nonpara1.PDF

Size: px
Start display at page:

Download "nonpara1.PDF"

Transcription

1

2 Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710) 194Wolfowitz,, 111 advantage ( ), (rank) 11 disadvantage ( ) 1 statistical terms 11 descriptive and inferential ( ), (descriptive) (statistic) (parameter) (inferential) 1 population and sample ( ) (population) (sample), [001 1 ] Nonparametric 1

3 Chapter 1 Introduction, (sample) (, n 0) 13 parameter and statistic ( ) (parameter) µ, σ, ρ (unknown) (statistic) (estimation) x, s (median) rank 14 random variable and probability density function ( ) (simple random sample),, (random sample) ( ) ( ) 15 measurement and categorical ( ) (measurable numerical) (categorical) [001 1 ] Nonparametric

4 Chapter 1 Introduction,,,,,, 16 statistical hypothesis ( ) : (hypothesis),, =100, : ( ) ( ) 1 (type I error) 1 (significant level) α (1-α) (confidence level) ( ) ( ) (β) 1 (α) [001 1 ] Nonparametric 3

5 Chapter 1 Introduction p-value: (observed significant level) p- p-value 170 x : (1-β) (power), x u 10 u {x >10} Pr( < ) s / n s / n (µ) : 95% 5%, 95% (100, 110) H : µ = 5% 95% 95% 95% [001 1 ] Nonparametric 4

6 Chapter 1 Introduction 13 order statistic [001 1 ] Nonparametric 5

7 Chapter 1 Introduction 13 order statistic ( ) 131 review : (random variable) X ( c) = x : c=, x= (real number) ( ) : X ( c) = i wherei = 1,, 3, 4, 5, 6 : (probability density function) ( 1) : f ( x) = 1/ 6 where x = 1,, 3, 4, 5, 6 ( ) f ( x ) = Γ( r 1 / ) r / x ( r / 1) x / ) e x : (cumulative distribution function) F ( x) = Pr( X x) = f ( x) dx : X 1, X,, X n (random sample) 13 definition n X 1, X,, X n X (1), X () X ( 1) < X () < < X ( n) X ( 1) X (),, (order statistic) 133 (minimum) X (1), (maximum) X (n) (range) X (n) - X (1), midrange: X + X ]/ [ ( 1) ( n) (median) m= [ X X ]/ (n ), m= X n + n ( ) ( + 1) n+ 1 ( ), X ( n) (n ) [001 1 ] Nonparametric 5

8 Chapter 1 Introduction 134 1) X ( 1), X (),, X ( n) (joint distribution function) ) X (1) marginal distribution function 3) X (n) marginal distribution function f ( x1, x,, xn ) = n! f ( x1 ) f ( x) L f ( xn ) n 1 f ( x1) = n[1 F( x1)] f ( x1) f ( x n ) = n[ F( x n )] n 1 f ( x 4) n (median) m marginal distribution function (k)! k k f m F m v 1 m F t 1 ( ) = [ ( )] [1 ( )] f (m t) f ( t) dt, n=k [( k 1)!] f ( x) = x, 0 < x < 1 x, x, x x x, x, x x ( 1) () (3), (4) n ) 1 3, 4 x x (1) (n) 14? ( ) one population + location parameter 60 f (x) [001 1 ] A 0 60 ) f (x 0 10, 9,, 18, 3, 3, 5, 14, 10, 9 6, 8, 1, 15, 1, 9, 4, 7, 8, 3 (elementary statistic) ( ) Location parameter: mean, median x, K x 1 x,, f (x), 0 parameter histogram, stem-leaf, box-plotf (x) Nonparametric 6

9 Chapter 1 Introduction f (x) skewed, outlier stem-leaf 60? population mean( µ ) median( M ) sample mean: (statistic) x = 0 xi / i= 1 sample median: x + ] / n [ ( 10) x(11) µˆ = x, Mˆ = x + ] / [ ( 10) x(11) t f ( x) dx = 1/ µ, M t 60 9? (null hypothesis): H : µ 9 H : M 9 0 = 0 = (alternative hypothesis): H : µ > 9 : M > 9 a H a f(x) µ 9 ( ) [001 1 ] Nonparametric 7

10 Chapter 1 Introduction ( ) f ( x; u, ο) σ / x u, n ( ) [Central Limit Theorem] n ( ) normal distribution f x ~ Normal( u, σ / n) µ x u : t = ~ normal(0,1) σ / n (σ) (s) Normal (0,1) ( ) 0 t *) [Student t-distribution] ( ) x u t = ~ t(n -1) s / n [001 1 ] Nonparametric 8

11 Chapter 1 Introduction 1) χ - ) 0 3) xc ~ χ (λ=), xc6 ~ χ (λ=10) 4) (xc, xc6) 5) ( ) )-4) ) [001 1 ] Nonparametric 9

12 Chapter One sample (statistic) (parameter) (estimate) (statistical hypothesis) (statistical inference) (location parameter) (mean) (median) Population f ( x : µ, σ ) (random sample): ( x, 1, x, K xn ) xi statistic: x n x ( n/ ) + x ( n/ + 1) =, m = or = x(( n+ 1) / ) = ( x x) /( n 1) s i 1 parameteric procedure ( ) (sample mean) E ( x) = µ, V ( x) = σ / n f ( x; µ, σ ) f ( x; µ, σ / n) 11 (large sample) 1) (central limit theorem) n x ) f (x ) (hypothesis testing) (null hypothesis): 0 (alternative hypothesis): 0 µ = µ ( ) µ µ (two-sided) µ > µ 0 (one-sided) (test statistic): [001 1 ] Nonparametric 10

13 Chapter (, p-value) T x µ 0 = s / n ~ Normal(0,1) µ 0 x (conclusion): T (critical region) (p- ) (1, α) ( ) two-sided ( ) (α) one-sided ( ) 3) (confidence interval) 100(1-α)% (lower limit): µ x z l α / x ± zα / s =, (upper limit): n s n µ = x + z u α / ( ) 95% ( ) 95%, ) 100(1-α)% (µ) µ = x + z u α / µ = x z l α / s s n n s n x ( ) [001 1 ] Nonparametric 11

14 Chapter [001 1 ] Nonparametric 1

15 Chapter 1 (small sample) 1) : n ) f (x ) t- : ) f (x W S Gosset Student x µ ~ t( n 1) s / n ; =0, =n/(n-) f ( x) ~ Normal(0,1) f ( x) ~ t( n) [ t- ] 3) x µ T = ~ t( n 1) s / n 100(1-α)% : x ± t( n 1; α / ) s n Nonparametric procedure I: Sign Test n (sign) 1 (hypothesis testing) x x,, x, 1) (assumption): 1 K n f ( x : M ) (random sample) ( ) [001 1 ] Nonparametric 13

