Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):

Size: px
Start display at page:

Download "Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):"

Transcription

1 Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률 분포로 을 따르는 랜덤 변수 (random variable)로 pmf (probability mass function)는 다음과 같다. Bin(k n, θ), n k θ ( θ)n k k () θ Beta(a, b): Beta distribution는 도메인이 구간 [0, ]인 분포로 다음과 같이 정의된다. Beta(θ a, b), θa ( θ)b B(a, b) (2) 여기서 θ는 구간 [0, ]에 속하는 원소이고, B(a, b)는 beta함수로 다음과 같이 정의된다. B(a, b) = Γ(a)Γ(b) Γ(a + b) (3) Beta-binomial는 binomial 분포의 parameter θ에 대한 prior로 beta분포를 취 하는 directed graphical model모델로 sampling 과정은 다음과 같다. θ Beta(a, b) k Bin(n, θ). Joint distribution for Beta-Binomial Beta-binomial의 joint distribution P (k, θ a, b, n) = Beta(θ a, b)bin(n, θ) 을 간 단히 정리하시오. P (k, θ a, b, n) = k는 어느 랜덤 변수 (random variable)의 값이며, 단순화를 위해 랜덤 변수는 생략하였다. 보다 엄 밀하게 random variable X가 주어질때, X Bin(n, θ)이면, 이에 대한 확률 분포는 Bin(X = k n, θ) 로 표기된다.

2 .2 Full conditionals for Beta-Binomial 위의 P (k, θ a, b, n)을 이용하여 Beta-Binomial의 full conditionals인 P (θ k, a, b, n) 과 P (k θ, a, b, n)을 유도하시오. P (θ k, a, b, n) = P (k θ, a, b, n) = (4).3 Gibbs sampling for Beta-Binomial 위의 full conditional distribution을 이용하여 marginal probability P (k a, b, n) = R P (k θ, a, b, n)p (θ a, b)dθ를 근사화시키는 Gibbs sampling algorithm 을 작성 0 하시오..4 Exact inference: Margin probability for Beta-Binomial θ에 해당되는 variable을 제거하여 P (k a, b, n) = 간략히 하시오..5 R 0 P (k θ, a, b, n)p (θ a, b)dθ를 Implementation: Gibbs sampling for Beta-Binomial (python code제출) 위에서 작성된 Gibbs sampling for Beta-Binomial을 python으로 구현하고 sample size를 500,n = 6으로 놓고, 다음의 a, b에 대해서 Exact inference결과와 Gibbs sampling으로 approximation된 결과를 비교하는 histograms을 보이시오. a = 2, b = 2일때 a = 2, b = 5일때 a =, b = 0일때 2 Gibbs sampler for Dirichlet-Multinomial Multimomial, Multimoulli, 및 Dirichlet분포는 다음과 같이 정의된다. x Mu(n, θ): color balls로 구성된 임의의 박스에서 2, θ = (θ,, θ ) 에서 θj 는 j번째 color ball를 추출할 확률을 의미할때, multinomial distribution은 n번의 시행 중, x = (x,, x )에서 xj 는 j번째 color ball이 추출된 횟수로 다음과 같이 정의된다. Mu(x n, θ), 2 는 n x x x θj j j= ball의 color종류의 수이고 박스에 있는 공의 갯수는 unknown이라 가정한다. 2 (5)

3 x Mu(, θ): Multimomial 분포에서 n = 인 특수한 경우로 categorical 또는 discrete distribution이라고도 하고, 다음과 같이 정의된다. Cat(x θ) = Mu(x, θ), x θj j (6) j= n P o θ Dir(α): 도메인이 probability simplex S = θ k= xk =, 0 θk 일때 Dirichlet distribution은 다음과 같이 정의된다. Dir(θ α), αk θk B(α) (7) k= 여기서 B(α)는 벡터로 일반화된 beta함수로 다음과 같이 정의된다. B(α) = Γ(α ) Γ(α ) Γ(α + + α ) (8) Dirichlet-multinomial (또는 Dirichlet Compound Multinomial)는 multinomial 분포의 parameter인 θ에 대한 prior로 Dirichlet분포를 취하는 directed graphical model모델로 sampling 과정은 다음과 같다. θ Dir(α) x Mu(n, θ) 2. Joint distribution for Dirichlet-Multinomial Dirichlet-Multinomial의 joint distribution P (x, θ α, n) = Dir(θ α)m u(x n, θ) 을 간단히 정리하시오. P (x, θ α, n) = 2.2 Full conditionals for Dirichlet-Multinomial 위의 P (x, θ α, n)을 이용하여 Dirichlet-Multinomial의 full conditionals인 P (θ x, α, n) 과 P (x θ, n)을 유도하시오. P (θ x, α, n) = P (x θ, n) = (9) 2.3 Gibbs sampling for Dirichlet-Multinomial 위의 full conditional distribution을 이용하여 marginal probability P (x α, n)를 근사화시키는 Gibbs sampling algorithm 을 작성하시오 (block sampling을 이용). 2.4 Exact inference: Margin probability for Dirichlet-Multinomial θ에 해당되는 variable을 제거하여 P (x α, n)에 대한 간략식을 유도하시오. 3

