B8AE20303120B0E6BFECC0C720BCF620323030B9AE2E687770>

<C3D1C1A4B8AE20303120B0E6BFECC0C720BCF620323030B9AE2E687770> 1. 1. 1) 1. 경우의 수 주사위를 한 개를 던질 때, 다음 경우의 수 (1) 소수 4. 4. 4) 집에서 학교로 가는 버스는 3 개 노선, 지하철은 4 개 노선이 있다. 버스나 지하철을 이용하여 집 에서 학교로 가는 방법은 모두 몇 가지인가? (2) 5의 약수 2. 2. 2) 1~10 숫자에서 하나를 뽑을때, (1) 3의 배수 경우의수 5. 5. 5)

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE202D20BDC3B0E8BFADC0DAB7E1BAD0BCAE E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE202D20BDC3B0E8BFADC0DAB7E1BAD0BCAE E646F63> Par III. 계량시계열모형 변동성모형 I. 변동성모형 ( ARCH and GARCH models) A. 변동성모형 변동성은자산수익의표준편차혹은분산으로측정되며금융자산의전체적위험 (risk) 에대한대체적인 (crude) 척도로종종사용됨. 주가, 환율, 인플레율등은주식투자자, 수출입업자, 거시경제당국등의입장에서볼때, 그평균적수준보다는변동성에더큰관심을가지게될수있음.

More information

전자회로 실험

전자회로 실험 전자회로실험 2 조 고주현허영민 BJT의고정바이어스및 부품 * 실험목적 1) 고정바이어스와 회로의직류동작점을결정한다. 다이오드의특성 * 실험장비 계측장비 - Digital Multi Meter 부품 -저항 다이오드의특성 부품 - 트랜지스터

More information

통계적 표본조사론 소개

통계적 표본조사론 소개 통계적표본조사론소개 김호 서울대학교보건대학원 기초개념 전수조사혹은총조사 (census) vs. 표본조사 (sampling survey) : 전수조사가불가능하거나혹은더정확하지않을수도있음 대상모집단 (target population) and 추출모집단 (sampling population): 일치하지않을수도있음 (ex. 전화조사 ) 기초개념 표본오차 (sampling

More information

untitled

untitled - 186 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 187 - - 188 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 189 - 한시간교통량 - 190 - HANYANG Univ. Paul Hwang

More information

- 1 - - 2 - 3) 공표효과란기업이배당지급을공표하게되면투자자및이해관계자에게기업의긍정적인이미지개선등부수적인효과가발생하는것을말함. - 3 - - 4 - - 5 - - 6 - - 7 - α β β β β β β β β β ε - 8 - α β β β β β β β β β ε - 9 - α β β β β β β β β β β β ε 세무보고이익 법인세부담액

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i

More information

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > . 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과

More information

제 장확률의기초 같이정리할수있다.. n 30 일때크기 n 의표본이평균 µ, 표준편차 σ 를갖는모집단으로부터추출되었다면표본평균의표본분포는근사적으로정규분포를따른다.. 모집단이정규분포를따르면표본평균의표본분포는임의의표본크기에대하여정규분포를따른다. 즉, 중심극한정리는모집단이무슨

제 장확률의기초 같이정리할수있다.. n 30 일때크기 n 의표본이평균 µ, 표준편차 σ 를갖는모집단으로부터추출되었다면표본평균의표본분포는근사적으로정규분포를따른다.. 모집단이정규분포를따르면표본평균의표본분포는임의의표본크기에대하여정규분포를따른다. 즉, 중심극한정리는모집단이무슨 .6 확률분포 9 z =.0 그림.5 z =.0 보다오른쪽인면적 σ =. 3 µ = 6.5 그림.6 평균 6.5 표준편차. 인정규분포 같다. z = X µ σ = 3 6.5..9 (.3) 책뒤에제시되어있는표준정규분포표에서 P (z.9) = 0.008 이다. 이제백분율에해당하는 z 값을찾는방법에대해생각해보자. 만일 백분위수 P 5 에해당하는 z 값을구하려면표준정규분포표에서면적이

More information

함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과

함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과 함수공간 함수공간, 점열린위상 Definition.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function spce) 이라한다. F(X, Y ) 는다음과같이적당한적집합과같음을볼수있다. 각 x X에대해 Y x = Y 라하자. 그리고 F := Y x x X 이라하자.

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

개념완성 확률과통계 VITAEDU-ACADEMY 노박사수학교실 제 1 장 경우의수 01 경우의수 개념완성 1. 경우의수 01 경우의수 빠짐없이, 중복되지않게 사전식배열, 수형도 복잡한경우의수를셀때는점화식을이용하는경우도있다. (1) 합의법칙 한사건 가 가지의방법으로일어나고, 다른사건 가 가지의방법으로일어난다고할때 또는 가일어나는경우의수는, 가동시에일어나지않을때,

More information

(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰

(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰 제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다.

