Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
|
|
- 예랑 길
- 5 years ago
- Views:
Transcription
1 Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
2 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based learning
3 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based learning
4 Probability - 이산형값 count(event X) P (X) = count(all Event) - 연속형값 P ( 1 <x<1) Z 1 1 f(x) dx =1 Source: Source:
5 Basic concepts of probability 0 apple P (E) apple 1 P (S) = NX i=1 P (E i ) = 1 if all E i are independent P (A \ B) P (A [ B) P (A c )=1 P (A)
6 Conditional probability A B P (A B) = P (A \ B) P (B) A \ B
7 Conditional probability P (A B) = P (A \ B) P (B) P (A) = {set of odd number} P (B) = {less than 4 in a dice} P (B A) = P (A \ B) P (A) A B A \ B
8 Human knowledge belongs to the world.
9 Bayes s Theorem Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
10 Bayes s theorem - 경험에의한확률의업데이트 - 사전확률 (given) 에서사건발생을통해사후확률로 - 빈도주의 vs. 베이즈주의 - 객관적확률은존재하지않는다!
11 Queen card game
12
13 Probability updated
14 Probability updated
15 Bayes s theorem P (A B) = P (A \ B) P (B) P (B A) = P (A \ B) P (A) P (A \ B) =P (B)P (A B) =P (A)P (B A) P (A B) = P (A \ B) P (B) = P (A)P (B A) P (B)
16 Cookie Quiz 쿠키두그릇이있다고한다. 첫번째그릇에는바닐라쿠키 30개와초콜렛쿠키 10개가있고, 두번째그릇에는각쿠키가 20개씩있다. 임의쿠키를집었는데해당쿠키가바닐라쿠키이다. 이쿠키가그릇 1에서나왔을확률은? Source:
17 Cookie Quiz 쿠키두그릇이있다고한다. 첫번째그릇에는바닐라쿠키 30 개와초콜렛쿠키 10 개가있고, 두번째그릇에는각 쿠키가 20 개씩있다. 임의쿠키를집었는데해당쿠키가바닐라쿠키이다. 이쿠키가그릇 1 에서나왔을확률은? P (Choco) P (A B) = P (A \ B) P (B) = P (A)P (B A) P (B) P (Vanilla) P (B1) P (B2) Source:
18 <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> Bayes s theorem H is Class 사전확률우도사후확률 P (H)P (D H) P (H D) = P (D) D is Data 데이터가발생할확률 (Evidence)
19 Bayes s theorem P (H D) = P (C)P (D H) P (D) P (A 1 \ B)+P (A 2 \ B)+P (A 3 \ B) P (B) =P (A 1 )P (B \ A 1 )+P (A 2 )P (B \ A 2 )+P (A 3 )P (B \ A 3 ) P (A \ B) =P (B)P (A B) =P (A)P (B A)
