Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Size: px
Start display at page:

Download "Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt"

Transcription

1 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁..

2 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정

3 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo fuco 어떤특정확률변수가특정값 보다작을확률 확률변수 X 의누적분포함수 F. 는모든실수 에대하여다음과같이정의된다. F P X 구간에대한확률정의 P{ a < X b} P{ X b} P{ X a} F b F a. 확률밀도함수 Pobably Dsy Fuco P { a X b} P{ a < X < b} f x dx 위의함수 fx 가존재한다고할때이함수 fx 를확률변수 X 의확률밀도함수라한다. b a

4 누적분포함수의성질 누적분포함수와확률밀도함수와의관계 F P X f x dx 누적분포함수를알면미분을통해확률밀도함수를알수있다. d f x F x dx 전구간에대해확률밀도함수를적분하면 이된다. F f x dx F f x

5 누적분포함수및확률밀도함수의예 어떤설비의수명을나타내는확률변수 X 의누적분포함수가다음과같은형태라하자. F, f df d, P{ < X } F F

6 신뢰도함수와고장률 신뢰도함수와고장률 신뢰도함수 Rlably fuco : R 시간의함수로서특정한시간까지고장없이주어진임무를수행할확률 R P X F 고장률 falu a o hazad a : 시간의함수로서시간 에서의고장률은시간 까지고장이없다가시간 직후고장을일으킬단위시간당빈도를의미 f f P X F 는시간 까지고장이없다가, + 사이에고장을일으킬확률로해석

7 수명의기대치와분산 기대치 또는평균 xpcao; ma 확률변수가취하는평균적인값 E [ X ] xf x dx MTTF 분산 vaac 평균을기준으로퍼져있는지를판단하는척도 Va [ X ] E[ X E[ X ] ] E[ X ] E[ X ] wh 표준편차 sadad dvao 분산의제곱근 sd X Va[ X ] E[ X ] x f x dx

8 지수분포 지수분포 수명분포로가장널리이용 확률밀도함수 f 누적분포함수, 지수분포의모수 : -> 고장률, 평균수명의역수 F 신뢰도함수 x f x dx dx R F 고장률 f F

9 지수분포 : 일때 f, F 확률밀도함수 누적분포함수 R F 신뢰도함수 고장률

10 와이블분포 와이블분포 고장률이노후등으로시간에따라커지는경우에사용 확률밀도함수 f 누적분포함수 F 신뢰도함수 f x dx, 와이블분포의모수 : 형태모수 shap paam : 척도모수 scal paam R F 고장률 f F

11 와이블분포의확률밀도함수 f,.5 3.5

12 와이블분포의고장률 >: casg : cosa <: dcasg 3.5.5

13 수명분포와 MTTF 수명 X 가지수분포를따른다고할때 MTTF [ ] x E X xf x dx x dx 수명 X 가와이블분포를따른다고할때 MTTF E[X ] Γ Γ β β x x dx β Γ β

14 와이블분포의예 어떤부품의수명이,. 의와이블분포를따른다고하자. - 평균수명 MTTF E[ X ] /. Γ.5 5 π 886.7, 시간 에서의신뢰도 R..3679, 시간 에서의고장률.., 시간 에서의고장률..4

15 분포함수의추정 추정 고장데이터를바탕으로수명분포의모수값들을정하는것 검정 고장데이터들이주어진분포에잘맞는지여부를통계적으로판단하는것 추정방법 확률지에의한방법 F F x축 Y축의척도조정 모멘트방법 E [ X ] X ; Va[ X ] s 최우추정법 : 우도함수를최대화하는모수값결정

16 와이블확률지 F η / m / m µ Γ + / m σ { Γ + / m Γ + / m } X l Y ll F 63% Y X,Y µ η σ η mˆ mˆ % - T -4 X. T ηˆ -