16 Chapter ) (statistical hypothesis): H : M = M 0 H a : M M ( ) H a : M > M 0 H a : M < M 0 ( ) : 0 : 0 3) (test statistic): x i = M 0 x i M ( 0 ) M 0 +, - + ( ) 4) (decision rule): ( x i M 0 ) +, - ( ) p ( ; + ) (Bernoulli) + ( - ) K ~ B( n,05) ( K ) ( n, p) (Binomial Dist; B ( n, p) + k p- i) k 0 5n : p-value= Pr( K k n,05) ii) k 0 5n : p-value= Pr( K k n,05) ) + k sign test p- p-value= Pr( K k n,05) p- Sign test (population ratio) : p ) ( 0 p0 H = np,( n 1) p ) 9 min( 0 0 < α [001 1 ] Nonparametric 14

17 Chapter : : M 3 5 H, : M = H a : ( x i M 0) =1 k 1 p- = Pr( K 1 n = 10, p = 05) = =9, + =1, 0 p<005 ( α / ) ( ) 35 k ? ( : M < 3 5 H a ) p- 005 Large-sample approximation: 1 p-value (normal approximation to the binomial) ( K + 05) 05n z = ~ Normal(0,1) 05 n p-, z=-1 Pr( K 1 n = 10, p = 05) n=0 n z- SAS : UNIVARIATE procedure (confidence intervals) ( : point estimate) ( ) ( : interval estimate) Sign Test 100(1-α)% Pr( K K * α ) M l = X ( k * +1) lower limit= M u * + ( k 1 ) upper limit [001 1 ] Nonparametric 15

18 Chapter 100(1-α)% α Pr( K 3 n = 16, p = 05) = Pr( K 4 n = 16, p = 05) = α X = 99, X 4 01 ( 5) 1 (1) = Large-sample approximation : 1 (normal approximation to the binomial) * * ( K + 1) ( n / ) + zα / ( K + 1) (16 / ) / 4 4 n / 4 95% ( X = 9, X 8 11 ( 4) 1 (13) = ) 95% α=00105*=001 95% 979% [001 1 ] Nonparametric 16

19 Chapter [001 1 ] Nonparametric 17

20 Chapter 3 Nonparametric procedure II: Wilcoxon Signed-ranks test sign test 31 (hypothesis testing) x x,, x, x i M ( 0 ) 1) (assumption): 1 K n f ( x : M ) (random sample) ( ) sign test ) (statistical hypothesis): H : M = M 0 ( ), H 0 : M M 0 H : M M 0 0 ( ) H a : M M ( ), H a : M > M 0 H a : M < M 0 ( ) : 0 : 0 3) (test statistic): D = x M ) D = 0 i i ( i 0 i i M 0 D D D 3 Di 1,, 3 Di (1=+3)/3=, 3 D i T, + T T = [ n( n + 1) / ] T + T T T T+ H a : M M = min( T, T ) i T H a : M > M 0 T = T H a : M < M 0 T = T + 4) (decision rule): Wilcoxon n (critical region) α + Sign test (population ratio) : p ) ( 0 p0 H = [001 1 ] Nonparametric 18

21 Chapter np,( n 1) p ) 9 min( 0 0 < α H : M 107 : M = + H a T = 64 5 T = 40 5 T = min( 645,405) = 40 5 T 1 T = 40 5 α H : M 107 : M < 107 T 5 T 0 = T = 405 H a Large-sample approximation: 0 Wilcoxon T n( n + 1) / 4 T* = ~ Normal(0,1) n( n + 1)(n + 1) / 4 * T T, T T + z- [001 1 ] Nonparametric 19

22 Chapter sampling distribution of T + : n=4 T + Wilcoxon + T + + T + + T + + T , 1,3 1, ,3,4 3,4 1,,3 Wilcoxon (n=4) ,,4 1,3,4,3,4 1,,3, (confidence intervals) Wilcoxon xi + x j 1) uij =, 1 i j n ) uij? C 10 = ) Wilcoxon n P T K(=T+1) uij (lower limit) K dl (upper limit) xi + x j 1) uij =, 1 i j n ) uij u ij( 8) = 3) n=10p=0044t=8 ( u 7 75, u % ij( 9) = ij( 47) = ) Large-sample approximation : 0 Wilcoxon n( n + 1) z 4 K α / n( n + 1)(n + 1) 4 [001 1 ] Nonparametric 0

23 Chapter [001 1 ] Nonparametric 1

24 Chapter 4 One-sample runs test for randomness (random sample) randomness Run 40 Example 1) p control chart: control limit randomness pattern control ) 41 0) : randomness runs( )run MFMFMFMFMF runs 10 pattern MMMMMFFFFF runs 5 1) n, n 1, n n=n 1 +n ) (null hypothesis): randomness (alternative hypothesis): randomness 3) : runs (r) 4) (decision rule): r (n 1, n ) (critical values of r in the runs test) * ) ( ) [001 1 ] Nonparametric

25 Chapter n 17 n 13 n = 30 1 = = { r 10} { r } r = 8 Large-sample approximation: n 1, n 0 r {[( n1n) /( n1 + n )] + 1} T* = ~ Normal(0,1) n n (n n n n ) ( n n 1 1 ) ( n + n 1) [001 1 ] Nonparametric 3

26 Chapter [001 1 ] Nonparametric 4

27 Chapter 5 Cox-Stuart Test for Trend trend Sign test Cox, D R and A Stuart, Some Quick Tests for trend in Location and dispersion, Biometrika, 4 (1955), Example ( ) 51 1) ) (null hypothesis): trend (alternative hypothesis)1: upward trend (alternative hypothesis): downward trend (alternative hypothesis)3: trend 3) : ( x i, x c + i ) ( xc+ i xi ) (+, -) trend n c = n / n c = ( n +1) / 4) (decision rule): 0 + sign test [001 1 ] Nonparametric 5

28 Chapter : trend : trend ( ) : (07, 7), (3,13), ( n ' = 40 6 (sign test ) p-value P ( K 6 n = 0, p = 05) ) + =6 =14, = trend Large-sample approximation: sign test [001 1 ] Nonparametric 6

29 Chapter (SAS v8 ) 5 SAS 80 SAS (Excel, ASC format, DB) SAS data DATA step ( 1) DATA one; input var1 var; cards; ---- run; ( ) DATA one; infile Text file ; input var1 var; run; SAS version 8 spreadsheet 51 (spreadsheet ) 1) SAS Solution SAS SAS data Work Library ) (Analyst) (project) (1) spreadsheet () ( #3, 7 ) Explorer (3) SAS data Work Library [001 1 ] Nonparametric 7

30 Chapter (SAS v8 ) 5 1) Report [001 1 ] Nonparametric 8

31 Chapter (SAS v8 ) ) ( ) 3), [001 1 ] Nonparametric 9

32 Chapter (SAS v8 ) 4) 5) ( SK) (Analyst) Default Report Temporary SAS data 6)? SAS? Tabulate procedure? [001 1 ] Nonparametric 30