20 Example 공 1 무작위로 1 개나오는다음과같은완구가있다. 나온공이 큰공 일때, 검은색일확률은? Source:
21 Example P (H D) = P (C)P (D H) P (D) P (B) =P (A 1 )P (B \ A 1 )+P (A 2 )P (B \ A 2 )+P (A 3 )P (B \ A 3 ) Source:
22 Human knowledge belongs to the world.
23 Simple Bayes Classifier Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
24 Viagra 스팸필터기 - Viagra 라는단어의유무를통해스팸여부확인 - Viagra 단어가들어가면무조건스팸? - 어느정도확률로스팸이라고해야할까?
25 Viagra 스팸필터기 number viagra spam number viagra spam
26 Viagra 스팸필터기
27 Viagra 스팸필터기
28
29 Human knowledge belongs to the world.
30 NB Classifier Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
31 제대로된스팸필터기를만들어보자 - Viagra 단어외에영향을주는단어들은? - 오히려스팸을제외해주는단어는어떻게찾지? - 한번에여러단어들을고려하는필터기를만들자
32 Feature 의확장 P (spam viagra) P (spam viagra, hello, lucky, marketing...) 변수가많을때, 조건부확률의변화
33 Multivariate multiplication rule P (Y X 1,X 2 )= P (Y \ X 1 \ X 2 ) P (X 1 \ X 2 ) P (Y \ X 1 \ X 2 )=P (Y X 1,X 2 )P (X 1 \ X 2 ) P (X 1,X 2,X 3,...X n ) = P (X 1 )P (X 2 X 1 )P (X 3 X 1,X 2 )...P(X n X 1...X x 1 )
34 Problems - 계산이어려워짐 - Feature 의차원이증가하면 Sparse Vector 가생성 à 확률이 0 이되는값이늘어남
35 Naïve Bayes Classifier - 복잡하게하지말고단순 (naïve) 하게해결하자 - 각변수의관계가독립임을가정 - 계산이용이해지고, 성능이생각보다좋음
36 Joint Probability P (A \ B) =P (A)P (B) if A and B are independent P (Y X 1 \ X 2 )= P (Y )P (X 1 \ X 2 Y ) P (X 1 \ X 2 ) P (Y )P (X 1 Y )P (X 2 Y ) P (X 1 )P (X 2 )
37 Naïve Bayes Classifier P (Y X 1 \ X 2 )= P (Y )P (X 1 \ X 2 Y ) P (X 1 \ X 2 ) = P (Y )P (X 1 Y )P (X 2 Y ) P (X 1 )P (X 2 ) P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label
38 Issues - 너무많은확률값 à 0 에수렴하게되는문제 - 곱하지말고더하자 à log ny log{p (Y c ) P (X i Y c )} = log P (Y c )+ i=1 nx i=1 log P (X i Y c ) P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label
39 Issues - 확률이 0 인변수들이존재함 à 전체값 0 - 작게나마확률이나올수있도록변경 à 스무딩 P (X Y )= count(x \ Y )+k count(y )+(k number of class ) log{p (Y c ) ny i=1 P (X i Y c )} = log P (Y c )+ nx log P (X i Y c ) i=1
40 Human knowledge belongs to the world.
41 NB Classifier Implementation Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
42 Dataset German Credit - 대출사기인가? 아닌가를예측하는문제 - 데이터를 NB 에맞도록간단하게변환 - Binary 데이터들로이루어진대출사기데이터
43
44 Preprocessing One-Hot Encoding
45
46 <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> P (Y c X 1,...,X n )= Modelling P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label
47 Modelling Y 의 Index P(X $ Y ' )
48 Classifier P(Y=1 X) 의확률과 P(Y=0 X) 의확률비교
49 Human knowledge belongs to the world.
50 Multinomial NB Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
51 Multinomial Naïve Bayes - X 값이 Binary 가아니라 1 이상의값을가지는문제 - 일반적으로 Text 문제를분류할때많이쓰임 - 단어의존재유무가아닌단어의출현횟수 Feature 로
52 Text 의 Feature 표현? 문자 è Feature
53 문자를 Vector 로 One-hot Encoding 하나의단어를 Vector 의 Index 로인식, 단어존재시 1 없으면 0
54 Bag of words 단어별로인덱스를부여해서 한문장 ( 또는문서 ) 의단어의개수를 Vector 로표현
55 Bag of words 단어별로인덱스를부여해서 한문장 ( 또는문서 ) 의단어의개수를 Vector 로표현
56 다시돌아가서..
57 Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) 기본식!! Y c is a label
58 Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label Likelihood 만바뀜