17 수명시험과고장데이터종류 개의부품을시간 에시험시작 완전고장데이터 개의부품이모두고장날때까지시험 정시고장데이터 yp I csod daa 주어진시간 T 까지시험 정수고장데이터 yp II csod daa T 정수 개의부품이고장날때까지시험 y

18 최우추정법 Maxmum Lklhood Esmao 확률밀도함수 f; θ, θ: paams Daa:,,..., 우도함수 lklhood fuco L θ; daa f ; θ f ; θ L f ; θ 최우추정법 : 우도함수를최대화하는모수 θ 값결정 Lθ θ* θ

19 데이터종류와우도함수 완전고장데이터 compl o ucsod daa L θ; daa f ; θ 정시고장데이터 yp I csod daa L θ; daa [ R T; θ ] f ; θ : T 까지의고장부품수 정수고장데이터 yp II csod daa [ R y ; θ ] L θ ; daa f ; θ : 번째부품의고장시간 y

20 지수분포지수분포모수의모수의최우추정최우추정, ; f 완전고장데이터 daa L ; daa L l ; l l L ˆ

21 지수분포지수분포모수의모수의최우추정최우추정 계속계속 정시고장데이터 yp I csod daa T T daa L ; + T L l l l + T L + T ˆ 정수고장데이터 yp II csod daa + y ˆ 고장수 / 총시험시간 ˆ

22 .,., 에대해산출 ll 이최대가되는, 결정와이블분포와이블분포모수의모수의최우추정최우추정,, ; f 완전고장데이터 daa L ;, + + L l l l l l l l l l l + + L L ˆ ˆ

23 와이블분포와이블분포모수의모수의최우추정최우추정 계속계속 정시고장데이터 yp I csod daa ;, T daa L T L l l l l + + T L l + T ˆ

24 Mab 에서의분석

25 Mab 에서의분석 계속 Wbull, ucsod Cas

26 Mab 분석결과 Wbull,, Ucsod Cas..5 Pobably Dsy Fuco Ovvw Plo fo F-m ML Esmas - Compl Daa Wbull Pobably Pc Shap Scal MTTF Falu Cso Goodss of F AD* Suvval Fuco Hazad Fuco Pobably Ra

27 Csog Opos

28 Mab 분석결과 Wbull,, yp I csod..5 Ovvw Plo fo F-m ML Esmas - Typ Tm Csod a Pobably Dsy Fuco Wbull Pobably Pc Shap Scal MTTF Falu Cso Goodss of F AD* 4.8. Suvval Fuco Hazad Fuco Pobably Ra....

29 Mab 분석결과 Wbull,, yp II csod..5 Ovvw Plo fo F-m ML Esmas - Typ Falu Csod a 7 Pobably Dsy Fuco Wbull Pobably Pc Shap Scal MTTF Falu Cso Goodss of F AD* 4.8. Suvval Fuco Hazad Fuco Pobably Ra....

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

용역보고서

용역보고서 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ) 9.. ( 주 ) 한국신뢰성기술서비스 목차 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ).... 개요.... 기호및용어정의.... 샘플링검사의설계방법... 3. 정수중단시샘플링검사설계방법...4 4. 신뢰성샘플링시험계획예제...5 hp://www.kors.co.kr 신뢰성샘플링검사의설계방법 ( 정수관측중단시험

More information

용역보고서

용역보고서 여러고장모드를갖는자료분석방법 2009. 1. ( 주 ) 한국신뢰성기술서비스 목차 여러고장모드를갖는자료분석방법...3 1. 개요...3 2. 분석방법및예제...4 2.1 CFM(Competing Failure Mode) 분석...4 2.2 Mixed Weibull 분석...4 2.3 Mixed Weibull 예제...5 3. 요약정리...9 ii http://www.korts.co.kr

