<4D F736F F D20BDC3B0E8BFADBAD0BCAE202D20BDC3B0E8BFADC0DAB7E1BAD0BCAE E646F63>
|
|
- 은수 용
- 6 years ago
- Views:
Transcription
1 Par III. 계량시계열모형 변동성모형 I. 변동성모형 ( ARCH and GARCH models) A. 변동성모형 변동성은자산수익의표준편차혹은분산으로측정되며금융자산의전체적위험 (risk) 에대한대체적인 (crude) 척도로종종사용됨. 주가, 환율, 인플레율등은주식투자자, 수출입업자, 거시경제당국등의입장에서볼때, 그평균적수준보다는변동성에더큰관심을가지게될수있음. 정상적시장여건에서주어진신뢰수준으로목표기간동안발생할수있는최대손실금액의계산을통해시장위험을측정하는다양한 VaR(value-a-risk) 모형들은변동성모수들에대한추정또는예측을필요로함 3. 거래되는옵션가격들을도출하기위한 Black-Schloes 공식에도주식시장가격들의변동성이들어가게됨 i 다양한변동성모형들이존재함. 과거변동성의단순평균을통해변동성예측치를추정하는모형 (hisorical volailiy). 단순평균이아닌지수적가중치를준이동평균을통해예측치를추정하는모형 (exponenially weighed moving average models) 3. 변동성에대한 ARMA 류의모형을추정하여예측치를만들어내는모형 (auoregressive volailiy models) 4. 거래된옵션가격들에서시사되는 (implied) 해당옵션의존재기간동안의변동성에대한예측치를만들어내는모형 (implied volailiy models) B. ARCH & GARCH 모형 가장폭넓게사용되는변동성모형 a. Daily S&P 500 Reurns for January 990 December 999 Reurn /0/90 /0/93 Dae 9/0/97
2 i ii iv. 대부분의금융시계열 ( 주식가격, 환율, 인플레율등 ) 은변동성군집 (volailiy clusering) 이라고하는현상을나타냄. 어떤기간동안상당한폭의변동성을보이다가상대적으로평온한기간이길게이어지는현상 a. 현재의변동성수준은직전시기들의변동성수준에양의상관관계 ( 자기상관 ) 를보인다는의미임대부분의통계적모형은해당확률변수의 ( 조건부 ) 평균값을모형화한것임. 자산을보유하는데따른위험의분석또는파생상품의가치의분석등에있어서는변동성이중요. 추정이나신뢰구간구축에있어서도분산의변동성 ( 즉이분산성 ) 을고려함으로써보다정확한추정이나신뢰구간의구축이가능해짐여기서제시하는모형은해당확률변수의조건부분산혹은변동성을모형화하는것임. 조건부분산 a. var e e, e,... E e e, e,... C. ARCH 모형 ARCH(Auoregressive Condiional Heeroskedasiciy) 모형은변동성에서의자기상관을모형화함에있어서, 조건부분산이직전의오차항의제곱값에의존하도록함 i ARCH 는 Engle(98) 에의해제시되었으며, 오차항의분산의현재값이이전의오차항의제곱값들에의존할것이라는자연스러운접근에서출발. 바로직전의오차항의제곱값에의존 : e ARCH() 0 ii 전체모형은조건부평균과조건부분산에대해두개의구별되는모형을포함함. Y X... k X k e 0, e N () (0, ). ARCH(q) () 0 e... qe q iv. ARCH 모형의문제점. ARCH 의차수를결정하는문제 뚜렷한해법은없음. 실제로필요한 q 값이상당히클수가있음 - 추정해야하는모수의수가너무많아지는문제 (parsimonious 하지않음 ) 3. 조건부분산이양이되기위한충분조건은- 추정모수가모두비음 (non-