33 Chapter (SAS v8 ) 53? 1)? [001 1 ] Nonparametric 31

34 Chapter (SAS v8 ) ) pop-up 3) 4) 5) SAS data [001 1 ] Nonparametric 3

35 Chapter (SAS v8 ) 6)? 7) box plot ( )? 8)?? [001 1 ] Nonparametric 33

36 Chapter (SAS v8 ) 9)? 10), SAS?? (program editor) 11) ( ) F8 1) OUTPUT( ) [001 1 ] Nonparametric 34

37 Chapter (SAS v8 ) 54 ( ) 10? 1)??, t ) (variable) 10 3) (interval ) (significant level) [001 1 ] Nonparametric 35

38 Chapter (SAS v8 ) 4) p-value= (5%) 10 55?? (54 ) 1) data step univariate procedure [001 1 ] Nonparametric 36

39 Chapter (SAS v8 ) ) Sign Test( ) Wilcoxon Ranks-sum Test ( ) p-value M K n / =, S = T + n( n + 1) / 4 3) Wilcoxon ranks-sum pairwise( ) n + C pairwise n? Point Estimator ( ): sign test Wilcoxon ranks-sum test [001 1 ] Nonparametric 37

40 Chapter (SAS v8 ) 1)? [ ] ),,? [ ] [001 1 ] Nonparametric 38

41 Chapter 3 3 (independent samples) (paired samples) 4 30 (location parameter) ( ) ( ) t- 301 µ x µ y 1) : σ = x σ y ) : σ σ F n 1; n ) x y ( max( sx, s y ) 3) : T = ~ F ( n1 1; n 1) min( s, s ) x y (α/) n 1 =, n =, 4) : T (critical region) (cf) Hartley Test ( 3 ) [001 1 ] Nonparametric 39

42 Chapter ) : µ = x µ y ) : µ ( ) 3) : x µ y ( x y) ( µ x µ T = s 1/ n + 1/ n p x y y ) ~ N (0,1) where s p = ( n x 1) s ( n x x + ( n + n y y ) 1) s y Why? 4) : T (critical region) 100(1-α)% α/ α/ Normal (0,1) z α / z α / 5) 100(1-α)% x y) ± z s 1/ n 1/ n : ( α / p x + y 30 1) : ) : µ = x µ y 3) : µ ( ) 4) : x µ y ( x y) ( µ x µ y ) T = ~ t( nx + ny s 1/ n + 1/ n p x y 5) : T (critical region) ) t( α / ; n x n ) + y 6) 100(1-α)% ( x y) ± t( α / ; n + n ) s 1/ n + 1/ n : x y p x y [001 1 ] Nonparametric 40

43 Chapter SAS 19 (pound) (SAS JMP class ) *) t- t- (Satterthwaite ) HOMEWORK #6 [due 4 10 ] 31 homework #6(3) ( =005) [001 1 ] Nonparametric 41

44 Chapter Median Test ( ) 1) (assumption) ( x1, x, K, xn 1 ) M x (random sample) y, y, K, y ) M y (random sample) ( 1 n (grand median) ) (hypothesis) M = M x = M : y M M (median ) : x y 3) (test statistic) (M) (M) ( n 1 + n ) 1 (X) (Y) total A B A+B C D C+D Total A+C=n 1 A+C=n N=n 1 +n A = C = /, B = D = / n 1 n n 1 + n ( ) Hyper-geometric distribution N M (N-M) K (without replacement: ) x x M N M ( )( ) x K x H ( x N, M, K ) =, x = 0,1,, K, K, N ( ) K KM KM ( N M )( N K ) E ( x) =, V ( x) = ( ) N N N ( N 1) [001 1 ] Nonparametric 4

45 Chapter 3 Median Test : N, n 1, n, Ax, (A+B) K n1 n ( )( ) A B H ( A N, M, K ) =, A = 0,1,, K, ( A + B) N ( ) A + B Binomial approximation to Hyper-geometric distribution (N ) min( np, npq) >5 H ( x N, M, K ) ~ Binomial( x n = K, p = M / N) ~ Nomal( np, npq) ( A / n1) ( B / n ) T = ~ Normal(0,1) : pˆ(1 pˆ)(1/ n + 1/ n ) 1 EXAMPLE (X, Y) ( =005) X Y ) : M = M x y ) : M M ( ) 3) : x y X Y total Total (1 / 3) (1 /16) T = = 45 p ˆ = (1 + 1) / 48 = (1 05)(1/ 3 + 1/16) 4) : ( < 196) X Y X (why?) [001 1 ] Nonparametric 43

46 Chapter 3 : n = n 1 + n ) Median test (homogeneity) χ - ( ( ) How? HOMEWORK #6 [due 4 10 ] The quality control manager with a drug manufacturer wishes to know whether two methods of producing a particular tablets result in a difference between the median thick-nesses A random sample of tablets is drawn from batches produced by the two methods The following table shows the results, which have been coded for computational convenience Do these data provide sufficient evidence to indicate that the two population medians are different? Let α = 005 Method Thickness A B [001 1 ] Nonparametric 44

47 Chapter 3 3 Mann-Whitney Test 1) (assumption) ( x1, x, K, xn1) M x ( y1, y, K, yn ) M y ) (hypothesis) : M = M x = M y : M x M y ( ) M x < M y M x > M y ( ) 3) (test statistic) x, x, K, x ) y, y, K, y ) (rank) ( 1 n1 ( 1 n X Y x, x, K, x ) y, y, K, y ) ( 1 n1 n ( 1) 1 n 1 + T = S, S= 1 ( 1 n 4) T C (Mann-Whitney : w α / ) wα / w 1 α / w 1 α / = n1n wα / M x < M y T w α M > M T w x y 1 α Large sample Approximation: n1 n 0 C z = 1 T n n 1 1 n n ( n + n / + 1) /1 [001 1 ] Nonparametric 45

48 Chapter 3 EXAMPLE (X, Y) ( =005) X Y ) : M = x M y ) : M M ( ) 3) : x y T = (17 + 1) / = ) : C n 1 = 17, n = 10 w α / = w0 05 =46 & w1 α / = w0975 = 17*10 46 =14 X (Why?) p-value?: Yes, but approximation n 1 = 17, n = 10 T =143 5 ( 17)(10) 6 = 144 ( 17)(10) 35 = > p > SAS [001 1 ] Nonparametric 46

49 Chapter 3 [001 1 ] Nonparametric 47

50 Chapter 3 HOMEWORK #6 [due 4 17 ] [001 1 ] Nonparametric 48

51 Chapter 3 33 ( M = M ) x y α 100(1-α )% Median Test Median Approximation T = ( A/ n ) ( B / n 1 pˆ(1 pˆ)(1/ n 1 ) + 1/ n ) ~ Normal(0,1) M M ) 100(1-α )% ( x y A / n ) ( B / n ) ± zα pˆ(1 pˆ)(1/ n + 1/ ), ( 1 / 1 n A + B pˆ = n + n 1 EXAMPLE Median Test (X, Y) 95% (43 page) ( 1/ 3) (1/16) ± 196 (4/ 48)(1 4 / 48)(1/ 3 + 1/16) Mann-Whitney Test M-W 1) (X, Y) x y ) ( i i n 1,n n 1n ) ( = 3) Mann-Whitney ) ( 4) (100-α)% w α / w w α / (lower bound) α / ), (upper bound) [001 1 ] Nonparametric 49