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드] 제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 예제 7. (p.37) 그림의단순지지보에대해전단력선도와굽힘모멘트선도를작도하라. [ 부호규약 ] + Fy 4 b + Fy ( ) 예제 7. (p.37) 그림의단순지지보에대해전단력선도와굽힘모멘트선도를작도하라. [ 부호규약 ] + Fy 4 b + Fy ( ) 예제 7. (p.39) 그림의단순보에대해전단력선도와굽힘모멘트선도를작도하라 + Fy b + Fy 예제 7.3

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

수리통계학

수리통계학 제 강통계학 Revew Part I. 확률론 (Probablty Theory) I. 확률변수 (Radom Varable) 와확률분포 A. 확률변수 는표본공간 Ω 상에서정의되는 real valued fucto 임. 어떤확률적실험의결과로나올수있는모든가능한결과에대해어떤. 실수값이대응되어야함 하나의실험에대해여러가지의확률변수가정의될수있음. 주사위던지는실험 : 던진결과나오는값을대응시켜주는확률변수

More information

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.

More information

2013 건설공사표준품셈기계설비부문 제 I 편 공통사항제 1 장 적용기준제 2 장 가설공사제 II 편 기계설비공사제 1 장 공통공사제 2 장 공기조화설비공사제 3 장 위생및소화설비공사제 4 장 가스설비공사제 Ⅲ 편 플랜트설비공사제 1 장 공통공사제 2 장 화력발전기계설비공사제 3 장 수력발전기계설비공사제 4 장 제철기계설비공사제 5 장 쓰레기소각기계설비공사제

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP

More information

-주의- 본 교재는 최 상위권을 위한 고난이도 모의고사로 임산부 및 노약자의 건강에 해로울 수 있습니다.

-주의- 본 교재는 최 상위권을 위한 고난이도 모의고사로 임산부 및 노약자의 건강에 해로울 수 있습니다. Intensive Math 극악 모의고사 - 인문계 등급 6점, 등급 점으로 난이도를 조절하여 상위권 학생들도 불필요한 문제에 대한 시간 낭비 없이 보다 많은 문제에서 배움을 얻을 수 있도록 구성하였습니다. 단순히 어렵기만 한 문제들의 나열이 아니라 수능에 필요한 대표 유형을 분류 하고 일반적인 수험환경에서 흔하게 배울 수 있는 내용들은 과감하게 삭제 수능시험장

More information

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ 수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

Microsoft Word - Ch3_Derivative2.docx

Microsoft Word - Ch3_Derivative2.docx 통계수학 Chapter. 미분.5 미분응용.5. 최대값과최소값 지역 (local) 과절대 (absolute) 의의미 f 절대최소지역최대지역최소절대최대지역최소 차미분정리함수 f 가일정구간안의모든점에서미분가능하고구간내임의의점 c 에서 차미분이 0 이면 ( c) 0 ) 함수 f 는점 c 에서지역최대값이나최소값을갖는다. 증가함수와감소함수정의만약 > f ( ) > f

More information

1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F

More information

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m n dn dt f v 4 π m kt 3/ v mv exp kt f v dfv 0 v 0, v /// fv max 0 dv kt v p m / vfvdv 0 kt vav. 8v f dv π m k m 0 v / R0 4 T vav.45 0 cm / sec M M p v v fvdv 0 3 fvdv 0 kt m / 3kT v v. 5 m rms v p n dn

More information

함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과

함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과 함수공간 함수공간, 점열린위상 Definition.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function spce) 이라한다. F(X, Y ) 는다음과같이적당한적집합과같음을볼수있다. 각 x X에대해 Y x = Y 라하자. 그리고 F := Y x x X 이라하자.