4 2.5 Implementation: Gibbs sampling for Dirichlet-Multinomial (python code제출) 위에서 작성된 Gibbs sampling for Dirichlet-Multinomial을 python으로 구현하고 sample size를 500, n = 6으로 놓고, 다음의 a에 대해서 Exact inference결과와 Gibbs sampling으로 approximation된 결과를 비교하시오. =3, α = (3, 3, 5) =3, α = (3, 0, 5) =5, α = (3, 5, 5, 8, 0) 3 Collapsed Gibbs sampler for Latent Dirichlet Allocation (LDA) Figure : A graphical model for LDA Figure 은 LDA에 대한 graphical model로, 토픽의 갯수가 이고, Nd 의 단어 로 구성된 문서 d를 generation하는 과정은 다음과 같다 3.. For i [,, ]: φi Dir(β) (i번째 토픽에 대한 Multinoulli parameter 를 생성한다.) 2. θ Dir(α) 3. For j [,, Nd ]: z j Cat(θ) wj Cat(φzj ) 표기를 간단히 하기 위해서, Φ = (φ,, φ )로 Φ를 -topic multinomial 파라미터로 사용하기로 한다. 주어진 문서 d에 대해, 단어열이 w로 주어지고, 이들 단어열에 대한 topic assignments가 z, topic mixture parameter가 θ, -topic multinomial 파라미터 Φ 에 대한, LDA의 joint distribution은 다음과 같다. 3 LDA에 대한 상세한 내용은 다음을 참고하시오. Blei, David M.; Ng, Andrew.; Jordan, Michael I. Latent Dirichlet Allocation. Journal of Machine Learning Research. 3 (4 5): pp

5 P (w, z, θ, Φ α, β) = P (w, z, θ, φ α, β) = Dir(φi β)dir(θ α) i= Nd Cat(zj θ)cat(wj φzj ) j= M 개의 문서 전체 집합 C에 대해 단어열이 W = w wm, topic assignments 가 Z = z z M, topic mixture가 Θ = θ θ M 일때, C에 대한 LDA의 joint distribution는 다음과 같다. P (W, Z, Θ, Φ α, β) = P (w, z, θ M, φ α, β) = Dir(φi β) i= 3. M j= Ndj Dir(θ j α) Cat(zjk θ j )Cat(wjk φzjk ) k= Marginal distribution for Latent Dirichlet Allocation (LDA) LDA의 joint probability에서 θ, Φ를 elimination하여 다음 marginal probabilty P (w, z α, β)을 간결히 정리하시오. P (w, z α, β) = P (z α)p (w x, α, β) 여기서 P (z α)와 P (w x, α, β)는 다음과 같이 정의된다. Z P (z α) = P (θ α)p (z θ)dθ Z P (w z, β) = P (Φ β)p (w z, Φ)dΦ (0) 위를 이용하여, M 개의 문서 전체 집합 C에 대해 LDA의 marginal probabilty P (W, Z α, β)을 간결히 정리하시오. P (W, Z α, β) = P (Z α)p (W X, α, β) 3.2 Conditional probabliity on topic assignment for Latent Dirichlet Allocation (LDA) 위의 marginal probability P (w, z α, β)로부터 다음의 conditional probablity를 유도하시오. P (zj = i z j, w, α, β) = P (z j, zj = i, w, α, β) P (z j, w, α, β) () 여기서 z j 는 주어진 문서에서 j번째 단어를 제외한 다른 모든 단어들에 대한 topic assignment를 의미한다. 5