52 Chapter 3 EXAMPLE 95% X Y ) (X, Y) x y ) ( i i n 1n ) ( = 3) Mann-Whitney ( 11, 10 ) w 7 α / ) 4) 95% (lower bound) 7 1 (upper bound) 7 17 [001 1 ] Nonparametric 50

53 Chapter (dispersion) : F- 1) : σ = ) : max( s x, s y ) 3) : F = ~ F( n1, n ) min( s, s ) x y x σ y x σ y σ ( ) 4) : HOMEWORK #7 [due 5 8 ] ( : $) ( =005) n 50 / x = 50 / s = 3 1 n 30 / x = 10 / s = 87 x = x y = x 34 : Ansari Bradley 1) : σ = ) : x σ y x σ y σ ( ) 3) : X Ansari Bradley ( n 1 =X, n =Y) EXAMPLE (X, Y) ( =005) X Y ) : ) : ( ) 3) : (group) X X Y Y X Y Y X Y T=1++5+=10 ( n 1 =4, n =5) T T=16(00159) 8(09603) 8 16 [001 1 ] Nonparametric 51

54 Chapter 3 4) : 10 ( 16 T T 8 ) 5% Large sample Approximation: Ansari-Bradley n + n 0 1 T T * * HOMEWORK #7 [ ] T [ n1( n1 + n + ) / 4] = ~ N(0,1) if n 1 + n n n ( n + n + )( n + n ) /[48( n + n 1)] T [ n1( n1 + n + 1) / 4( n1 + n )] = ~ N (0,1) if n 1 + n n n ( n + n + 1)(3+ ( n + n ) ) / 48 ( n + n ) Dopamine ( =01) SAS 1 [001 1 ] Nonparametric 5

55 Chapter 4 4 (paired) before and after, pre and post (treatment effect) (paired) 3 (0 ) u x = u y??? x y X Y = 0??? di = xi yi x, y ), ( x, y ), K, ( x n, y ) ( 1 1 n 40 (paired t-test) d = x y ) 1) (hypothesis) i ( i i : µ = 0 (, ) d : µ 0 ( ) µ > 0 µ < 0 ( ) ) (test statistic) d d = x y ) i d ( i i d i ( d ) D T = ~ Normal (0,1) ( ) ~ t ( n 1) ( : s n d / ) 3) (decision rule): t- p-value d HOMEWORK #8 [due 5 10 ] 10 ( =005) SAS [001 1 ] Nonparametric 53

56 Chapter 4 41 Sign Test + ( ) 1) (assumption) ( x 1, y 1), ( x, y ), K, ( x n, y n ) di = yi xi d i ) (hypothesis) : M = 0 ( 0 ) d : M 0 ( ) M > 0 M < 0 ( ) 3) (test statistic) d i i i d = y x d = 0 K d i d + p-value : Pr( K k n,05), Pr( K k n,05) 4) p- α EXAMPLE 10 ( =005) W Daniel Applied Nonparametric Statistics ) : M = 0 ) : M < 0 ( ) 3) : K = 4) : p- = Pr( K n = 10, p = 05) = d d [001 1 ] Nonparametric 54

57 Chapter 4 HOMEWORK #8 [due 5 10 ] Solve the following problems [001 1 ] Nonparametric 55

58 Chapter 4 4 Wilcoxon Matched pairs Singed Ranks Test Sign test ( ) WSR WRS 1) (assumption) ( x 1, y 1), ( x, y ), K, ( x n, y n ) di = yi xi i d ) (hypothesis) : M = 0 ( 0 ) d : M 0 ( ) M > 0 M < 0 ( ) 3) (test statistic) d i i i d = y x d = 0 i d d d = y x d i i i i = yi xi + ( T + ) ( T ) T = min( T, T ) M d > 0 T = T M d < 0 T = T + 4) + Wilcoxon (WRS ) n (critical region) α α/ EXAMPLE 9 ( =005) W Daniel Applied Nonparametric Statistics ) : M = 0 d [001 1 ] Nonparametric 56

59 Chapter 4 ) : M < 0 ( ) 3) : d 4) : n=8 T = 0 + WRS p ( ) 005 HOMEWORK #9 [due 5 15 ] [001 1 ] Nonparametric 57

60 Chapter 4 43 d = x y ) i ( i i Sign test, WRS 3 HOMEWORK #9 [due 5 15 ] 11 95% Sign WRS 44 (McNemar )? A (, (panel) ),, ( ) McNemar 441 McNemar After Yes No Total Before Yes A B A+B No C D C+D Total A+C B+D N [001 1 ] Nonparametric 58

61 Chapter 4 N= A= YES D= NO 44 McNemar B=YES, NO D=No, YES McNemar (Yes, No) Bennett & Underwood 3 1) (hypothesis) p = ( yes yes ) : 1 p : p1 p ( ) p 1 > p p 1 < p ( ) ) (test statistic) A + B : pˆ 1 =, N ( B C) / N = 0 A + C pˆ = : pˆ N p 1 ˆ B C = N McNemar (B+C) 10 z = B C B + C ~ Normal(0,1) EXAMPLE 85 ( =005) Yes No Total Yes No Total ) (hypothesis) : p 1 = p ( ) p < ( ) : 1 p 37 6 ) (test statistic): z = = p-value= pr ( z 138) = [001 1 ] 59 Nonparametric

62 Chapter 4 43 SAS (McNemar ) order=data nopercent norow McNemar B C SAS z = χ = B + C ) Chi-square?? ( B C B + C HOMEWORK #9 [due 5 15 ] McNemar [001 1 ] 60 Nonparametric

63 Chapter 5, 5, (associate), (independence) ( ) (likeness) (homogeneity) ( ) H 0 : p 1 = p z- t- χ - (Chi-Square) (cross-tabulation) (contingency table) 51 Chi-Square ( = µ, = σ ) X Z ( =0, =1) X µ Z = σ ~ Normal(0,1) Z 1 χ X µ Z = ( ) ~ χ ( df = 1) σ k Chi-Square 1 ( k / ) 1 x / f ( x) = x e, 0 x < k / Γ( k / ) k Chi-Square k k χ ( df = 1) W 1, W, K, Wk k Chi-square Y = Wi ~ χ ( df = k) W ~ χ ( df = m1) V ~ χ ( df = m) W V F- H = / ~ F( m1, m) m1 m k = Chi-Square (exponential dist: β = ) [001 1 ] Nonparametric 61