More information

Microsoft PowerPoint - LN05 [호환 모드]

Microsoft PowerPoint - LN05 [호환 모드] 계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected

More information

untitled

untitled - 186 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 187 - - 188 - HANYANG Univ. Paul Hwang (http://www.cyworld.com/transportation) - 189 - 한시간교통량 - 190 - HANYANG Univ. Paul Hwang

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)

More information

Chapter 10 Electromagnetic Wave Propagation

Chapter 10  Electromagnetic Wave Propagation . lcomgnc Wv Popgon . WAV IN GNRAL u (. f ( u (. g( u (.b f ( u g( u (.c / u (.3 B ~, c wh ~ c ~ c B ~ c B ~ B c B B B B B B ( B B B J B u = ( u u 참고 : Vco dn ( 벡터항등식 φu = φ u + u φ φu = φ u + φ u u v

More information

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX)

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX) A3 : 30W 10 : 1kW A5 : 50W 15 : 1.5kW 01 : 100W 20 : 2kW.... 08 : 800W 50 : 5kW CSD series CSDD series CSDF series CSDS series CSDH series CSDN series CSDX series A : AC110V B : AC220V S : / P : 20?C

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로 3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

hwp

hwp 2005. 12 80.0 70.0 60.0 농림어업 광공업 사회간접자본및서비스업 50.0 40.0 30.0 20.0 10.0 0.0 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 9.0 8.0 실업률 7.0 6.0 5.0 4.0 전체남자여자

More information

untitled

untitled Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f

More information

슬라이드 1

슬라이드 1 1 장수치미분 1.1 소개및배경 1. 고정확도미분공식 1.3 Richardson 외삽법 1.4 부등간격의미분 1.5 오차가있는데이터의도함수와적분 1.6 MATLAB 을이용한수치미분 1.1 소개및배경 (1/4) 미분이란무엇인가? 도함수 : 독립변수에대한종속변수의변화율 y f( xi + x) f( xi) dy f( x = i + x) f( xi) = lim =

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

KH100¼³¸í¼�

KH100¼³¸í¼� 9 PC 뷰어 9 PC 뷰어 재생 목록 전/후방 캡쳐 KV100 뷰어의 창 조정 버튼 중 전/후방 영상 버튼 을 누르면 나타납니다. 정지된 영상의 일부를 확대하거나 선명하게 보거나 파일로 저장, 인쇄 등을 할 수 있습니다. 창 크기 조절 우측 하단을 좌측 마우스 버튼을 누른채 늘이면 많은 양의 목록을 볼 수 있음 항목 39 명 칭 설 명 불러온 파일의 유형을

More information

.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의

.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의 lrognis II 전자기학 제 장 : 전자파의전파 Prof. Young Cul L 초고주파시스템집적연구실 Advnd RF Ss Ingrion ARSI Lb p://s.u..kr/iuniv/usr/rfsil/ Advnd RF Ss Ingrion ARSI Lb. Young Cul L .4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄.

More information

... —....—

...   —....— 통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =

More information

2018년 수학성취도 측정시험 모범답안/채점기준/채점소감 (2018학년도 수시모집, 정시모집 및 외국인특별전형 합격자 대상) 2018년 2월 13일, 고사시간 90분 2018년 1번 x3 + x2 + x 3 = x 1 x2 1 lim. [풀이] x3 + x2 + x 3

2018년 수학성취도 측정시험 모범답안/채점기준/채점소감 (2018학년도 수시모집, 정시모집 및 외국인특별전형 합격자 대상) 2018년 2월 13일, 고사시간 90분 2018년 1번 x3 + x2 + x 3 = x 1 x2 1 lim. [풀이] x3 + x2 + x 3 8년 수학성취도 측정시험 모범답안/채점기준/채점소감 (8학년도 수시모집, 정시모집 및 외국인특별전형 합격자 대상) 8년 월 일, 고사시간 9분 8년 번 x + x + x x x lim. [풀이] x + x + x (x )(x + x + ) lim x x x (x )(x + ) x + x + lim x x+ limx x + x + limx x + 6 lim 8년