6 위의 하나의 문서에 대한 conditional probability식을 확장하여, M 개의 문서 전체 집합 C에 대한 다음 LDA의 conditional probabilty P (zjk = i W, Z jk α, β) 을 간결히 정리하시오. P (zjk = i Z jk, W, α, β) = P (Z jk, zjk = i, W, α, β) P (Z jk, W, α, β) (2) 여기서 Z jk 는 j번째 문서의 k번째 단어를 다른 모든 문서들과 단어들에 대한 topic assignment를 의미한다. 3.3 Collapsed Gibbs sampler for Latent Dirichlet Allocation (LDA) 위의 conditional probabliity 를 이용하여 모든 문서에 대해 topic assignment sampling을 수행한 후,θ j, φi 를 estimation하는 식을 유도하시오. 이를 이용하여 LDA에 대한 Gibbs sampler알고리즘을 유도하시오. 3.4 Implementation: Gibbs sampling for LDA (python code 제출) 유도된 Gibbs sampler를 python으로 작성하여 LDA 모델에 대한 학습을 수행하고, perplexity를 통해 LDA모델을 평가하시오. q(x) = Cat(x θ)가 학습된 Multinoulli 모델이고, 주어진 test 집합 T 은 총 M 개로 문서들로 구성되며, 이때 Ndi 를 문서 di 의 길이, wij 가 i번째 문서의 j번째 단어라고 할때, T 에 대한 model q의 perplexity는 다음과 같이 정의된다. Ndi M X X log q(wij ) perplexity(q) = exp M i= Ndi j= 6

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, 2018 1 Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. https://docs.scipy.org/doc/numpy-1.15.0/user/quickstart.html https://www.machinelearningplus.com/python/

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

확률과통계 강의자료-1.hwp

확률과통계 강의자료-1.hwp 1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때

More information

특집-5

특집-5 76 May June 2008 IT Standard & Test TTA Journal No.117 TTA Journal No.117 77 78 May June 2008 IT Standard & Test TTA Journal No.117 TTA Journal No.117 79 80 May June 2008 IT Standard & Test TTA Journal

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

164

164 에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

<BACFC7D1B3F3BEF7B5BFC7E22D3133B1C733C8A3504446BFEB2E687770>

<BACFC7D1B3F3BEF7B5BFC7E22D3133B1C733C8A3504446BFEB2E687770> 북한의 주요 농업 관련 법령 해설 1) 이번 호와 다음 호에서는 북한의 주요 농업 관련 법령을 소개하려 한다. 북한의 협동농장은 농업협동조합기준규약초안 과 농장법 에 잘 규정되어 있다. 북한 사회주의 농업정책은 사회 주의농촌문제 테제 2), 농업법, 산림법 등을 통해 엿볼 수 있다. 국가계획과 농업부문의 관 계, 농산물의 공급에 관해서는 인민경제계획법, 사회주의상업법,

More information

1 9 2 0 3 1 1912 1923 1922 1913 1913 192 4 0 00 40 0 00 300 3 0 00 191 20 58 1920 1922 29 1923 222 2 2 68 6 9

1 9 2 0 3 1 1912 1923 1922 1913 1913 192 4 0 00 40 0 00 300 3 0 00 191 20 58 1920 1922 29 1923 222 2 2 68 6 9 (1920~1945 ) 1 9 2 0 3 1 1912 1923 1922 1913 1913 192 4 0 00 40 0 00 300 3 0 00 191 20 58 1920 1922 29 1923 222 2 2 68 6 9 1918 4 1930 1933 1 932 70 8 0 1938 1923 3 1 3 1 1923 3 1920 1926 1930 3 70 71

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

Introduction to Topic Models

Introduction to Topic Models 1 Analyzing Big Scientific Publication Collections by Topic Modeling Techniques Min Song, Ph.D. Department of Lib. and Info. Science Yonsei University The Problem with Information Needle in a haystack:

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI:   * A S Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.461-487 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.461 * - 2008 2018 - A Study on the Change of Issues with Adolescent Problem

More information

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 Artificil Intelligence: Assignment 3 Seung-Hoon N November 30, 2017 1 1.1 Srs와 Q-lerning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 그림과 같이 8 7 Grid world 로, Agent는 up, down, right, left의