3 negaive) 이어야하는데, 추정해야하는모수가많아지는경우이러한비음제약이충족되지않을수있음 D. GARCH 모형 ARCH 모형의문제점을극복하기위한자연스러운확장이며, Bollerslev (986) 와 Taylor(986) 에의해독립적으로제시됨. 오늘날 ARCH 는실제거의사용되지않고있으며, 반면에 GARCH 는광범위하게사용됨. GARCH 모형은조건부분산이직전의오차항의제곱값과함께자체시차값 (lagged values) 에의존하도록함 i GARCH(,) 모형. 표준적인 GARCH(,) 설정 : Y X... X e 0 k k, () i () e. 조건부평균에대한식 () 은외생변수및오차항의함수로표현됨 3. - 기까지알려진정보에기반한조건부분산의예측치는세가지 항의함수로표현되고있음 a. 상수항 : b. 이전기의변동성에대한새로운정보 : 조건부평균에대한 식으로부터의잔차의제곱으로측정됨 : e (he ARCH erm) c. 이전기의조건부분산에대한예측치 : (he GARCH erm) 4. GARCH(,) 의 (,) 은 차 GARCH 항과 차 ARCH 항의존재를가르키는것임 a. 통상의 ARCH 모형은 GARCH 모형의특별한경우로조건부분산방정식에시차조건부분산이존재하지않는경우임 b. 금융분야에있어서이러한모형설정은다음과같이해석됨 금융거래자가금융자산수익에대한이번기의분산을예측함에있어과거시기로부터예측된분산 (GARCH 항 ) 그리고이전기에관측된변동성에대한정보의가중합으로예측함 i 자산의수익이상방혹은하방으로예기치않게컸을경우, 금융거래자는다음기의분산에대한예측치를증가시킴 ii 이모형은금융자산의수익자료에서종종관찰되는변동성군집 (clusering) 과부합됨.( 즉수익의큰변동은미래의 3
4 추가적인큰변동으로이어짐 ) 5. 모형의해석에도움이되는분산방정식에대한다른표현들이있음 a. 분산방정식의오른쪽에대해시차분산들을순차적으로대체해나갈경우, ( ) j j e j 여기서볼때 GARCH(,) 모형은표본분산과유사하나현시점에서멀리떨어진오차항제곱에대해기하작적으로감소하는가중치를줌 i GARCH(,) 은 ARCH() 으로표현될수있음을의미. 그럼에도불구하고 GARCH(,) 모형은세개의파라메터만추정하면됨 (parsimonious),. 따라서비음제약도충족할가능성이높음 b. e. e ( ) e ii 오차항의제곱은이분산 ARMA(,) 과정을따름. + 의크기가충격의지속성을결정하게되는데많은실제경우에있어서이는 에가까운값을가지며, 따라서충격은상당히완만하게감쇄해나가게됨비조건부분산 (The uncondiional variance). GARCH(,) 모형에서의조건부분산은 a. b. 조건부분산은시간에따라변화하지만, 비조건부분산은시간 불변으로가정할수있으며, 비조건부분산을 E(E(X I)) = E(X) 임을이용하여 E E E I E E I c. + < 인경우에 / 이라하면, d. + 인경우에비조건부분산의존재하지않음 이경우분산에있어서의비정상성 (non-saionariy in variance) 라고명명할수있음 i 특히 + = 인경우분산에있어서의단위근혹은 Inegraed 4
5 iv. GARCH (IGARCH) 라부름 (G)ARCH 모형의추정. (G)ARCH 모형들은오차항이조건부정규분포를한다는가정하에최우추정법에의해추정함 Y X... X e k k 0, e I N 0, e l 이경우로그우도함수는다음과같이주어짐 ( Y 0 X log( ) log( )... X k k ) 단, ( Y 0 X... k X k ) v. GARCH(p, q) Model. GARCH(p, q) : ' [ Y ] [ X ] [ e ] p q j j j i e i i p : 는 GARCH 항의차수, q : ARCH 항의차수. 대부분의경우 GARCH(, ) 으로도변동성군집을잡아내는데충분하며, 그이상의고차 GARCH 모형은거의사용되지않음 II. GARCH 모형의확장 A. 분산방정식의추가적설명변수 기타다른변수들을분산방정식에포함시킬수있음 e i 문제는이모형의분산의예측치가양 (+) 이라는보장이없음. 따라서포함되는설명변수를항상 + 값을갖거나음의분산예측치를낳게될가능성을최소화하는형태로포함시키는것이바람직함. 예컨대 Z abs ) ( X i B. The (G)ARCH-M Model 조건부분산을조건부평균방정식에포함시키는경우 : ARCH-in-Mean (ARCH-M) model (Engle, Lilien and Robins, 987) Y X X 0... k k 5