More information

FX2N-2AD FX2N-2DA FX2N-4AD FX2N-4DA 1 FX2N-2AD FX2N-2DA FX2N-4AD FX2N-4DA FX2N-4AD-PT FX2N-4AD-TC FX2N-1HC FX2N-8AD FX-1PG FX2N-1PG 2 3 4 5 6 7 8 9 10 FX2N-10PG FX2N-4AD-PT FX2N-4AD-TC FX2N-1HC FX2N-8AD

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

i f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)

More information

중소기업경기지수및경영환경지수 개발에관한연구 - 제조업중심으로 - A Study on Development of the Business Indicators in SMEs focused on manufacturing 요약 1) 125 IPISA 124 ISISA 120 120 115 110 105 100 95 116 112 108 104

More information

미분기하학 II-16 복소평면의선형분수변환과쌍곡평면의등장사상 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 Ø 'x! xxñ 2007 년 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 (Ø 'x!) 미분기하 II 2007 년 1 / 26

미분기하학 II-16 복소평면의선형분수변환과쌍곡평면의등장사상 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 Ø 'x! xxñ 2007 년 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 (Ø 'x!) 미분기하 II 2007 년 1 / 26 미분기하학 II-16 복소평면의 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 Ø 'x! xxñ 2007 년 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 (Ø 'x!) 미분기하 II 2007 년 1 / 26 자, 이제 H 2 의등장사상에대해좀더자세히알아보자. Definition 선형분수변환이란다음형식의사상을뜻한다. Example f (z) = az +

More information

<4D F736F F F696E74202D20B0EDC3BCBFAAC7D02033C0E52DBCF6C1A4BABB>

<4D F736F F F696E74202D20B0EDC3BCBFAAC7D02033C0E52DBCF6C1A4BABB> 3. 원형축의비틀림 eal Foming CE Lab. Depamen of echanical Engineeing Gyeongsang Naional Univesiy, Koea 원형축의비틀림 문제의정의와가정 이론전개대상축의형상 : 원형축 (Cicula shaf), Shaf 용도 : 동력전달 (Powe ansmission), sping, ec., 이론전개를위한가정

More information

164

164 에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환

More information

MS_적분.pages

MS_적분.pages 고대수학자들은사각형의면적 밑변 높이, 삼각형면적 밑변 높이 평행사변형의면적 Euclid gomtry 밑면 높이, 사다리꼴의면적 윗변 + 아래변 * 높이 를이용하여구하였다. 이를이용하여왼쪽의다각형면적은구할수있으나오른쪽의곡선의면적은어떻게구할것인가? Archimds 는곡선의면적을이미알려진다각형, 삼각형의면적으로근사시켜구하는방법을생각하였다. 이것이면적에대한현재정의의근간이된다.

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

지반조사 표준품셈(지질조사, 토질및기초조사표준품셈 통합본) hwp

지반조사 표준품셈(지질조사, 토질및기초조사표준품셈 통합본) hwp 지반조사표준품셈 Ω γγ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ 제 1 장총칙 지반조사표준품셈 제 1 장총칙 지반조사표준품셈 제 1 장총칙 지반조사표준품셈 제 1 장총칙 지반조사표준품셈 제 1 장총칙 지반조사표준품셈 제 1 장총칙 φ φ φ φ φ φ 지반조사표준품셈 제 1 장총칙 지반조사표준품셈

More information

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process, Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process, Introduction Capillary forces in practical situation Capillary Model A Capillary Model system,

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

2-TAIYO空気圧機器ー_Vol.12_CN0517.pdf

2-TAIYO空気圧機器ー_Vol.12_CN0517.pdf 48 7 2 (mm) 4 0 3 0 0 4 R R R R R R R φφ0φ3 φ0φφ0 φφ0φ3 φ0φ 1 20mm/s 3 4ONX φφ0φ3 φ0φφ0 1 0.01Ma 0.Ma 1.Ma 000mm/s2 3 φφ0φ3mmφ02mmφφ03mm JISg/ 1.0 1. 2.0 1 0 2 0 00 0 SLFFT ONX TY φφ0φ3 φ0φ 4 R 4 00 00

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

untitled

untitled Mathematcal Statstcs / 6. 87 Chapter 6 radom varable probablty desty ucto. dstrbuto ucto.. jot desty ucto... k k margal desty ucto k m.. Statstcs ; θ ereces Y... p. ~ ; θ d radom sample... ; θ ~ statstc

More information

경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형

경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

10. ..