59 <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="x/bbppqrm1pmbhxdk1ensbl+gjw=">aaab2hicbzdnsgmxfixv1l86vq1rn8eiucozbtsd4mzlbccw2qfkmnfa0exmso4ipfqfxlhrfdb3vo3pz0ktbwif5ytk3pouslokgi+vtrw9s7tx3/cpgv7h0xgz8wslygimrkek00u4rsu1rirjya80ypneytez3c3y7jmakwv9snms45yptmyk4osszrdzctrbumwtwjw0yk1h83oqfqlkuznq3np+gjquz7ghkrto/uflseriwkfyd6h5jjaelcecs3pnpcwrjdua2nl9+wlgc2uneeju5pzg9m+2mp/l+hvl1/fm6rii1gl1uvyprgvb7mxsavcqmjrgwkg3kxnjbrgg14zvogj/brwj0wx7ph0+bfchuzidcwjhcm7hhjoqgyauxudng3uv3vuqqpq37uwefsn7+aaqkyon</latexit> <latexit sha1_base64="2e/bcqjc2d2g5wopszvki083ilm=">aaab/nicbzc9tsmwfivvyl8pbqori6fckkuvsaadehily5eolwpk5lhoa9wxi9tbqkjmfl6fhqeqj8hg2+d+dnbyjeufzrf1fu+yckan6347haxlldw14nppo7y5tv3zkd9qmspcm0ryqdoh1pqzqzuggu7biai4djlthcplcd56oeozkw7mkkhdgpcfixjbxlpbzd9ploz5nmxm6cbj515+n4kcnwrtgd3ebeqoqftdujsrwgrvblwyqrfuvvyejglmhseca93x3mr0m6wmi5zmjt/vnmfkipu0y1hgmopunlklr4fw6afiknueqrp394smx1qp4tdejlez6plsbp6xdvitnxyzjpluuegmg6kuiyprubfuy4osw0cwmfhm/hwravaygnteyzbgza+8cm3j+lndu3ahchtwadxw4aqu4aoa0aqct/acb/dupduvzse0ryizq20x/sj5/agtyzi+</latexit> <latexit sha1_base64="2e/bcqjc2d2g5wopszvki083ilm=">aaab/nicbzc9tsmwfivvyl8pbqori6fckkuvsaadehily5eolwpk5lhoa9wxi9tbqkjmfl6fhqeqj8hg2+d+dnbyjeufzrf1fu+yckan6347haxlldw14nppo7y5tv3zkd9qmspcm0ryqdoh1pqzqzuggu7biai4djlthcplcd56oeozkw7mkkhdgpcfixjbxlpbzd9ploz5nmxm6cbj515+n4kcnwrtgd3ebeqoqftdujsrwgrvblwyqrfuvvyejglmhseca93x3mr0m6wmi5zmjt/vnmfkipu0y1hgmopunlklr4fw6afiknueqrp394smx1qp4tdejlez6plsbp6xdvitnxyzjpluuegmg6kuiyprubfuy4osw0cwmfhm/hwravaygnteyzbgza+8cm3j+lndu3ahchtwadxw4aqu4aoa0aqct/acb/dupduvzse0ryizq20x/sj5/agtyzi+</latexit> <latexit sha1_base64="e6duyda8xesdp8la08slorc32ni=">aaaccxicbva9t8mwehx4lourwmhiqjdkuiuswibuwcjyjeklmha5jtnadzzidpcqkjmfv8lcaiivf8dgv8ftm0dlk056eu9od/eclfgplovbmjtfwfxarqxuv9fwnzbnre0bmwqcewcnlbgdaenckceoooqrtioiigng2shgyus374mqnohxapgsl0y9tiokkdksb+65quhcl9gykunn9mwu7njewfa949ohwx8f+mbnalhjwflil6qgsrr888sne5zfhcvmkjrd20qvlyohkgakqlqzjcnca9qjxu05ion08verbtzqsgijrojico7v3xm5iqucxohujjhqy2lvjp7ndtmvnxg55wmmcmetrvhgoergkbcyukgwyknnebzu3wpxhwmelu6vqkowp1+ejc5r47rhx1m15nmzrgxsgn1qbzy4bk1wcvraarg8gmfwct6mj+pfedc+jq1zrjmza/7a+pwbtgyalg==</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> Multinomial Naïve Bayes - 식계산하는방식이다름 ny P (X i Y c ) P (X i Y c )= i=1 P tf(xi,d2 Y c )+ P Nd2Yc + V x_i: A word from the feature vector x of a particular sample. tf(xi,d y_c): The sum of raw term frequencies of word x_i from all documents in the training sample that belong to class y_c. Nd y_c: The sum of all term frequencies in the training dataset for class y_c. α: An additive smoothing parameter (α=1α=1 for Laplace smoothing). V: The size of the vocabulary (number of different words in the training set).
60 <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> Multinomial Naïve Bayes P (X i Y c )= P tf(xi,d2 Y c )+ P Nd2Yc + V P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i )
61 Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 P (X i Y c ) nq P (X i ) i=1