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

cha4_ocw.hwp

cha4_ocw.hwp 제 4장 확률 우리는 일상생활에서 확률이라는 용어를 많이 접하게 된다. 확률(probability)는 한자어로 확실할 확( 確 ), 비율 률( 率 )로 해석된다. 로또당첨확률, 야구 한국시리즈에서 특정 팀이 우승 할 확률, 흡연자가 폐암에 걸릴 확률, 집값이 오를 확률 등 수없이 많은 확률들이 현대생활 에서 사용되어지고 있다. 대부분의 일간신문에는 기상예보

More information

1

1 β β Tm = 81.5 + 16.6 (log10[na+]) + 0.41 (%G+C) 675/n [Na+] monovalent cations ( [Na+] = [K+] ) n =primer base Tm = 81.5 + 16.6 (log10[0.05]) + 0.41 (60) 675/22 = 81.5 + 16.6 ( 1.30) + 24.60

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

제 1 부 연구 개요

제 1 부  연구 개요 2 출 문 차 1 부 과업의 개요 25 귀하 1 장 과업의 목적 27 1. 과업의 목적 및 목표 27 보고서를 2012년도 한돈자조금 성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2013년 2월 제 2 장 주요 과업 내용 29 1. 과업 진행 과정 29 2. 과정별 수행 방법 30 가. 한돈자조금사업의 경제적 성과분석 30 나.

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

............ ......

............ ...... 3 N.P 하모닉드라이브 의 작동원리 서큘러스플라인 웨이브제네레이터 플렉스플라인 플렉스플라인은 웨이브제네레 이터에 의해 타원형상으로 탄 성변형되어 이로인해 타원의 장축부분에서는 서큘러스플라 인과 이가 맞물리고 단축부분 에서는 이가 완전히 떨어진 상태로

More information

Artificial Intelligence: Assignment 2 Seung-Hoon Na October 20, Map coloring 본 과제에서는 M N Grid world 지도상에서 각 region이 rectangle또는 polyomino유형으로 주

Artificial Intelligence: Assignment 2 Seung-Hoon Na October 20, Map coloring 본 과제에서는 M N Grid world 지도상에서 각 region이 rectangle또는 polyomino유형으로 주 Artificial Intelligence Assignment 2 Seung-Hoon Na October 20, 2018 1 Map coloring 본 과제에서는 M N Grid world 지도상에서 각 region이 rectangle또는 polyomino유형으로 주어질때, K개의 색상(color)만으로 서로 맞닿은 region들을 다른 색으로 칠하는 K-coloring

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

<BBE7B8B3B4EBC7D0B0A8BBE7B9E9BCAD28C1F8C2A5C3D6C1BE293039313232392E687770>

<BBE7B8B3B4EBC7D0B0A8BBE7B9E9BCAD28C1F8C2A5C3D6C1BE293039313232392E687770> 2008 사 립 대 학 감 사 백 서 2009. 11. 들어가는 말 2008년도 새 정부 출범 이후 구 교육인적자원부와 과학기술부가 하나의 부처로 통합하여 교육과학기술부로 힘차게 출범하였습니다. 그동안 교육과학기술부는 고교다양화 300 프로젝트 등 자율화 다양화된 교육체제 구축과 맞춤형 국가장학제도 등 교육복지 기반 확충으로 교육만족 두배, 사교육비 절감

More information

2 전개과정 지도계획 주기 주제 활동 방법 및 내용 성취수준 주제발현 브레인스토밍 유목화 1 한식 알아보기 2 4 5 요리법 연구하고, 학고역할분담 조리 계획하기 생명과 음식 영화감상하기 생명과 음식 토론하기 한식 식사예절 알아보기 6 음식 주제발현, 브레인스토밍, 유

2 전개과정 지도계획 주기 주제 활동 방법 및 내용 성취수준 주제발현 브레인스토밍 유목화 1 한식 알아보기 2 4 5 요리법 연구하고, 학고역할분담 조리 계획하기 생명과 음식 영화감상하기 생명과 음식 토론하기 한식 식사예절 알아보기 6 음식 주제발현, 브레인스토밍, 유 Ⅰ. Ⅰ. 우리의 맛 을 찾아서 ( 4 월 27 주 ~4 월 0 일 ) 6학년 1 주제 선정 및 흐름 주제 선정의 이유 봄 여름 우리의 맛 을 찾아서 뉴스를 만들어 보자 한식은 우리 조상의 지혜 담긴 맛과 멋이 살아 있는 우수한 음식이다. 건강에 대한 관심 이 높아지고 한식이 건강에 좋은 음식이므로 주목받게 되면서 많은 사람이 한식을 즐기고 있다. 이에 우리반에서는