6 . ARCH-M 모형은자산의기대수익이자산의기대위험과연관되는경우에종종사용됨. 기대위험에대한추정계수는위험-수익 radeoff 의척도임 3. ARCH-M 모형의변형은조건부분산대신에조건부표준편차를사용하는것임 C. 변동성모형에서의레버리지효과의고려 레버리지효과. 시장이참가자들의기대밖으로하락세에있을때 ( 음의충격의경우 ) 같은크기의양의충격에비하여변동성에훨씬더큰영향을미침. 일반적인 GARCH 모형은현재수익률의잔차항의 제곱 이미래수익률의변동성에영향을미치게되어있어조건분변동성에대한충격이양인지또는음인지에관계없이항상대칭적인효과를미치므로이러한레버리지효과를갖는경우예측에한계를가짐 i Exponenial Garch 모형 (EGARCH) (Nelson, D.B., 99, Economerica Vol. 59). 모형 a. r X : 조건부평균 (X: 설명변수벡터, : 파라메터 b. 벡터 ) ln ln c. 또는다음과같이표현하기도함 (EVIEWS) ln ' ln d. 이러한로그-로그형태의설정은추정모수가음수라해도조건부분산이양수임이보장된다는이점이있음. 있음 a. 라할때, 0 이면, ln 0 이면, 는 의부호에의해영향을받음을알수 ln 충격의부호에따라비대칭적으로반응하게됨 이고, 가되어 EGARCH 모형의변동성은 b. 귀무가설 H : 0 0 을검정함으로써비대칭적효과의존재 여부를확인할수있게됨 (가 일경우레버리지효과가존재함 ) 3. EVIEWS 를이용한 EGARCH 모형추정 6
7 a. GARCH-M(,) 모형추정시이용했던 Yen-Dollor 환율자료를사용하여 EGARCH 모형을추정해봄 b. GARCH-M 항의유의성이없는것으로나타났었으므로, 조건부평균식에서표준편차를제거해주고여기서는 EGARCH(,) 으로추정함 4. 그추정결과는다음과같이나타난다. r i ln ln ii Threshold Garch 모형 (TGARCH) (Glosen, Jaganahan, and Runkle (993), Journal of Finance Vol. 48) - GJR 모형이라고도불리움. GARCH 모형의틀안에서레버리지효과를고려 a. d, 0 d if 0 0 oherwise 7
8 b. 가 + 일경우레버리지효과가존재함. 같은자료를이용한추정결과임 r i d ii 이경우지속성파라메터는 /가됨 D. Componen 모형 비조건부분산이시간가변 (ime-varian) 한모형 a. GARCH(,) 모형에서의조건부분산이 와 같이주어질경우비조건부분산이시간가변하는경우 Componen 모형 q E E E I E E I q q 8
9 q q q i q q q - () ii q 는다음과같이묘사됨 q q - () iv. 식 () 의 q 는항상요소 (permanen componen) 로변동성의수준을나타내는지속적인과정이며, 일반적금융시계열의경우 의값은 에매우가까움 ( 극단적인경우 이라면 q 는임의보행과정이됨 ) v. 식 () 의 q 는일시적요소로서지수적으로급격히 0 으로수렴함. Eviews 에서 Componen 모형을대칭적인경우와비대칭적인경우 (TARCH) 에대해적용할수있음 a. SP500 지수와그주가수익률에대한자료 sp500.da 을이용하여다음과같이주가수익률에대한비대칭 componen 모형을다음과같이설정 r r : 조건부평균 (AR() 모형설정 ) i q qqd q (ransional componen) ii q q (permanen componen) b. 다음과같은추정결과를얻을수있음 r r i q q qd q ii q q
10 0
<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
statistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
R t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경
KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,
Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
Microsoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP
10. ..