62 Human knowledge belongs to the world.
63 Gaussian NB Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
64 Gaussian Naïve Bayes - Category 데이터가아닌경우에 NB 의적용 - Continuous 데이터의적용을위해 y의분포를정규분포 (gaussian) 으로가정함 - 확률밀도함수상의해당값 x 가나올확률로 NB를구현함
65 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) Y c, Y c X i - 특정에대한의평균, 표준편차를에대입 µ,
66 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) Y c,
67 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) Y c,
68 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) Y c,
69 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (x i Y c )= Gaussian Naïve Bayes 1 q2 exp 2 Yc (xi µ Yc ) Y c,
70 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (x i Y c )= Gaussian Naïve Bayes 1 q2 exp 2 Yc (xi µ Yc ) Y c,
71 <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (Y c X 1,...,X n )= P (x i Y c )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) 1 q2 exp 2 Yc Y c is a label (xi µ Yc ) Y c
72 Human knowledge belongs to the world.
73 Naïve Bayes with Sklearn Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
74 CountVectorizer in Scikit-learn - 문서에서 Bag of Words Vector 를뽑아주는 class action.text.countvectorizer.html
75 CountVectorizer in Scikit-learn - 다른전처리모듈처럼생성 à 적용의과정을거침
76 CountVectorizer in Scikit-learn - 다른전처리모듈처럼생성 à 적용의과정을거침
77 NB classifier family in scikit-learn - Scikit-learn에서제공하는 NB classifier - Bernoulli Naïve Bayes - Multinomial Naïve Bayes - Gaussian Naïve Bayes
78 Bernoulli Naïve Bayes
79 Bernoulli Naïve Bayes
80 Multinomial Naïve Bayes
81
82 Gaussian Naïve Bayes
83
84 Human knowledge belongs to the world.
Lecture12_Bayesian_Decision_Thoery
Bayesian Decision Theory Jeonghun Yoon Terms Random variable Bayes rule Classification Decision Theory Bayes classifier Conditional independence Naive Bayes Classifier Laplacian smoothing MLE / Likehood
More informationOverview Decision Tree Director of TEAMLAB Sungchul Choi
Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based
More information단순 베이즈 분류기
단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =
More informationcha4_ocw.hwp
제 4장 확률 우리는 일상생활에서 확률이라는 용어를 많이 접하게 된다. 확률(probability)는 한자어로 확실할 확( 確 ), 비율 률( 率 )로 해석된다. 로또당첨확률, 야구 한국시리즈에서 특정 팀이 우승 할 확률, 흡연자가 폐암에 걸릴 확률, 집값이 오를 확률 등 수없이 많은 확률들이 현대생활 에서 사용되어지고 있다. 대부분의 일간신문에는 기상예보
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More information확률과통계 강의자료-1.hwp
1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때
More informationOverview Ensemble Model Director of TEAMLAB Sungchul Choi
Overview Ensemble Model Director of TEAMLAB Sungchul Choi Ensemble Model - 하나의모델이아니라여러개모델의투표로 Y값예측 - Regression 문제에서는평균값을예측함 - meta-classifier - stacking (meta-ensemble) 등으로발전 - 학습은오래걸리나성능이매우좋음 - Kaggle
More information확률과통계4
확률과통계 4. 확률변수와확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 4. 확률변수와확률분포 4.1 확률변수와확률분포의개념 4.2 결합확률분포 4.3 주변확률분포 4.4 조건부확률분포 4.5 확률변수의독립 4.1 확률변수와확률분포의개념 [ 정의 4-1] 확률변수 (random variable) 표본공간의각원소를실수값으로
More information확률 및 분포
확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More information4임금연구겨울-지상토론
지상토론 기업의 합리적 임금관리전략을 통한 위기극복 방안 박준성 교수 지난 1998년 외환위기시에도 임금연구 에서 경 주제발표 김강식 교수(한국항공대) 토 론 자 : 장상수 전무(삼성경제연구소) 최영미 이사(한국HP) 제위기시 임금관리 방향에 대해 논의(본지 1998년 봄호 참조)를 한 적이 있는 것으로 알고 있습니다만 10년전과 비교해 봤을 때 우리 노동시장은
More information<4D6963726F736F667420506F776572506F696E74202D205BBFACB0A3BAB8B0EDBCAD5DC8EFB1B9B8D6C6BCC7C3B7B9C0CC333020BFACB0A320BFEEBFEB20C7F6C8B220B9D720C0FCB8C15F3230313530313036>
판매사 사내한 흥국 멀티플레이 30 연간 운용 현황 및 전망 2016. 1. 7 [ Contents ] Ⅰ. 운용현황 Ⅱ. 시장 전망 및 향후 운용 계획 본 자료는 어떠한 수익이나 사실을 보장하거나 약속하는 것이 아니며, 관련 펀드에 대한 이해를 돕기 위하여 담당자에게 한해 제공 되어지는 자료입니다. 본 자료에 수록 된 수익률 등은 보장수익률을 의미하지 않으며
More information<3130C0E5>
Redundancy Adding extra bits for detecting or correcting errors at the destination Types of Errors Single-Bit Error Only one bit of a given data unit is changed Burst Error Two or more bits in the data
More informationProbabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):
Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률
More information확률과통계6
확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform
More information(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228
(JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More informationASETAOOOCRKG.hwp
청년층 희망 일자리와 실제 취업 일자리 격차 분석 - 고학력 청년 실업 원인에 대한 일고찰 - 홍 성 민 * ** 박 진 희 세계적인 경기침체가 본격화되는 2009년에는 실업문제가 가장 큰 사회경제적 이슈로 등장할 가 능성이 높으며, 특히 청년층의 고실업 문제와 더불어 일자리 기피 인해 나타날 가능성이 있는 NEET 화 현상에 대한 우려가 커질 것으로 예상된다.