More information

2-TAIYO空気圧機器ー_Vol.12_CN0517.pdf

2-TAIYO空気圧機器ー_Vol.12_CN0517.pdf 48 7 2 (mm) 4 0 3 0 0 4 R R R R R R R φφ0φ3 φ0φφ0 φφ0φ3 φ0φ 1 20mm/s 3 4ONX φφ0φ3 φ0φφ0 1 0.01Ma 0.Ma 1.Ma 000mm/s2 3 φφ0φ3mmφ02mmφφ03mm JISg/ 1.0 1. 2.0 1 0 2 0 00 0 SLFFT ONX TY φφ0φ3 φ0φ 4 R 4 00 00

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

토픽모델링을위한시뮬레이터도구개발 정영섭, 임채균, 최호진 한국과학기술원전산학과대전광역시유성구구성동대학로 291 {pinode, rayote, 요약 : 본연구는매개변수추론공식을자동유도하는모듈을이용하여토픽모델링시뮬레이터를개발함으로써, 토

토픽모델링을위한시뮬레이터도구개발 정영섭, 임채균, 최호진 한국과학기술원전산학과대전광역시유성구구성동대학로 291 {pinode, rayote, 요약 : 본연구는매개변수추론공식을자동유도하는모듈을이용하여토픽모델링시뮬레이터를개발함으로써, 토 토픽모델링을위한시뮬레이터도구개발 정영섭, 임채균, 최호진 한국과학기술원전산학과대전광역시유성구구성동대학로 291 {pinode, rayote, hojinc}@kaist.ac.kr 요약 : 본연구는매개변수추론공식을자동유도하는모듈을이용하여토픽모델링시뮬레이터를개발함으로써, 토픽모델의설계를용이하게하여세계연구자들에게기여하고, 설계한모델에대한실험및추론과정을관찰가능하게하여토픽마이닝교육및배포에기여하는것을목표로한다.

More information

Precipitation prediction of numerical analysis for Mg-Al alloys

Precipitation prediction of numerical analysis for Mg-Al alloys 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 Presented by Boyoung Kim April 25, 2018 Boyoung Kim

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA e- 비즈니스연구 (The e-business Studies) Volume 17, Number 3, June, 30, 2016:pp. 93~116 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 06. 12 2016. 06. 20 2016. 06. 26 ABSTRACT e-

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

Print

Print > > > 제1장 정치 의회 1. 민주주의 가. 민주주의 지수 나. 세계은행의 거버넌스 지수 다. 정치적 불안정 지수 2. 의회 가. 의회제도와 의석 수 나. 여성의원 비율 다. 입법통계 현황 라. 의회의 예산 규모 마. 의원보수 및 보좌진 수당 3. 선거 정당 가. 투표율 나. 선거제도 다. 정당과 정치자금 4. 정치문화 가. 신뢰지수 나. 정부에 대한 신뢰

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

12(3) 10.fm

12(3) 10.fm KIGAS Vol. 12, No. 3, September, 2008 (Journal of the Korean Institute of Gas) ü LP ƒ š Database w š Á Á½z w ywœw (2008 6 10, 2008 8 12 (1 ), 2008 9 5 (2 ), 2008 9 5 k) Constructing a Database Structure

More information

OR MS와 응용-03장

OR MS와 응용-03장 o R M s graphical solution algebraic method ellipsoid algorithm Karmarkar 97 George B Dantzig 979 Khachian Karmarkar 98 Karmarkar interior-point algorithm o R 08 gallon 000 000 00 60 g 0g X : : X : : Ms

More information

nonpara1.PDF

nonpara1.PDF Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710)

More information

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1 KS B ISO 9806-2 - 2 1. ( ) ( ),. 2. 2.1 (1) :, (2) :,. (3) :, CPC(Compound Parabolic Concentrator) (4) : (5). (6) () (7) :. (8) :. (9) () :,., CPC. (10) : 2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 (