점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm
i f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악
41호-소비자문제연구(최종추가수정0507).hwp
소비자문제연구 제41호 2012년 4월 국제유가 변동이 주유소 휘발유 가격에 미치는 Rockes & Feahers 현상*39) 차경천 요약 본 연구에서는 유류 산업(Oil Indusry)에서 흔히 회자되는 원유가격이 오를 때 휘발유 가격은 로케트 발사처럼 빠 르게 오르고 원유가격이 내릴 경우 휘발유 가격은 새의 깃털이 공중에서 떨어지듯 천천히 내려가는 Rockes
G Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
Microsoft Word - SAS_Data Manipulate.docx
수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )
Microsoft Word - 동태적 모형.doc
동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x
수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론
수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생
제 3강 역함수의 미분과 로피탈의 정리
제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (
에너지경제연구 제12권 제2호
에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세
Microsoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
- 459 - 유신익 김동철 - 460 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질, 정보의비대칭성, 업종집중도및스타일간의영향분석 - 461 - 유신익 김동철 - 462 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질, 정보의비대칭성, 업종집중도및스타일간의영향분석 - 463 - 유신익 김동철 - 464 - 위기기간의동안국내공모형주식펀드의수익률, 정보의질,
3.고봉현
Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets.. 1. 2.. 1. 2. 3. ARCH-LM.. 1. 2. Abstract.,,,. 2000,,.. 2008 1,382 3,363 41.1%, 1995 2009 7 17
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
01
2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35 36 37 38 39 40 41 < 표 1> 표본자료의기초통계량 42 [ 그림 1] 표본시계열자료의추이 43 < 표 2> 수준및로그차분변수에대한단위근검정결과
<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics) 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion) 고검정 (es) 하는학문 거시소비함수 (Keynse). C=f(Y), 0
에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1
에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 2 3 4 5 6 ln ln 7 8 9 [ 그림 1] 해상풍력단지건설로드맵 10 11 12 13 < 표 1> 회귀분석결과 14 < 표 2> 미래현금흐름추정결과
<31362E C B8F0C7FCC0BB20C0CCBFEBC7D120C1D6C5C320B8C5B8C52C20C0FCBCBC2C20BFF9BCBCBDC3C0E5C0C720BAAFB5BFBCBAB0FA20C0CCC0FCC8BFB
GARCH, EGARCH 모형을이용한주택매매, 전세, 월세시장의변동성과이전효과에관한연구 * A Study on the Volatility and Spillover Effect of Housing Sales, Chonsei, and Monthly Rent Market Using GARCH, EGARCH Model 1) 전해정 ** Haejung Chun 目次
Microsoft Word - ch2_smoothing.doc
FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.
벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia
제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous
<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임
연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
1단원
January S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 24 25 26 27 28 31 29 30 1 10 11 12 13 14 15 2 16 17 18 19 20 21 3 22 23 24 25 26 27 4 28 29 30 31 32 33 5 34 35 36 37
(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1
슬라이드 1
Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값
<30342E20B8F0BCF6BFF82E687770>
Journal of Korea Port Economic Association, Vol.30, No.03, 2014, 01-14. 모수원 * 이광배 ** 1) Estimation of BDI Volatility: Leverage GARCH Models Mo, Soo-Won Lee, Kwang-Bae Abstract : This paper aims at measuring