10. .. 점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원

More information

2003report220-16.hwp

2003report220-16.hwp 2003 연구보고서 220-16 실업계 고등학교 여학생의 직업세계 이행증진을 위한 지원방안 연구 한국여성개발원 발 간 사 연구요약 . 서론 실업계 고등학교 여학생의 직업세계 이행증진을 위한 지원방안 연구 . 서론 실업계 고등학교 여학생의 직업세계 이행증진을 위한 지원방안 연구 . 서론 실업계 고등학교 여학생의 직업세계

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

PDF

PDF n i v g i f s y y y y œ yvu s }sœ œx}s }y Stuy for Sensitivity of the Electronic Brake System with the Parameter Variation Heeram Park *1) Seibum Choi 1) Sungjin Choi ) Kwanki Jeon ) Hyunsoo Hwang ) 1)

More information

Microsoft Word - Ch2_Function_math.docx

Microsoft Word - Ch2_Function_math.docx Calculus is the mathematics of motion and change. 운동과변화의수학인선형대수는 (Calculus) 함수의순간변화율에 ( 기울기 ) 대한미분 (Differentiation), 함수의특정구간의면적의합에관한적분과 (Integral) 함수의수렴값에대한극한에 (limiting value) 관해다루게된다. 선형대수는 7 세기과학자들의수학적요구에의해시작되었다.

More information

1 : KS C IEC 60456 2kg 25kg, KS C 9608,,,,. 1 1kg { 1kg 1 () ( kg ) (Wh), Wh/ kg }. : KS C IEC 60456 (,, ), 2kg 25kg 2kg 5kg. 1 1kg { 1kg 1 ( kg ) (Wh), Wh/ kg } 47cm 216cm, 4,320., (CRT) (PDP), 1kg,,,,

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

Precipitation prediction of numerical analysis for Mg-Al alloys

Precipitation prediction of numerical analysis for Mg-Al alloys 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

07.051~058(345).fm

07.051~058(345).fm w wz 8«3y 2008 6 pp. 51 ~ 58 m qp yp š w k sƒ Evaluation of Dynamic Modulus based on Aged Asphalt Binder y*á **Á***Á**** Lee, Kwan-HoÁCho, Kyung-RaeÁLee, Byung-SikÁSong, Yong-Seon Abstract Development

More information

REVIEW CHART 1

REVIEW CHART 1 Rev.3, 27. October 2017 구교 2017. 10. 27 한국철도시설공단 REVIEW CHART 1 1 2 θ 3 θ θ 4 5 knm 6 7 8 9 10 11 K V K h K s 12 상재하중 복토중량 암거중량 측면마찰력 양압력 13 14 15 16 17 18 19 θ =80 ~90 L 1 L2 L1 L=2L +L 1 2 L1

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

SERVO DRIVE (FARA CSDJ-XX) 사용자 설명서

SERVO DRIVE (FARA CSDJ-XX) 사용자 설명서 CSM serise CSMG serise CSMD serise CSMF serise CSMS serise CSMH serise CSMN serise CSMX serise CSMP serise CSMQ serise CSMZ serise B: 1 : (Coupling ) 2 : 2Slice (Set Screw ) 3 : Key 4 : Tapper 5 : 6 :

More information

확률과통계4

확률과통계4 확률과통계 4. 확률변수와확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 4. 확률변수와확률분포 4.1 확률변수와확률분포의개념 4.2 결합확률분포 4.3 주변확률분포 4.4 조건부확률분포 4.5 확률변수의독립 4.1 확률변수와확률분포의개념 [ 정의 4-1] 확률변수 (random variable) 표본공간의각원소를실수값으로