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information.
w w w . . . . 4.1 4.2 - gait phase . 5.1 5.2 2 Accuracy Rate (%) 100 95 90 85 Threshold-based Naive Bayes Naive-Flex. Bayes Exoskeleton 80 Slow Normal Variable Dataset Accuracy Rate (%) 100 90 80 70 60
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More informationDOOSAN vol. 519 19
Big vs Small 18 DOOSAN_2007 08 DOOSAN vol. 519 19 Interview 20 DOOSAN_2007 08 DOOSAN vol. 519 21 Sabo 2.0 enquete Q1 Q2 22 DOOSAN_2007 08 Log in DOOSAN vol. 519 23 Fighting Bears 24 DOOSAN_2007 08 DOOSAN
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More informationDISCOUNT 신세계면세점이 2013년 10월 신세계포인트 제휴사로 새롭게 출발합니다 DISCOUNT 장르별 스페셜 할인 전국 이마트, 신세계백화점에서 발급받으시고 쇼핑하실 때마다 구매금액의 0.5%를 적립해드립니다. (1,000원 단위로 적립) 적립된 포인트는 신세
내국인(대한민국 국적)용 신세계면세점 612-010 부산광역시 해운대구 해운대해변로 296 Tel 1577-0161 SSGDFS.COM DISCOUNT 신세계면세점이 2013년 10월 신세계포인트 제휴사로 새롭게 출발합니다 DISCOUNT 장르별 스페셜 할인 전국 이마트, 신세계백화점에서 발급받으시고 쇼핑하실 때마다 구매금액의 0.5%를 적립해드립니다. (1,000원
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Information Retrieval Part 2 sigma α 2015.11.15. 2015.11.29. 2015.12.23. sigma α Information Retrieval (IR): Outline Issues Information Retrieval Boolean Retrieval The term vocabulary and posting lists
More information쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table
쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table http://academy.hanb.co.kr 6장. 해시테이블 테이블 Hash Table 사실을많이아는것보다는이론적틀이중요하고, 기억력보다는생각하는법이더중요하다. - 제임스왓슨 - 2 - 학습목표 해시테이블의발생동기를이해한다. 해시테이블의원리를이해한다. 해시함수설계원리를이해한다. 충돌해결방법들과이들의장단점을이해한다.