64 Chapter 5, Chi-Square (df)= df=4 df=6 5 Contingency Table 1, ( ) 1 1 r, c 1 1 c total 1 O 11 O 1 O 1c n 1 O 1 O O c n : : : : : : r O r1 O r O rc n r Total n 1 n n c n Chi-Square??? ( ) Pr( AB ) = pr( A) Pr( B) n n i j Eij = ( )( ) n n n ( O T = ij E ) E ij ij??? [001 1 ] Nonparametric 6

65 Chapter 5, 53 Chi-Square (associate) A 1 30 (3 ) A BC Total Total n ( ) : : n n i j Pr( nij ) = Eij = ( )( ) n n n Pr( A ) = Pr( ) Pr(A ) n1 n 1 1 E 11 = ( )( ) n = / 30 = 65 7 n n 3 E = / = [001 1 ] Nonparametric 63

66 Chapter 5, ) O E ) ( ( O T = ij E ) E ij ij ( ij ij ( r 1)( c 1) χ (75 657) (4 176) T = + + = 7 68 ~ χ (approximate) ( df = ( 1)(3 1) = ) χ (critical region) 5% } {> 599? SAS A, B A [001 1 ] Nonparametric 64

67 Chapter 5, SAS NOCOL: NOPERCENT: CHISQ: EXPECTED: Chi-Square = χ ij ij ij χ Likelihood Ratio = O ln( O / E ) ~ ( df = ( r 1)( c 1)) M-H Q MH = ( n 1) r ~ χ ( df = 1) r Person M-H (ordinal) Phi, Contingency, Cramer s coefficient [001 1 ] Nonparametric 65

68 Chapter 5, EXAMPLE 764 5% 1) : ( ) ) : 3) : E = / = ( ) ( ) (59 41) 4) : T = + + K+ = 47 9, χ - {> 15507} HOMEWORK #10 (due May 17) 1) SAS ( =01) ) SAS [001 1 ] Nonparametric 66

69 Chapter 5, 54 Chi-Square (, )? 1 1 c 1 O 11 O 1 O 1c n 1 O 1 O O c n : : : : : : r O r1 O r O rc n r n 1 n n c n x ( fourfold ) Total A B A+B C D C+D Total A+C B+D N ( )=( ), ( )=( ) x N( AD BC) T = ~ χ ( df = 1) ( A + C)( B + D)( C + D)( A + B) [001 1 ] Nonparametric 67

70 Chapter 5, : ( p 1 ) ( p ) T = pˆ pˆ 1 pˆ(1 pˆ)(1/ n 1 + 1/ n ) appro z(0,1) B pˆ 1 =, A + B pˆ D B + D =, pˆ = C + D N EXAMPLE AIDS A B ( =005) AIDS yes no A B ( ) T = = 338 ~ χ ( df = 1) χ ( df = 1) (0 + 6)( )( )(6 + 16) {> 384} AIDS HOMEWORK #11 (due May ) Fourfold Chi-square (hand calculation) ( =005) [001 1 ] Nonparametric 68

71 Chapter 5, RXC ( ) n E = =( )x( ) ij j ( ) ni n HOMEWORK #11 ( due May ) SAS ( =005) A B C D (Fisher exact test) Chi-square 5 ( 10 ) Cochran 5 0% Chi-square Cochran SAS % [001 1 ] Nonparametric 69

72 Chapter 5, Chi-Square? X 0 1 (,, ) X Exact test Fisher x RxC Fisher s Exact test (x ) ( ) : [001 1 ] Nonparametric 70

73 Chapter 5, p p- N 11 N 1 N 1 N 1 N N N 1 N N n1! n! n1! n!? p = n! n! n! n! n! !6!8!5! 7!6!8!5! 7!6!8!5! p = = 0363, p = = , p = = !!3!3! 13! 61!!!4! 13! 7!01!!5! 13! p ( ) p- p- p- SAS [001 1 ] Nonparametric 71

74 Chapter 5, SAS left sided 1 1 5, 4, 3,, 1, 0 HOMEWORK #11 (due May ) Fisher Exact test ( =005), SAS [001 1 ] Nonparametric 7

75 Chapter 6 One-way layout ( ) 6 One-way layout 3 (oneway layout) k k 1 1 y 11 1 y 1 y y 1n1 n 1 y11 y1 K y1n 1 y y n n 1 y1 y K yn k y k1 y k yknk n k yk1 yk K y1 nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(ratio) F- (normality assumption), Median, Kruskal-Wallis ( ) [001 1 ] Nonparametric 73

76 Chapter 6 One-way layout ( ) 61 ( : Analysis of Variance: ANOVA) t n t 1-n (unit) (CRD: Completely Randomized Design) (A, B, C) CRD 1 1, 5,, 7, 1, 10, 3 CRD ( :block) (randomized) Randomized Block Design B A C B C A B A [001 1 ] Nonparametric 74

77 Chapter 6 One-way layout ( ) 3 1m (ppm) 10 Lake Observation y = u + + e = µ + e ij τ i ij i ij i = 1,, K k j = 1,, K, ni : ( y y) = ( y y ) + ( y y) ij ij i i Y( ) : y y) = ( y y ) + ( ( y y) ij SST = SSE + SStr ij i i 1 3 ~ Normal(0, σ ) e ij : Hartley s test 0 : 1 t : H σ = σ = K = σ max( si ) : Fmax = ~ F ( : 1, 1) min( s ) i (Homoscadicity)dl (Heteroscadicity) σ = ku y * = y σ = ku y * = log( y) [001 1 ] Nonparametric 75

78 Chapter 6 One-way layout ( ) ( ) Source DF SS MS Treatment t-1 = y SStr ( i y) MStr = SStr /( t 1) MStr F = Error n-t SSE = SST SStr MSE = SSE /( n t) MSE Total n-1 = ( y y) SST ij ~ F( t 1, n t) (Post-hoc test) (multiple comparison) F- H 0 : u1 = u = = ut (pairwise: : H 0 : u 1 = u 3 ) (contrast: : H 0 : u 1 u + u3 = ) ( ) F- ( ) (controlled experimental error rate) 1 (1 α) c = t( t 1) / Fisher s Least Significant Difference c c pairwise o pairwise ( ) o LSD Tukey W procedure o studentized range distribution: W = max( y i ) min( y ) s q = w / o Student-Newman-Keuls procedure o Tukey (critical value) Tukey Duncan Multiple range test o Tukey 1 (1 α) r o i r [001 1 ] Nonparametric 76

79 Chapter 6 One-way layout ( ) Scheffe s S method o (contrast) Dunnett s procedure o control ( ) ( : placebo,, ) pairwise (contrast) o 1, 3? : Q = u ( u + 3 ) /? Q = y ( y + 3 ) / 1 u 1 y ( Q) : F = ~ F( 1, n t) where c c ci MSE( ) n i = i c i o 4? Q = u + u ) ( u + ) c =, c = 1, c = 1, c = 1 ( 1 4 u [001 1 ] Nonparametric 77