Microsoft PowerPoint - SBE univariate5.pptx
이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재
이슈분석 2000 Vol.1
i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
가볍게읽는-내지-1-2
I 01. 10 11 12 02. 13 14 15 03. 16 17 18 04. 19 20 21 05. 22 23 24 06. 25 26 27 07. 28 29 08. 30 31 09. 32 33 10. 34 35 36 11. 37 12. 38 13. 39 14. 40 15. 41 16. 42 43 17. 44 45 18. 46 19. 47 48 20. 49
한눈에-아세안 내지-1
I 12 I 13 14 I 15 16 I 17 18 II 20 II 21 22 II 23 24 II 25 26 II 27 28 II 29 30 II 31 32 II 33 34 II 35 36 III 38 III 39 40 III 41 42 III 43 44 III 45 46 III 47 48 III 49 50 IV 52 IV 53 54 IV 55 56 IV
kbs_thesis.hwp
- I - - II - - III - - IV - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -
Microsoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
21세기 미국의 패권과 유엔
126 김지열 국제 지역연구 14 권 2 호 2005 여름 pp. 125 141 I. 서론 중동권경제에서의장기기억에관한연구 : 주식수익률을중심으로 김지열 아시아대학교보건한방학부전임강사 τ τ τ 주제어 : 중동권국가, 주식시장, 수정 R/S분석, 허스트지수, V 통계량 중동권국가 (Middle East country) 는아직까지우리나라에서분쟁의지역이나관광지로만인식되어있을뿐,
31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37
21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt
<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자
시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 (
시계열분석의개요 (the nature of time series analysis) 시계열자료 (time series data) 연도별 (annual), 분기별 (quarterly), 월별 (monthly), 일별 (daily) 또는시간별 (hourly) 등시간의경과 ( 흐름 ) 에따라순서대로 (ordered in time) 관측되는자료를시계열자료 (time
第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대
第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대검찰청 차장검사,대검찰청 검사,검찰연구관,부
Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
Microsoft Word - 07_충북대_안지희.doc
서브프라임위기에대한기업지배구조와주식수익률의관계 충북대학교대학원안지희 < 요약 > 세계는현재금융위기에놓여있으며금융강대국인미국은위기속에서쉽게헤어나오지못하고있다. 이번서브프라임세계금융위기를통해기업의투명성및건전성의중요함을깨우쳤다. 이시점에서기존의지배구조와주식수익률간의연관성분석에금융위기를반영하는거시적요소를투입시키는것은의미가있다. 본연구는한국지배구조개발지원센터 (CGS)
(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)
- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
펀드명 : DB 지수연계리자드증권 NHE-3[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식 ELS 41
펀드명 : DB 지수연계리자드증권 NHE-3[ELS- 파생형 ]_ 운용 누계 주식 ELS 416 416 장외 합계 416 416 3. 시나리오법에의한손익변동 3 4. 최대손실금액 (VaR : 99%, 10 일 ) 71 펀드명 : DB 지수연계리자드증권 NHE-4[ELS- 파생형 ]_ 운용 누계 주식 ELS 1,151 1,151 장외 합계 1,151 1,151
펀드명 : DB 지수연계리자드증권 NHE-4[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식 ELS 1,
펀드명 : DB 지수연계리자드증권 NHE-4[ELS- 파생형 ]_ 운용 누계 주식 ELS 1,151 1,151 장외 합계 1,151 1,151 3. 시나리오법에의한손익변동 12 4. 최대손실금액 (VaR : 99%, 10 일 ) 124 펀드명 : DB 지수연계리자드증권 NHE-5[ELS- 파생형 ]_ 운용 누계 주식 ELS 1,926 1,926 장외 합계 1,926
펀드명 : DB 지수연계리자드 SHE-9 호 (USD)[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식
펀드명 : DB 지수연계리자드 SHE-9 호 (USD)[ELS- 파생형 ]_ 운용 누계 주식 ELS 503 503 장외 합계 503 503 3. 시나리오법에의한손익변동 0 4. 최대손실금액 (VaR : 99%, 10 일 ) 66 펀드명 : DB 지수연계리자드증권 NHE-1[ELS- 파생형 ]_ 운용 누계 주식 ELS 1,683 1,683 장외 합계 1,683
FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