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F

More information

Sequences with Low Correlation

Sequences with Low Correlation 레일리페이딩채널에서의 DPC 부호의성능분석 * 김준성, * 신민호, * 송홍엽 00 년 7 월 1 일 * 연세대학교전기전자공학과부호및정보이론연구실 발표순서 서론 복호화방법 R-BP 알고리즘 UMP-BP 알고리즘 Normalied-BP 알고리즘 무상관레일리페이딩채널에서의표준화인수 모의실험결과및고찰 결론 Codig ad Iformatio Theory ab /15

More information

메타분석: 통계적 방법의 기초

메타분석: 통계적 방법의 기초 메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성

More information

Microsoft Word - 131007_LG전자_3Q13 프리뷰_.doc

Microsoft Word - 131007_LG전자_3Q13 프리뷰_.doc 기업분석 2013. 10. 07 LG전자(066570.KS) 3Q13 Preview: 3분기 부진했지만 4분기부터 개선 전망 전기전자 담당 윤혁진 Tel. 368-6499 / hjyoon@eugenefn.com 시장 Consensus 대비 Above In-line Below O BUY(신규) 목표주가(12M, 신규) 86,000원 현재주가(10/4) 67,200원

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

ADMINISTRATION AND MANAGEMENT JOURNAL 2 3 ADMINISTRATION AND MANAGEMENT JOURNAL 4 5 ADMINISTRATION AND MANAGEMENT JOURNAL 6 7 ADMINISTRATION AND MANAGEMENT JOURNAL 8 9 ADMINISTRATION AND MANAGEMENT

More information

REVIEW CHART 1

REVIEW CHART 1 Rev.3, 27. October 2017 구교 2017. 10. 27 한국철도시설공단 REVIEW CHART 1 1 2 θ 3 θ θ 4 5 knm 6 7 8 9 10 11 K V K h K s 12 상재하중 복토중량 암거중량 측면마찰력 양압력 13 14 15 16 17 18 19 θ =80 ~90 L 1 L2 L1 L=2L +L 1 2 L1

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

07( ) CPLV16-17.hwp

07( ) CPLV16-17.hwp ISSN 2383-6318(Print) / ISSN 2383-6326(Online) KIISE Transactions on Computing Practices, Vol. 22, No. 9, pp. 461-466, 2016. 9 http://dx.doi.org/10.5626/ktcp.2016.22.9.461 무한사전온라인 LDA 토픽모델에서의미적연관성을사용한토픽확장

More information

특집....,.,., (good jobs) (rent-sharing) (fairness)..... Ⅱ. 임금과생산성구조의분석모형 ) 1),,,, 2_ 노동리뷰

특집....,.,., (good jobs) (rent-sharing) (fairness)..... Ⅱ. 임금과생산성구조의분석모형 ) 1),,,, 2_ 노동리뷰 연공임금을다시생각한다 연공임금을다시생각한다 1) 황수경 * Ⅰ. 머리말 ().......... * (skhwang@kli.re.kr). 특집 _1 특집....,.,., (good jobs) (rent-sharing) (fairness)..... Ⅱ. 임금과생산성구조의분석모형. 1980 1) 1),,,, 2_ 노동리뷰 연공임금을다시생각한다 1990 -. Hellerstein

More information

모바일 플랫폼 기반

모바일 플랫폼 기반 Towards Personal Mobile Personal Assistants mycompanion 2014.10.10 Young Tack Park School of Computing Soongsil University Smartphone Trends: : Virtual Personal Assistant Virtual Personal Assistant based

More information

...... .............hwp

...... .............hwp - 1 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - 53)

More information

제 1 부 연구 개요

제 1 부  연구 개요 출 문 귀하 보고서를 2011년도 한돈자조금성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2012년 7월 수 탁 기 관 : (주) 뉴 프 로 뎁 연 구 책 임 자 : 책 임 연 구 원 김 종 철 참 여 연 구 원 : 연 구 원 연 구 원 연 구 원 김 상 훈 노 혜 자 이 은 정 차 1 부 과업의 개요 23 1 장 과업의 배경

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

untitled

untitled 5. hamks@dongguk.ac.kr (regular expression): (recognizer) : F(, scanner) CFG(context-free grammar): : PD(, parser) CFG 1 CFG form : N. Chomsky type 2 α, where V N and α V *. recursive construction ) E