80 Chapter 6 One-way layout ( ) SAS [001 1 ] Nonparametric 78

81 Chapter 6 One-way layout ( ) HOMEWORK#1 (due May 4) (Research and Development ) (High, Moderate, Low) (10 ) (SAS ) Low Moderate High Box-Plot Bar pairwise (Tukey ) High, (Low + Moderate) [001 1 ] Nonparametric 79

82 Chapter 6 One-way layout ( ) 6 Median Median? 1 + ( ) + 3 k M1, M, K M k, : H M = M = K = 0 : 1 M k : 1 1 k > O 11 O 1 O 1k A O 1 O O k B n 1 n n k N 3 {> } { } ( Oij Eij ) 4 T = ~ χ ( df = k 1) ( ) 11??? E E = ij [001 1 ] Nonparametric 80

83 Chapter 6 One-way layout ( ) χ ( df = k 1) (critical value: ) EXAMPLE 1 ( 05 α = 0 ) ) : H 0 : M 1 = M = M ) : 3) : > (3 4) T = 4 (5 4) + 4 (0 4) ) : (13) χ ( df =, α = 005) = 5 99 = 13 HOMEWORK#13 (due June 5) 4 Median ( : hand calculation) =005 A B C D [001 1 ] Nonparametric 81

84 Chapter 6 One-way layout ( ) 63 Kruskal-Wallis 3 ( ) Mann-Whitney k M1, M, K M k, : H M = M = K = 0 : 1 M k : Ri 4 : T = 3( N + 1) N( N + 1) n N = R i = i n i = i i Kruskal-Wallis K-W 5 3 5, K-W χ ( df = k 1) [001 1 ] Nonparametric 8

85 Chapter 6 One-way layout ( ) EXAMPLE 3 Kruskal-Wallis ( =005) ) : H 0 : M 1 = M = M ) : 3) : Ri T = 3( N + 1) = [ + + ] 3( + 1) = 93 N( N + 1) n ( + 1) i 4) : (13) χ ( df =, α = 005) = 5 99 HOMEWORK#13 ( due June 5) 3 ( : ) Kruskal-Wallis ( : hand calculation) =005 Control LSD UML [001 1 ] Nonparametric 83

86 Chapter 6 One-way layout ( ) 64 JONCKHEERE-TERPSTRA test Median Kruskal-Wallis, H : M < M < K < M (ordered) a 1 JONCKHEERE-TERPSTRA k k M1, M, K M k, : H M = M = K = 0 : 1 M k : H : M M K M < a 1 k : J = Uij U ij i< j i j i j JONCKHEERE -TERPSTRA J-T 3 n 1 < n < n3 J-T T = [ N J [( N n k (N + 3) n i k i i i ) / 4] (n i + 3] / 7 ~ N (0,1) [001 1 ] Nonparametric 84

87 Chapter 6 One-way layout ( ) EXAMPLE? ( =005) ) : H 0 : M 1 = M = M 3 ) : H 0 : M 1 M M 3) : 3 U =, U = 56, U 49 J = = = U ij i< j 4) : J-T n = 7, n = 7, n 8), 05 α = ( 1 3 = p ) J = 159, N = =, n = i= 1 i i = 16, n (n + 3) = 88 i i T = 159 [( 16) / 4] [ ( + 3) 88 ] / 7 = 473 p J-T HOMEWORK#14 (due June 7) 1 3 ( =005) p- J-T [001 1 ] Nonparametric 85

88 Chapter 6 One-way layout ( ) 65 Multiple Comparison ( ) Median Kruskal-Wallis (pairwise), (, contrast) post-hoc test ( multiple comparison) pairwise 3 pairwise (1 α) 3 ( ) 1 (1 α) ) c (c 1) ) R Kruskal-Wallis ) ) k ( Ri R j ) ( ) N( N + 1) 1 1 z (1 [ α / k( k 1)]) ( + ) 1 n n i j ( i ( R = (i )/(i ) / N = i n = i i k ( k 1) / k ( k 1) [001 1 ] Nonparametric 86

89 Chapter 6 One-way layout ( ) EXAMPLE Kruskal-Wallis ( : page 83) : ( =015) k = 3 α / k( k 1) = 015 / 3() = pairwise R1 R = 69 /10 90 / 6 = ( + 1) ( + ) = ( 1 ) (SAS ) HOMEWORK#14 ( due June 7) Kruskal-Wallis (page 83) pairwise ( =01) : 6 ( ) 1 ~ : :, Open Book Exam 70 A A [001 1 ] Nonparametric 87

90 Chapter 7 Goodness of Fit test 7 Goodness-of-fit test (, )?? ( ) (fit) (Goodness-of-fit test) 1)? )? ( ) 71 χ Goodness-of-fits test, χ (chi-square) (expected) (observed) x, x, K, x ) ( : random sample) ( 1 n (non-overlapping) 1 3 r E 1 E E 3 E r n O 1 O O 3 O r n p 1 p p 3 p r [001 1 ] Nonparametric 88

91 Chapter 7 Goodness of Fit test : XX : XX : r ( Oi Ei ) T = ~ χ ( df = r 1) E i= 1 i 5 χ - 5 0% χ - (Cochran) χ ( =r-1) ( ) (parameter)? p, p, K p ) ( 1 r (µ), ) (σ, χ - ( 1) g r ( r g 1) EXAMPLE1 36 ( =005) [001 1 ] Nonparametric 89

92 Chapter 7 Goodness of Fit test : (Equally distributed) : : (13 6) (6 6) (3 6) T = + + K = 133 : χ ( =6-1=5, α = 005) =111 EXAMPLE 5 80 (binomial) ( =005) : : (p) 5 x 5 x p( x) = ( ) p (1 p), x = 0,1,, K, 5 x p ( pˆ) p ˆ = ( K + 5 1) /(80 5) = 014 [001 1 ] Nonparametric 90

93 Chapter 7 Goodness of Fit test 5 x 5 x p( x) = ( )014 (1 014), x = 0,1,, K, 5 x : ( ) (69 107) (1 003) T = + + K = 4499 : χ ( =5-1-1=3, α = 005) =781 3 EXAMPLE3 Poisson Poisson ( =005) : Poisson : Poisson Poisson (λ) e λ p( x) =, x = 0,1,, K x! p (λˆ) λ x λ ˆ = ( K+ 7 4) / 300 = 67 [001 1 ] Nonparametric 91

94 Chapter 7 Goodness of Fit test Poisson e p( x) = x! x : (0 07) (54 555) (4 39) T = + + K = 034 : χ ( =8-1-1=6, α = 005) =155 Poisson HOMEWORK#15 (due JUNE 1) (uniformly distributed) ( =005) HOMEWORK#15 ( : due JUNE 1) Poisson 8 ( ) λˆ ( =005) [001 1 ] Nonparametric 9