More informationIntroduction to Statistics (Fall, 2018) Chapter 2 Introduction to Probability Chapter 2 Introduction to Probability 2.1 Overview 확률 ( 론 ) 은우연에따라좌우되는게임
2.1 Overview 확률 ( 론 ) 은우연에따라좌우되는게임 ( 주사위, 동전, 카드, ) 에서특정사건의 발생가능성을수량화하기위하여탄생 (1) 한개의주사위를 5 번던지는실험에서결과 : 모집단 {1, 2, 3, 4, 5, 6} 에서단순임의복원추출 (simple random sampling with replacement) 을이용해 5 개의표본을추출하는것 > sample(1:6,
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More informationKD2002-27-02.hwp
개인의 지식창출시스템 구축을 위한 개념화 모델 16) 요 약 정보의 홍수를 이루고 있는 지식 정보사회에서 자신에게 가장 적합한 정보를 신속하게 받아들이 고, 이를 유의미한 지식으로 변형하여 적절한 상황에 활용할 수 있는 지식창출 능력은 매우 중요하 다. 현재까지 지식의 속성이나 인지활동은 여러 학자들에 의해 다양한 접근방법으로 연구되어 왔으 나, 이러한 연구들을
More information歯4차학술대회원고(장지연).PDF
* 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%
More information1 1,.,
,.,. 7 86 0 70 7 7 7 74 75 76 77 78 79 70 7 7 7 75 74 7 7 7 70 79 78 77 76 75 74 7.,. x, x A(x ), B(x ) x x AB =x -x A{x } B{x } x >x AB =x -x B{x } A{x } x =[ -x(xæ0) -x (x
More information첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169
첨부 168 첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 Ⅰ-1. 설문조사 개요 Ⅰ. 설문분석 결과 병무청 직원들이 생각하는 조직문화, 교육에 대한 인식, 역량 중요도/수행도 조사를 인터넷을 통해 실 시 총 1297명의 응답을 받았음 (95% 신뢰수준에 표본오차는 ±5%). 조사 방법 인터넷 조사 조사 기간 2005년 5월 4일 (목) ~ 5월
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More informationPowerPoint Presentation
컴퓨터비전 및 패턴인식 연구회 2009.2.12 Support Vector Machines http://cespc1.kumoh.ac.kr/~nonezero/svm ws cvpr.pdf 금오공과대학교 컴퓨터공학부 고재필 1 Contents Introduction Optimal Hyperplane Soft-Margin SVM Nonlinear SVM with Kernel
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe
Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.405-425 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.405 * A Study on the Perceptions and Factors of Immigrant Background Youth
More informationR을 이용한 텍스트 감정분석
R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45
More informationDelving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:
Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi
More information<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>
2012학년도 2학기 중등과정 3학년 국어 수업 계획서 담당교사 - 봄봄 현영미 / 시온 송명근 1. 학습 목적 말씀으로 천지를 창조하신 하나님이 당신의 형상대로 지음 받은 우리에게 언어를 주셨고, 그 말씀의 능 력이 우리의 언어생활에도 나타남을 깨닫고, 그 능력을 기억하여 표현하고 이해함으로 아름다운 언어생활 을 누릴 뿐만 아니라 언어문화 창조에 이바지함으로써
More informationMicrosoft PowerPoint - LN05 [호환 모드]
계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected
More informationpublic key private key Encryption Algorithm Decryption Algorithm 1
public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given
More informationII 2 72 90 % 0 % 74 80 % 80 % 90 % 0 % 00 90 0 80 % 0 80 % 8 20 % 9020 % 8 268 ;2 6;=0307y 3 % (90) 72 8 (0) 2 8 74 26 75 0 02 2 5 25 A B AB AB pq A B p+q 2 5 5 2 np r =n(n-)y(n-r+) np r n! nc r = 2 =
More informationMicrosoft PowerPoint - SBE univariate5.pptx
이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More informationuntitled
Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended
More information2
2 3 4 5 6 7 8 9 10 Game 11 12 13 14 15 16 17 18 19 20 1 2 3 21 22 Check List Check List Check List 23 24 25 26 27 28 HOT CLICK 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 HIS GAME FOCUS 48
More informationMicrosoft Word - EDA_Univariate.docx
일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,
More information슬라이드 1
[ 도입사례 ] 17 세기의프랑스철학자인파스칼은파스칼의정리혹은파스칼의원리등을남긴뛰어난수학자이며근대확률이론에도큰영향을미친바있습니다. 파스칼의책팡세 (Pensees) 에는 ' 파스칼의내기 (Pascal's Wager)' 라고하는흥미있는내용이수록되어있습니다. 파스칼은특히종교의문제에있어서는우리가이성에만의존할수없다는입장이었는데, 파스칼이신의존재와관련하여설명한내용은불확실성하의결정