More information

01

01 2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,

More information

제 5 장복소수함수적분 5 이므로 z = r(cosθ + i sin θ) = re iθ (5.3) 와같이나타낼수도있는데이표현식을복소수의 극형식 (polar form) 이라부른다. 복소함수의미분은실함수미분의정의와같이 d f(z + z) f(z) f(z) = lim z z

제 5 장복소수함수적분 5 이므로 z = r(cosθ + i sin θ) = re iθ (5.3) 와같이나타낼수도있는데이표현식을복소수의 극형식 (polar form) 이라부른다. 복소함수의미분은실함수미분의정의와같이 d f(z + z) f(z) f(z) = lim z z 제 5 장 복소수함수적분 복소수는 z = x + iy (5.1) 와같이두실수로정의된수이므로실수를수직선에나타내듯이복소수는 그림과같은복소평면에나타낼수있다. y z = x + yi r θ x 윗그림에서 x = r cos θ, y = r sin θ, r = x + y (5.) 51 제 5 장복소수함수적분 5 이므로 z = r(cosθ + i sin θ) = re iθ

More information

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임.   가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. 마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf

More information

통신이론 2 장주파수해석 성공회대학교 정보통신공학과 1

통신이론 2 장주파수해석 성공회대학교 정보통신공학과 1 통신이론 장주파수해석 성공회대학교 정보통신공학과 제 장의구성. 시간영역과주파수영역. 푸리에해석.3 푸리에급수.4 푸리에변환.5 특이함수모델.6 푸리에변환쌍.7 푸리에변환과관련된정리들 . 시간영역과주파수영역 3 시간영역과주파수영역 통신에서의신호 - 시간의흐름에따라전압, 전류, 또는전력의변화량을나타낸것 신호를표시할수있는방법 y 진폭 시간영역에서의표현 x 시간 y

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

<4D F736F F D C0E55FBACEC1A4C1A4B1B8C1B6B9B0BCD2B0B326BAAFC7FCC0CFC4A1B9FD5F7635>

<4D F736F F D C0E55FBACEC1A4C1A4B1B8C1B6B9B0BCD2B0B326BAAFC7FCC0CFC4A1B9FD5F7635> . 부정정구조물의소개 (Introduction to Staticall Indeterminate Structures) Objective o toda s lecture: 부정정구조물의장점과단점의이해 부정정구조물해석의기본원리에대한이해 ( 정정구조물해석과의차이점?) Wh? 일반토목구조물은부정정구조물. 정정구조물과는달리부정정구조물은구해야하는미지수 ( 반력, 내력 )

More information

Microsoft Word - SDSw doc

Microsoft Word - SDSw doc MIDAS/SDS Ver..4.0 기술자료 Design>Shear Check Result KCI-USD99의슬래브의불균형모멘트에대한고려기준은다음과같습니다. 7.11. 전단편심설계 (1) 슬래브의평면에수직한위험단면의도심에대해전단편심에의해전달된다고보아야할불균형모멘트의비율은다음과같다. γ υ 1 = 1 b 1+ 3 b 1 () 전단편심에의한모멘트전달로인한전단응력은위의

More information

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt

More information

Minimax lower bound 이광민 May Notation 모수공간 : Θ Action space : A Loss function : L : Θ A [0, ) Sample space : X Data : X P θ (Probability measure

Minimax lower bound 이광민 May Notation 모수공간 : Θ Action space : A Loss function : L : Θ A [0, ) Sample space : X Data : X P θ (Probability measure Minix lower bound 이광민 My 08 ottion 모수공간 : Θ Action spce : A Loss function : L : Θ A [0, Sple spce : Dt : θ (robbility esure on sple spce Decision rule : D : A Minix isk : inix := inf D sup θ Θ E θ L(θ,