95 Chapter 7 Goodness of Fit test 7 KOLMOGOROV-SMIRNOV one-sample test χ (chi-square) ( ) 8-10 ( ) χ (chi-square) (page 88 ) K-S K-S (cumulative distribution) F( x) = P( X x) (Theorem) x, x, K, x ) ( : random sample) ( 1 n : F ( x ) = F 0 ( x ) F : F ( x ) F 0 ( x ) F 0 0 : n S ( x) sup D = S( x) F 0 ( x) x K-M =(x )/(n) K-M Massey 1 [001 1 ] Nonparametric 93

96 Chapter 7 Goodness of Fit test EXAMPLE ( =85, =15) ( =005) : Normal ( µ = 85, σ = 15) : Normal( µ = 85, σ = 15) : S ( x) = (# of x) / n 36 x -113 [001 1 ] Nonparametric 94

97 Chapter 7 Goodness of Fit test sup : D = S( x) F0 ( x) = x : K-M n=36 01 ( µ = 85, σ = 15) HOMEWORK#15 ( : due JUNE 1) ( =005) [001 1 ] Nonparametric 95

98 Chapter 8 8 (association) 5 χ - (nominal) 81 Pearson ) x, y ( i i : ( x, y) : ρ 0 0 ρ = 0 : t = r ~ t( df = n ) (1 r ) /( n ) H ρ = ρ 0 0 : 0 1+ r 1+ ρ T = 05 ln ~ Normal(05ln,1/( n 3)) 1 r 1 ρ, r =, n= 1+ ρ 0 T 05ln 1 ρ 0 Z = ~ Normal(0,1) 1/( n 3) t ( =n-), [001 1 ] Nonparametric 96

99 Chapter 8 EXAMPLE ( =005) : ρ = 0 : ρ 0 : t = (1 r r = ) /( n ) 0878 = 41 ( ) /(19 ) : t( df = 17, α / = 005) = 11 8 Spearman rank correlation coefficient ( ) ) x, y ( i i : ( x, y) : : R( x i ) 6 d n i rs = 1 where d i = [ R( xi ) R( yi )] n( n 1) i= 1 x i R y ) y i ( i [001 1 ] Nonparametric 97

100 Chapter 8 (x, y) d i 0 rs = 1 (x,y) d 1 r = [ R ( x) = 1, R( y) = n], [ R ( x) =, R( y) = n 1],, [ R ( x) = n, R( y) = 1] Spearman ( SAS ) i S Large Sample approximation z = rs n 1 ~ Normal(0,1) 83 Kendall s Tau x, y ) ( i i : ( x, y) : : n = ti, where = (tied) X u = (tied) Y i Kendall ( SAS ) [001 1 ] Nonparametric 97

101 Chapter 8 Large Sample approximation 3ˆ n( n 1) z = τ (n + 5) ~ Normal(0,1) 84 Kendall s Tau Spearman Spearman n Kendall s Tau Spearman p- Kendall s Tau 85 5 IQ ( =005) KENDALL, SPEARMAN SAS PEARSON [001 1 ] Nonparametric 98

102 Chapter 8 Spearman p IQ Kendall 03596p IQ [001 1 ] Nonparametric 99

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

abstract.dvi

abstract.dvi 통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)

More information

Chapter 분포와 도수분석

Chapter 분포와 도수분석 2 χ Chapter 10 분포와도수분석 Chi-square dist n & the analysis of frequencies 2014/5/22 2 χ 10.2 분포의수리적특징 2 χ 의정의 (definition) Z,, Z ~ independent N(0,1) 1 n n i = 1 Z ~ χ 2 2 i n Y µ 2 eg.. Z = i Y ~ N( µσ,

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

확률과통계 강의자료-1.hwp

확률과통계 강의자료-1.hwp 1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

untitled

untitled 5.8 PROC UNIVARIATE (hitogram, tem and leaf plot, box-whiker plot), (p- ). Univariate( ).. NORMAL (Shapiro- Wilk Kolmogorov-Smirno D- OUTPUT( SAS ). PROC MEANS PROC MEANS. (moment) E( X ). k Sehyug Kwon,

More information

Chapter 7 분산분석

Chapter 7 분산분석 Chapter 7 분산분석 (ANalysis Of VAariance, ANOVA) 2014/4/29 7.1 머리말 (Introduction) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악 (contribution

More information

untitled

untitled Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

(000-000)실험계획법-머리말 ok

(000-000)실험계획법-머리말 ok iii Design Analysis Optimization Design Expert Minitab Minitab Design Expert iv 2008 1 v 1 1. 1 2 1. 2 4 1. 3 6 1. 4 8 1. 5 12 2 2. 1 16 2. 2 17 2. 3 20 2. 4 27 2. 5 30 2. 6 33 2. 7 37 2. 8 42 46 3 3.

More information

<31372DB9DABAB4C8A32E687770>

<31372DB9DABAB4C8A32E687770> 김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

01-07-0.hwp

01-07-0.hwp 선거와 시장경제Ⅱ - 2000 국회의원 선거시장을 중심으로 - 발간사 차 례 표 차례 그림 차례 제1부 시장 메커니즘과 선거시장 Ⅰ. 서 론 Ⅱ. 선거시장의 원리와 운영방식 정당시장 지역구시장 문의사항은 Q&A를 참고하세요 정당시장 한나라당 사기 종목주가그래프 c 2000 중앙일보 Cyber중앙 All rights reserved. Terms

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 293~316 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2015. 12. 04 2015. 12. 24 2016. 02. 25 ABSTRACT

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

Microsoft Word - multiple

Microsoft Word - multiple Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -

More information

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D32C8A3292E687770>

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D32C8A3292E687770> 유자차 신제품에 대한 소비자 지불의사액 추정 강혜정 최지현 이기웅 유자차 신제품에 대한 소비자 지불의사액 추정 An Analysis on Estimation of Willingness to Pay for the New Products of Citrus Tea Assessed by Korean Consumers 강혜정* 최지현** 이기웅*** 1) Kang,

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 3~30 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 01. 08 2016. 01. 09 2016. 02. 25 ABSTRACT

More information

歯49손욱.PDF

歯49손욱.PDF 2002 14 C Inventory An Estimation of 14 C Inventory on Each Unit of Wolsong NPP,,, 103-16 14 C 14 C Inventory 14 C Inventory 14 C 14 C, [Inventory] = [ 14 C ] - [ 14 C ] 14 C 14 C 13 C, 14 N 17 O [ 13

More information

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770> 양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator

More information

Chapter 11 비모수 및 무분포통계학

Chapter 11 비모수 및 무분포통계학 Chapter 12 비모수통계학 (nonparametric analysis) 2017/6/5 9.1 머리말 (introduction) 모수적방법 모집단의분포를가정 그분포는모수의함수 모수를알면분포를완전히안다. 모수의추정과검정이주요문제 모집단의분포가정이틀리면전체논리가다틀리게된다. Parametric approach * assumes dist n of the pop

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

public key private key Encryption Algorithm Decryption Algorithm 1

public key private key Encryption Algorithm Decryption Algorithm 1 public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given