More information

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률

More information

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의

문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의 제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물 저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

hwp

hwp 2005. 12 80.0 70.0 60.0 농림어업 광공업 사회간접자본및서비스업 50.0 40.0 30.0 20.0 10.0 0.0 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 9.0 8.0 실업률 7.0 6.0 5.0 4.0 전체남자여자

More information

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37 21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각

More information

<BCF6B8AEBFB5BFAA28B0A1C7FC295FC2A6BCF62E687770>

<BCF6B8AEBFB5BFAA28B0A1C7FC295FC2A6BCF62E687770> 제 2 교시 2013 학년도대학수학능력시험문제지 수리영역 ( 가형 ) 1 짝수형 5 지선다형 1. 두행렬, 모든성분의합은? [2 점 ] 에대하여행렬 의 3. 좌표공간에서두점 A, B 에대하여선분 AB 를 로내분하는점의좌표가 이다. 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. sin 일때, sin 의값은? ( 단, 이다.) [2 점 ] 1 2 3

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

완비거리공간 완비거리공간 Definition 0.1. (X, d) 는거리공간일때 X의점렬 < a n > 이모든 ɛ > 0에대해 n o N such that n, m > n o = d(a n, a m ) < ɛ 을만족하면이점렬을코시열 (Cauchy sequence) 이라

완비거리공간 완비거리공간 Definition 0.1. (X, d) 는거리공간일때 X의점렬 < a n > 이모든 ɛ > 0에대해 n o N such that n, m > n o = d(a n, a m ) < ɛ 을만족하면이점렬을코시열 (Cauchy sequence) 이라 완비거리공간 완비거리공간 Definition 0.1. (X, d) 는거리공간일때 X의점렬 < a n > 이모든 ɛ > 0에대해 n o N such that n, m > n o = d(a n, a m ) < ɛ 을만족하면이점렬을코시열 (Cauchy sequence) 이라한다. Example 0.2. < a n > 이 p에수렴하는점렬이면모든 ɛ > 0에대해 n

More information

... — —

...   — — 통계학 추출설계와통계적추론의기초 한국보건사회연구원 2017 년 4 월 24 일 ( 월요일 ) 강의슬라이드 4 1/ 86 목차 1 2 2/ 86 지난시간복습 자료의주요출처 : 1. 일화 2. 공용자료 3. 표본조사 : 관측연구 (observational study) 4. 실험 : 무작위통제실험 (randomized controlled trial, RCT) 3/

More information

<C1B6BBE7BFACB1B82032B1C72031C8A BFACB1B8B3EDB9AE29202D20C0CCB1E2C0E72E687770>

<C1B6BBE7BFACB1B82032B1C72031C8A BFACB1B8B3EDB9AE29202D20C0CCB1E2C0E72E687770> 복합표본조사데이터분석을위한회귀모형접근법의비교 1) - 소규모사업체조사데이터분석을중심으로 - Comparison of regression model approaches fitted to complex survey data 이기재 2) Kee Jae Lee 본논문은복합표본조사분석에서회귀모형접근법으로사용되는모형기반접근법, 설계기반접근법과일반화추정방정식접근법을설명하고,

More information

............ ......

............ ...... 3 N.P 하모닉드라이브 의 작동원리 서큘러스플라인 웨이브제네레이터 플렉스플라인 플렉스플라인은 웨이브제네레 이터에 의해 타원형상으로 탄 성변형되어 이로인해 타원의 장축부분에서는 서큘러스플라 인과 이가 맞물리고 단축부분 에서는 이가 완전히 떨어진 상태로

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3

Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Example 3.1 Files 3.2 Source code 3.3 Exploit flow

More information

Survey Analyst 2012 년하반기사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 다음중일반적으로가장높은응답률을확보할수있는조사방법은? 2. 다음중우편조사의특성과가장거리가먼것은? 3. 연구방법으로서의연역적접근법과귀납적접근법에관한설명으로틀린것은? 4. 참여

Survey Analyst 2012 년하반기사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 다음중일반적으로가장높은응답률을확보할수있는조사방법은? 2. 다음중우편조사의특성과가장거리가먼것은? 3. 연구방법으로서의연역적접근법과귀납적접근법에관한설명으로틀린것은? 4. 참여 Survey Analyst 2012 년하반기사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 다음중일반적으로가장높은응답률을확보할수있는조사방법은? 2. 다음중우편조사의특성과가장거리가먼것은? 3. 연구방법으로서의연역적접근법과귀납적접근법에관한설명으로틀린것은? 4. 참여관찰 (participant observation) 에대한설명으로틀린것은? 제공카페 : Daum