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

확률과통계6

확률과통계6 확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform

More information

PDF

PDF SAE 009 Annual onference oyriht c 009 SAE 비구형기어를이용한자기강화브레이크시스템의강인제어로직개발 박희람 * 1) 최세범 1) 김주곤 ) 김명준 ) The eveloment of Robust Loic for Self-Enerizin Brake system usin Noncircular Gear Heeram Park *1) Seibum

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

슬라이드 1

슬라이드 1 1. 서론 수리학의정의 수리학 (hydraulics) 또는수리공학 (hydraulic engineering) 은유체 (liquid) 특히물의역학을다루는분야로물의기본성질및물과물체간에작용하는힘뿐만아니라물과관련된구조물이나시스템의계획및설계를연구하는응용과학의한분야이다. 1 장강의내용 - 유체의정의 - 물의상태변화 - 차원및단위 - 점성 - 밀도, 단위중량및비중 - 표면장력및모세관현상

More information

2

2 rev 2004/1/12 KAIST 2 6 7 1 13 11 13 111 13 112 18 113 19 114 21 12 24 121 24 122 26 13 28 131 28 132 30 133 (recurrence) 34 134 35 4 2 39 21 39 211 39 212 40 22 42 221, 42 222 43 223, 45 224 46 225, 48

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005 100 Bond Issue Performance Evaluation Risk management 100, Jan. 21, 2005 100, Jan. 21, 200 5 100호, Jan. 21, 2005 2 100, Jan. 21, 2005 3 100, Jan. 21, 2005 4 100, Jan. 21, 2005 5 100, Jan. 21, 2005 6 100,

More information

Microsoft Word - 동태적 모형.doc

Microsoft Word - 동태적 모형.doc 동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x

More information

A C O N T E N T S A-132

A C O N T E N T S A-132 C O N T E N T S -2 SC2 Series -3 SC2 Series -4 SC2 Series SC2 B 40 B 100 S I SC2 B 40 B 100 RO R S I SC2-2 B 40 B 100 HOY R S I -5 SC2 R0 40 SW R0 SC2 R 40 SC2 Series SW RB SW R SC2-2 H0 40 SW H0 SC2-2

More information

S P ΩR U w = b SP Ω Rw Ub

S P ΩR U w = b SP Ω Rw Ub SP =ΩRw/ Ub SP = ΩRw/ Ub S P ΩR U w = b SP Ω Rw Ub (,, ) S = f R R χ P b e Rb Re χ grb/ Ub ρru b b / σ ( µ,ζ, ω) ( x, yz, ) x = kcos θsinh η= kµζ 1/ 1/ y = k(1 µ ) (1+ζ ) cos ω 1/ 1/ z = k(1 µ ) (1+ζ )

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

<C1A4B4E4B9D7C7D8BCB32E687770>

<C1A4B4E4B9D7C7D8BCB32E687770> 2003학년도 3월 고3 전국연합학력평가 정답 및 해설 제 1 교시 언어 영역 정 답 1 2 2 1 3 3 4 4 5 4 6 2 7 2 8 5 9 3 10 1 11 3 12 2 13 5 14 5 15 3 16 1 17 2 18 3 19 4 20 4 21 2 22 4 23 1 24 5 25 1 26 5 27 4 28 3 29 2 30 4 31 1 32 2 33

More information

°ø±â¾Ð±â±â

°ø±â¾Ð±â±â 20, 30, 40 20, 30, 40 1 2 3 4 5 6 7 8 9 10 3.1 6.3 9.4 12.6 15.7 18.8 22.0 25.1 28.3 31.4 2.4 4.7 7.1 9.4 11.8 14.1 16.5 18.8 21.2 23.6 7.1 14.1 21.2 28.3 35.3 42.4 49.5 56.5 63.6 70.7 5.9 11.9 17.8 23.7

More information