More information

<4D6963726F736F667420576F7264202D20C3A520BCD2B0B32DB4D9B0A1BFC0B4C220B0E6C1A6C1F6C1F8322E646F63>

<4D6963726F736F667420576F7264202D20C3A520BCD2B0B32DB4D9B0A1BFC0B4C220B0E6C1A6C1F6C1F8322E646F63> 곧 불어닥칠 장기 저성장에 대비하라 다가오는 경제지진: 한국 보고서 2.0 (매일경제 국민보고대회팀 지음/매일경제신문사/2012년 10월/308쪽/15,000원) - 1 - 다가오는 경제지진: 한국보고서2.0 (매일경제 국민보고대회팀 지음/매일경제신문사/2012년 10월/308쪽/15,000원) 책 소개 곳곳에서 드러나고 있는 한국경제의 어두운 그림자 각계

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 2005. 12 연구책임자 : 오 호 영 (한국직업능력개발원 부연구위원) 이 정책연구는 2005년도 교육인적자원부 인적자원개발 정책연구비 지원에 의 한

교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 2005. 12 연구책임자 : 오 호 영 (한국직업능력개발원 부연구위원) 이 정책연구는 2005년도 교육인적자원부 인적자원개발 정책연구비 지원에 의 한 교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 연 구 기 관 : 한국직업능력개발원 연구책임자 : 오 호 영 교육인적자원부 교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 2005. 12 연구책임자 : 오 호 영 (한국직업능력개발원

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

歯Product1.PDF

歯Product1.PDF A B,, D, E, F...... A.. B.. D. E. F. .,. 1980,, 1990..,.....,.., (price-cap regulation) - 1 - .,,,.,..... 3SLS... - 2 - ...,. 1). Denny, Fuss & Waverman(1981) Divisia,,. Kiss(1983), Denny, et al., Tornqvist,.

More information

Lecture12_Bayesian_Decision_Thoery

Lecture12_Bayesian_Decision_Thoery Bayesian Decision Theory Jeonghun Yoon Terms Random variable Bayes rule Classification Decision Theory Bayes classifier Conditional independence Naive Bayes Classifier Laplacian smoothing MLE / Likehood

More information

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원

More information

에너지경제연구 Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp 에너지전환정책및고령화가국민경제에미치는영향 : 확률적중첩세대일반균형모형 (Stochastic Overlapping Genera

에너지경제연구 Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp 에너지전환정책및고령화가국민경제에미치는영향 : 확률적중첩세대일반균형모형 (Stochastic Overlapping Genera 에너지경제연구 Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp. 1 31 에너지전환정책및고령화가국민경제에미치는영향 : 확률적중첩세대일반균형모형 (Stochastic Overlapping General Equilibrium Model) 을이용한분석 1 2 3 4 5 6 α and 7 exp

More information

책임연구기관

책임연구기관 2009. 2. 책임연구기관 - i - - ii - - iii - - iv - 6.3.1 Sample Collection and Analysis 161 6.3.1.1 Sample Collection 161 6.3.1.2 Sample Analysis 161 6.3.2 Results 162 6.3.2.1 Dalian 162 6.3.2.2 Xiamen 163 6.3.3

More information

체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x

체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x 체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x m, b m 0 F, m > 0 에대해 f(x) = g(x)q(x) + r(x) 을만족하는

More information

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005 100 Bond Issue Performance Evaluation Risk management 100, Jan. 21, 2005 100, Jan. 21, 200 5 100호, Jan. 21, 2005 2 100, Jan. 21, 2005 3 100, Jan. 21, 2005 4 100, Jan. 21, 2005 5 100, Jan. 21, 2005 6 100,

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기 최종보고서 폐기물관리 규제개선방안 연구 ( 업계 건의사항 및 질의사례 중심) 2006. 9 환 경 부 제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장

More information

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임.   가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. 마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5. 1 (, ), ( ) 2 1. 2. (, sta*s*cal disclosure control) - (Risk) and (U*lity) - - 3. (Synthe*c Data) 4. 5. 3 1. + 4 1. 2.,. 3. K + [ ] 5 ' ', " ", " ". (SNS), '. K KT,, KG (PG), 'CSS'(Credit Scoring System)....,,,.