More informationWeb-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P
Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 Presented by Boyoung Kim April 25, 2018 Boyoung Kim
More informationVOL.76.2008/2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph
인터그래프코리아(주)뉴스레터 통권 제76회 비매품 News Letters Information Systems for the plant Lifecycle Proccess Power & Marine Intergraph 2008 Contents Intergraph 2008 SmartPlant Materials Customer Status 인터그래프(주) 파트너사
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationDocuments Taxonomy - LASSO regression을 중심으로
Documents Taxonomy LASSO regression 을중심으로 유충현 Updated: 2017/12/17 Overview 1. 들어가기 2. 데이터전처리 3. 모델생성 4. 모델성능비교 1 들어가기 서론 Taxonomy는 사전적으로 "사물이나 생명체 등을 분류하기 위해서 사용되는 분류체계"로 해석되며, 분류체계는 트리형의 위계적 (Hirerachy)
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More information2부 데이터 수집
4 부머신러닝 (Machine Learning) Text Mining 2 1 장텍스트마이닝및영문텍스트분석기법 문서분류 (Document Classification) 개본개념 분류 ( 예측 ) 모델 3 문서분류 (Document Classification) 누구의연설문인가? 4 자동분류시스템구성과정 데이터수집 데이터가공 분류모델구축 분류및평가 DB 구성 노이즈제거
More information하반기_표지
LEG WORKING PAPER SERIES 2012_ 05 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Á ö 37 38 39 40 41 42 43 44 45 Discussion Paper 49 50 51 LEG WORKING PAPER
More information100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005
100 Bond Issue Performance Evaluation Risk management 100, Jan. 21, 2005 100, Jan. 21, 200 5 100호, Jan. 21, 2005 2 100, Jan. 21, 2005 3 100, Jan. 21, 2005 4 100, Jan. 21, 2005 5 100, Jan. 21, 2005 6 100,
More information컴파일러
YACC 응용예 Desktop Calculator 7/23 Lex 입력 수식문법을위한 lex 입력 : calc.l %{ #include calc.tab.h" %} %% [0-9]+ return(number) [ \t] \n return(0) \+ return('+') \* return('*'). { printf("'%c': illegal character\n",
More informationMicrosoft Word - 김창환.doc
포커스 포커스 악성댓글의 실태와 대응 방안 김창환* 인터넷은 전 세계적으로 다양한 계층이 사용하고 있는 대표적인 서비스로 다양한 사건 사고와 핫이슈들 을 실시간으로 접할 수 있고, 사용자들에게는 즐거움을 준다. 하지만 해킹을 비롯한 사이버 테러는 수법이 날로 교묘해지고 군사ㆍ행정ㆍ금융 등 한 국가의 주요 정보를 파괴하고 있으며, 최근에는 악성댓글이 익명 성을
More information을 할 때, 결국 여러 가지 단어를 넣어서 모두 찾아야 한다는 것이다. 그 러나 가능한 모든 용어 표현을 상상하기가 쉽지 않고, 또 모두 찾기도 어 렵다. 용어를 표준화하여 한 가지 표현만 쓰도록 하여야 한다고 하지만, 말은 쉬워도 모든 표준화된 용어를 일일이 외우기는
특집 전문 용어와 국어생활 전문 용어의 표준화 -남북 표준에서 시맨틱 웹까지- 최기선 한국과학기술원 전산학과 교수 1. 전문 용어 표준화가 사회 문화를 향상시키는가? 전문 용어 는 우리에게 어떤 의미가 있는가? 이 질문은 매일 마시는 공기 는 우리에게 어떤 의미가 있느냐고 묻는 것과 같다. 있을 때에는 없 는 듯하지만, 없으면 곧 있어야 함을 아는 것이 공기이다.
More informationInfinity(∞) Strategy
반복제어 표월성 passwd74@cherub.sungkyul.edu 개요 for() 문 break문과 continue문 while문 do-while문 for() 문 for() 문형식 for( 표현식1; 표현식2; 표현식3) 여러문장들 ; 표현식 1 : 초기화 (1 번만수행 ) 표현식 2 : 반복문수행조건 ( 없으면무한반복 ) 표현식 3 : 반복문수행횟수 for()
More information¼º¿øÁø Ãâ·Â-1
Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on
Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective
More informationUI TASK & KEY EVENT
2007. 2. 5 PLATFORM TEAM 정용학 차례 CONTAINER & WIDGET SPECIAL WIDGET 질의응답및토의 2 Container LCD에보여지는화면한개 1개이상의 Widget을가짐 3 Container 초기화과정 ui_init UMP_F_CONTAINERMGR_Initialize UMP_H_CONTAINERMGR_Initialize
More information디지털영상처리3
비트맵개요 BMP 파일의이해실제 BMP 파일의분석 BMP 파일을화면에출력 } 비트맵 (bitmap) 윈도우즈에서영상을표현하기위해사용되는윈도우즈 GDI(Graphic Device Interface) 오브젝트의하나 } 벡터그래픽 (vector graphics) 점, 선, 면등의기본적인그리기도구를이용하여그림을그리는방식 } 윈도우즈 GDI(Graphic Device
More information(Hyunoo Shim) 1 / 26 조건부생명확률 (coningen probabiliy) 이란? 사망의순서 ( 조건이됨 ) 를고려한생명확률동시생존자 / 최종생존자생명확률 : 사망이 x이든 y이든가리지않음 ( 대칭적 ) [ 조건부생명확률 : x와 y의사망순서를고려함 ( 비대칭적 ) ➀ 기호 : 예를들어, q 1 xy a) 사망순서 : 숫자 1, 2, 3,...