More information

포천시시설관리공단 내규 제 24호 포천시시설관리공단 인사규정 시행내규 일부개정(안) 포천시시설관리공단 인사규정 시행내규 일부를 다음과 같이 개정 한다. 제17조(기간제근로자의 무기계약직 임용) 1 기간제근로자 관리규정 제16조 를 제19조 로 한다. 제20조(인사기록)

포천시시설관리공단 내규 제 24호 포천시시설관리공단 인사규정 시행내규 일부개정(안) 포천시시설관리공단 인사규정 시행내규 일부를 다음과 같이 개정 한다. 제17조(기간제근로자의 무기계약직 임용) 1 기간제근로자 관리규정 제16조 를 제19조 로 한다. 제20조(인사기록) 포천시시설관리공단 인사규정 시행내규 개정이유 및 주요내용 개정구분 :일부개정 개정이유 조항에 대한 오류 수정 및 근무성적평정 작성 기준 변경사항을 적용하여 인사관리 업무에 만전을 기하고자함 주요내용 신 구조문 대비표 참조 개정 규정안 :덧붙임 신 구조문 대비표 :덧붙임 그 밖에 참고사항 :덧붙임 포천시시설관리공단 인사규정시행내규(전문) 포천시시설관리공단 내규

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2

Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 통계학 - CAS0001 7 주차 이산확률분포 이석준 Contents 확률분포 (probability distribution) 이항분포 (binomial distribution) 초기하분포 (hypergeometric distribution) 포아송분포 (poisson distribution) 2 학습목표 확률변수가연속적인지이산적인지구분한다. 이항분포, 초기하분포,

More information

untitled

untitled 韓國數學敎育學會誌시리즈 A < 數學敎育 > J. Korea Soc. Math. Ed. Ser. A: The Mathematical Education 1998. 11. 제 37권, 제 2호, 227-231. Nov. 1998, Vol. 37, No. 2, 227-231. 이항분포의정규근사 1) 이장택 ( 단국대학교 ) I. 서론 2) 이항분포의정규근사문제는고교수학에서중요한비중을차지하고있다.

More information

자료의 이해 및 분석

자료의 이해 및 분석 표본추출방법 * 실제표본조사 다단계집락표집법, 다단계층화집락표집법 1 확률표본추출방법 1. 단순임의추출법 2. 층화추출법 3. 집락추출법 4. 계통추출법 2 예 ) 원광대학생을대상 (500 명 ) 으로건강조사실시 전수조사 모집단 : 10,000 명 표본조사 : 500 명을어떻게뽑을것인가? 3 1. 단순임의추출법 Simple Random Sampling(SRS

More information

슬라이드 1

슬라이드 1 한국금융연수원통신연수동영상강의 리스크관리기초 신용리스크의측정 1. 개요 구분규제자본 (Rgulatory capital) 경제적자본 (Economic capital) 정의 금융리스크에대비하여감독당국이요구하는최저자기자본규모최저자기자본요구비율 : 8% 은행이리스크로부터발생할수있는손실을흡수하는데실제로필요한자기자본규모 1 2. 신 BIS 협약의신용리스크측정방법 ( 규제자본,

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

Ⅰ 경우의수 개념 1 경우의수와순열 004 개념 2 여러가지순열 008 개념 3 조합과중복조합 012 개념 4 이항정리 020 Ⅱ 확률 개념 1 확률의정의및계산 024 개념 2 조건부확률 027 개념 3 독립과종속 028 Ⅲ 통계 개념 1 이산확률변수와확률분포 034

Ⅰ 경우의수 개념 1 경우의수와순열 004 개념 2 여러가지순열 008 개념 3 조합과중복조합 012 개념 4 이항정리 020 Ⅱ 확률 개념 1 확률의정의및계산 024 개념 2 조건부확률 027 개념 3 독립과종속 028 Ⅲ 통계 개념 1 이산확률변수와확률분포 034 Ⅰ 경우의수 개념 1 경우의수와순열 004 개념 2 여러가지순열 008 개념 3 조합과중복조합 012 개념 4 이항정리 020 Ⅱ 확률 개념 1 확률의정의및계산 024 개념 2 조건부확률 027 개념 3 독립과종속 028 Ⅲ 통계 개념 1 이산확률변수와확률분포 034 개념 2 이항분포 038 개념 3 연속확률변수와확률밀도함수 040 개념 4 정규분포 041

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information