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:3~20 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/27, Published: 2016/12/30 [ABSTRACT] This study aims to comprehensively analyze

More information

歯엑셀모델링

歯엑셀모델링 I II II III III I VBA Understanding Excel VBA - 'VB & VBA In a Nutshell' by Paul Lomax, October,1998 To enter code: Tools/Macro/visual basic editor At editor: Insert/Module Type code, then compile by:

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

44-4대지.07이영희532~

44-4대지.07이영희532~ A Spatial Location Analysis of the First Shops of Foodservice Franchise in Seoul Metropolitan City Younghee Lee* 1 1 (R) 0 16 1 15 64 1 Abstract The foodservice franchise is preferred by the founders who

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

Structure and Interpretation of Computer Programs: Assignment 3 Seung-Hoon Na October 4, George (아래 3개의 문제에 대한 구현이 모두 포함된 george.rkt파일을 제출하시오.

Structure and Interpretation of Computer Programs: Assignment 3 Seung-Hoon Na October 4, George (아래 3개의 문제에 대한 구현이 모두 포함된 george.rkt파일을 제출하시오. Structure and Interpretation of Computer Programs: Assignment 3 Seung-Hoon Na October 4, 2018 1 George (아래 3개의 문제에 대한 구현이 모두 포함된 george.rkt파일을 제출하시오. 실행후 Problem 1.3에 대한 Display결과가 나와야 함) George 그림은 다음과

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

26(3D)-17.fm

26(3D)-17.fm 26ƒ 3D Á 2006 5œ pp. ~ ª y w qp yw k d Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates yá½x Á Lee, Kwan-HoÁKim, Hyun-OÁJang, Min-Seok Abstract The presented work provided

More information

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정 유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정 이인범 *, 장우진 ** * 서울대학교 산업공학과 석사과정, 서울시 관악구 대학동 서울대학교 공과대학 39-315 **서울대학교 산업공학과 부교수, 서울시 관악구 대학동 서울대학교 공과대학 39-305 Abstract 주가연계증권은 국내에서 발행되는 대표적인 주식 연계 구조화 증권으로 2003 년부터 발행되기

More information

¼º¿øÁø Ãâ·Â-1

¼º¿øÁø Ãâ·Â-1 Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission

More information

개의 관측치에 복수의 특성치가 대응될 수 있다는 특징을 가지게 된다. 인도부페 프로세 스로 대표되는 잠재특성모형에 대한 이론 및 응용 연구는 현재 베이지안 연구자들 사이에 가장 뜨거운 주제 중 하나이다. 잠재변수를 이용한 모형화는, 베이지안 모형에서의 핵심적인 기법 중

개의 관측치에 복수의 특성치가 대응될 수 있다는 특징을 가지게 된다. 인도부페 프로세 스로 대표되는 잠재특성모형에 대한 이론 및 응용 연구는 현재 베이지안 연구자들 사이에 가장 뜨거운 주제 중 하나이다. 잠재변수를 이용한 모형화는, 베이지안 모형에서의 핵심적인 기법 중 인도부페 프로세스의 소개: 이론과 응용 이영선, 이경재, 이광민, 이재용, and 서진욱 서울대학교 통계학과 서울대학교 컴퓨터공학부 March 6, 05 서론 000년대 초반부터 일단의 컴퓨터 공학자들은 비모수 베이지안 모형이 기계학습(machine learning)분야에 사용될 수 있다는 사실에 주목하였고, 디리크레 프로세스(Dirichlet process;

More information

<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D>

<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D> 5. 상평형 : 순수물질 이광남 5. 상평형 : 순수물질 상전이 phase transition 서론 ~ 조성의변화없는상변화 5. 상평형 : 순수물질 전이열역학 5. 안정성조건 G ng ng n G G 자발적변화 G < 0 G > G or 물질은가장낮은몰Gibbs 에너지를갖는상 가장안정한상 으로변화하려는경향 5. 상평형 : 순수물질 3 5. 압력에따른Gibbs

More information

슬라이드 제목 없음

슬라이드 제목 없음 I. Delft Meeting 2005 년 12 월 16 일 보고자삼성 SDI 위성백 PDP 관련 IEC 규격제정현황 61988-1 61988-2 61988-3 61988-4 발행완료 진행중 Area Terminology & Letter symbols Measuring methods Sectional specification Reliability Blank

More information

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로 3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)

More information