펀드명 : DB 지수연계리자드증권 NHE-4[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식 ELS 1,
펀드명 : DB 지수연계리자드증권 NHE-4[ELS- 파생형 ]_ 운용 누계 주식 ELS 1,151 1,151 장외 합계 1,151 1,151 3. 시나리오법에의한손익변동 16 4. 최대손실금액 (VaR : 99%, 10 일 ) 60 펀드명 : DB 지수연계리자드증권 NHE-7[ELS- 파생형 ]_ 운용 누계 주식 ELS 215 215 장외 합계 215 215
<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
펀드명 : DB 지수연계듀얼엑시트 29(USD)[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식 ELS
펀드명 : DB 지수연계듀얼엑시트 29(USD)[ELS- 파생형 ]_ 운용 누계 주식 ELS 6,535 6,535 장외 합계 6,535 6,535 3. 시나리오법에의한손익변동 57 4. 최대손실금액 (VaR : 99%, 10 일 ) 629 펀드명 : DB 지수연계듀얼엑시트 30(USD)[ELS- 파생형 ]_ 운용 누계 주식 ELS 2,589 2,589 장외
PowerPoint Presentation
09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical
펀드명 : DB 지수연계듀얼엑시트 26(USD)[ELS- 파생형 ]_ 운용 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 주식 ELS 장외 누계 주식 ELS
펀드명 : DB 지수연계듀얼엑시트 26(USD)[ELS- 파생형 ]_ 운용 누계 주식 ELS 5,868 5,868 장외 합계 5,868 5,868 3. 시나리오법에의한손익변동 4 4. 최대손실금액 (VaR : 99%, 10 일 ) 583 펀드명 : DB 지수연계듀얼엑시트 27(USD)[ELS- 파생형 ]_ 운용 누계 주식 ELS 15,358 15,358 장외
이분산시계열모형을이용한 주가연계증권의군집분석 이 을 으로 함
이분산시계열모형을이용한 주가연계증권의군집분석 이분산시계열모형을이용한 주가연계증권의군집분석 이 을 으로 함 이 을 의 으로 함 요 약 주가연계증권 은원금또는최저수익률을보장하되주가지수가일정수준에도달하면약속한금리를지급하는금융파생상품이다 상품은기초자산의주가지수 예상연수익률 조기상환기준퍼센트 만기 그리고상환간격등의조건을다르게설정하여다양하게발행되는데 그러한조건차이가투자결과에미치는영향에관한연구는미흡한실정이다
중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed
중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),
(Hyunoo Shim) 1 / 26 조건부생명확률 (coningen probabiliy) 이란? 사망의순서 ( 조건이됨 ) 를고려한생명확률동시생존자 / 최종생존자생명확률 : 사망이 x이든 y이든가리지않음 ( 대칭적 ) [ 조건부생명확률 : x와 y의사망순서를고려함 ( 비대칭적 ) ➀ 기호 : 예를들어, q 1 xy a) 사망순서 : 숫자 1, 2, 3,...
8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모
8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모형의추정 (estimation) 모형의진단 (diagnostic checking) 예 아니오
제 12강 함수수열의 평등수렴
제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.
제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
PowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
에너지포커스 2017 봄호(제14권 제1호 통권63호)
논단 일일최대전력소비변동성과기온의연속 누적효과간관계분석 일일최대전력소비변동성과기온의연속 누적효과간관계분석 1) 신동현에너지경제연구원부연구위원 ( dhshin@keei.re.kr) 1. 서론 2012년공급예비율이 5% 까지하락하여전력수급계획과관리에큰어려움을겪었으나, 공급이안정화되고수요관리가강화되면서 2014년부터는공급예비율이 10% 내외를유지하고있다. 2) 이와같은공급안정화가유지된다면전력소비와관련된정책은수요의
유진 SmartLeverage 사모증권 1 호 ( 주식혼합 - 파 신규 유가증권 선물 2,105 8,166-6,062 장내 누계 유가증권 선물 2, ,109 장내 가격 ,
유진자랑사모증권 31 호 ( 채권 - 파생형 ) 신규 금리 선물 0 5,293-5,293 장내 누계 금리 선물 0 21,164-21,164 장내 가격 0 21164 26.455 15873 52.91 10582 21,164.00 79.365 5291 105.82 0 15,873.00 132.275-5291 158.73-10582 185.185-15873 10,582.00
메타분석: 통계적 방법의 기초
메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성
= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
국가기술자격 재위탁 효율성 평가
- i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - Ⅱ - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ
완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정
. 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계
OCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
164
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환