More information게시판 스팸 실시간 차단 시스템
오픈 API 2014. 11-1 - 목 차 1. 스팸지수측정요청프로토콜 3 1.1 스팸지수측정요청프로토콜개요 3 1.2 스팸지수측정요청방법 3 2. 게시판스팸차단도구오픈 API 활용 5 2.1 PHP 5 2.1.1 차단도구오픈 API 적용방법 5 2.1.2 차단도구오픈 API 스팸지수측정요청 5 2.1.3 차단도구오픈 API 스팸지수측정결과값 5 2.2 JSP
More informationMATLAB and Numerical Analysis
School of Mechanical Engineering Pusan National University dongwoonkim@pusan.ac.kr Review 무명함수 >> fun = @(x,y) x^2 + y^2; % ff xx, yy = xx 2 + yy 2 >> fun(3,4) >> ans = 25 시작 x=x+1 If문 >> if a == b >>
More information#수Ⅱ지도서-4단( )
IV 4 3 4 5 5 exponent 3 3 Archimedes B.C. 87~B.C. Diophantos?00~?84 a m _a n =a m+n (mn=0y) Stifel M. 487~567 Arithmetica integra y-3--03y y ;8!; ;4!; ;!; 48y Stevin S. 548~60 xx x ()()(3) x ;!; x ;3!;
More information歯제7권1호(최종편집).PDF
********* (*, **, *** ).., 2002, 7, 1, 1-12. 2-5 80.,.,..,,... :,,. (naming).., (word finding), (lexical look- up), (lexical retrieval), (word recall) (Fried- Oken, 1987). (pause),,, (naming error) (Snyder
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More information산선생의 집입니다. 환영해요
Biped Walking Robot Biped Walking Robot Simulation Program Down(Visual Studio 6.0 ) ). Version.,. Biped Walking Robot - Project Degree of Freedom : 12(,,, 12) :,, : Link. Kinematics. 1. Z (~ Diablo Set
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More informationArtificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.
Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, 2018 1 Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. https://docs.scipy.org/doc/numpy-1.15.0/user/quickstart.html https://www.machinelearningplus.com/python/
More informationMicrosoft Word - [2017SMA][T8]OOPT_Stage_2040 ver2.docx
OOPT Stage 2040 - Design Feesual CPT Tool Project Team T8 Date 2017-05-24 T8 Team Information 201211347 박성근 201211376 임제현 201411270 김태홍 2017 Team 8 1 Table of Contents 1. Activity 2041. Design Real Use
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More information<C7A5C1F620BEE7BDC4>
연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationAnalysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ
Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in University & 2 Kang Won University [Purpose] [Methods]
More information歯4차학술대회원고(황수경이상호).PDF
1) 2).. 1-4.,,,, k?,,,. -, 4.... (norm alization ) (social inclusion ),..,. 1990.. 2000 145 100 3.1% 1, 1* *** 4. ( ). 3) 133 15 64, 56. 47.8% 71.6% 28.4%. 4.1% 7 ( 1). 4) < 1> 1 2 (2000) 47.8 71.6 28.4
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information2
2 3 4 5 6 7 8 40% 4% 2% 22% 4% 0% 11% 18% 9 10 Game 11 12 13 14 15 16 17 18 19 20 21 22 Check List Check List Check List 23 24 25 26 27 28 HOT CLICK 29 30 31 32 33 34 35 36 37 38 39 40 41 www.khgames.co.kr
More information