More information

Chapter4.hwp

Chapter4.hwp Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6

More information

Chapter 7 분산분석

Chapter 7 분산분석 Chapter 8 실험계획및분산분석 (ANalysis Of VAariance, ANOVA) Updated 2018/4/30 7.1 머리말 (Introduction) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu 한 국 통 계 학 회 논 문 집 2012, 19권, 6호, 877 884 DOI: http://dx.doi.org/10.5351/ckss.2012.19.6.877 Maximum Tolerated Dose Estimation Applied Biased Coin Design in a Phase Ⅰ Clinical Trial Yu Kim a, Dongjae Kim

More information

歯1.PDF

歯1.PDF 200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)

More information

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005 100 Bond Issue Performance Evaluation Risk management 100, Jan. 21, 2005 100, Jan. 21, 200 5 100호, Jan. 21, 2005 2 100, Jan. 21, 2005 3 100, Jan. 21, 2005 4 100, Jan. 21, 2005 5 100, Jan. 21, 2005 6 100,

More information

Slide 1

Slide 1 Clock Jitter Effect for Testing Data Converters Jin-Soo Ko Teradyne 2007. 6. 29. 1 Contents Noise Sources of Testing Converter Calculation of SNR with Clock Jitter Minimum Clock Jitter for Testing N bit

More information

untitled

untitled R&S Power Viewer Plus For NRP Sensor 1.... 3 2....5 3....6 4. R&S NRP...7 -.7 - PC..7 - R&S NRP-Z4...8 - R&S NRP-Z3... 8 5. Rohde & Schwarz 10 6. R&S Power Viewer Plus.. 11 6.1...12 6.2....13 - File Menu...

More information

untitled

untitled Mathematcal Statstcs / 6. 87 Chapter 6 radom varable probablty desty ucto. dstrbuto ucto.. jot desty ucto... k k margal desty ucto k m.. Statstcs ; θ ereces Y... p. ~ ; θ d radom sample... ; θ ~ statstc

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

제 1 부 연구 개요

제 1 부  연구 개요 2 출 문 차 1 부 과업의 개요 25 귀하 1 장 과업의 목적 27 1. 과업의 목적 및 목표 27 보고서를 2012년도 한돈자조금 성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2013년 2월 제 2 장 주요 과업 내용 29 1. 과업 진행 과정 29 2. 과정별 수행 방법 30 가. 한돈자조금사업의 경제적 성과분석 30 나.

More information

Chapter 7 분산분석

Chapter 7 분산분석 Chapter 8 실험계획및분산분석 (Experimental Design & ANalysis Of VAariance, ANOVA) 2017/5/01 8.1 선형모형과분산분석 (Linear Model & Analysis of Variance) 선형모형 (linear model): 설명변수들의선형의선형결합의형태로반응변수를설명하고자함. (to explain the

More information

fx-82EX_fx-85EX_fx-350EX

fx-82EX_fx-85EX_fx-350EX KO fx-82ex fx-85ex fx-350ex http://edu.casio.com RJA532550-001V01 ...2... 2... 2... 3... 4...5...5...6... 8... 9...10... 10... 11... 13... 16...17...17... 17... 18... 20 CASIO Computer Co., Ltd.,,, CASIO

More information

?

? 한국감정원부동산연구원이만드는 부동산정책및시장분석전문저널 부동산포커스에수록된내용은필자개인의의견이며, 한국감정원부동산연구원의공식적인견해가아님을밝힙니다. 한국감정원부동산연구원홈페이지 (www.kab.re.kr) 를통해부동산포커스에실린기사및논문을제공하고있습니다. Tel:053)663-8135 Fax:053)663-8149 Tel:053)663-8705 Fax:053)663-8709

More information

cha4_ocw.hwp

cha4_ocw.hwp 제 4장 확률 우리는 일상생활에서 확률이라는 용어를 많이 접하게 된다. 확률(probability)는 한자어로 확실할 확( 確 ), 비율 률( 率 )로 해석된다. 로또당첨확률, 야구 한국시리즈에서 특정 팀이 우승 할 확률, 흡연자가 폐암에 걸릴 확률, 집값이 오를 확률 등 수없이 많은 확률들이 현대생활 에서 사용되어지고 있다. 대부분의 일간신문에는 기상예보

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Dec.; 25(12), 12751283. http://dx.doi.org/10.5515/kjkiees.2014.25.12.1275 ISSN 1226-3133 (Print)ISSN 2288-226X (Online)

More information

¼º¿øÁø Ãâ·Â-1

¼º¿øÁø Ãâ·Â-1 Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission

More information

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연 산업안전보건분야 연구수요조사분석 2003. 5 한국산업안전공단 산업안전보건연구원 제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연구책임자 :

More information

<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770>

<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770> A Journal of Brand Design Association of Korea 통권 제 9호 2007 12 Vol. 5 No. 2 아트마케팅을 활용한 화장품 브랜드 디자인 연구 -화장품패키지디자인 중심으로- A Study on the Cosmetic Brand Package Design Applied Art-Marketing - Focusing on Cosmetic

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:21~34 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/19, Published: 2016/12/30 [ABSTRACT] With the development of the Internet,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter Radar Cross Section ( R C S ) 엄효준교수 한국과학기술원 Contents.1. RCS Definition.. RCS Prediction Methods.3. RCS Dependency on Aspect Angle and Frequency.4. RCS Dependency on Polarization.5. RCS of Simple

More information

200220427.hwp

200220427.hwp 碩 士 學 位 論 文 주거환경개선을 위한 주민 요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 指 導 敎 授 申 南 秀 2004 年 2 月 주거환경개선을 위한 주민요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 上 記 者 의 工 學 碩 士 學 位 論 文 을 認 准 함 所 屬 職

More information

012임수진

012임수진 Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar

More information

<C0C7B7E1B1E2B1E2C0D3BBF3BDC3C7E8B0E8C8B9BCADC0DBBCBAC0BBC0A7C7D1B1E6B6F3C0E2C0CC28C4A1C1D6C1B6C1F7C0E7BBFDC0AFB5B5C0E7295F20BCF6C1A43130303532352E687770>

<C0C7B7E1B1E2B1E2C0D3BBF3BDC3C7E8B0E8C8B9BCADC0DBBCBAC0BBC0A7C7D1B1E6B6F3C0E2C0CC28C4A1C1D6C1B6C1F7C0E7BBFDC0AFB5B5C0E7295F20BCF6C1A43130303532352E687770> 의료기기 임상시험계획서 작성을 위한 길라잡이 No.8 의료기기 임상시험계획서 작성을 위한 길라잡이 치주조직재생유도재 2010. 5. 1. 의료기기 임상시험 관련법규 (1) 의료기기법 제10조 (임상시험계획의 승인 등) (2) 시행규칙 제7조 (기술문서 등의 심사) 제12조 (임상시험계획승인 등) 제13조 (임상시험실시기준 등) (3) 고시 의료기기임상시험계획승인지침

More information

±è¼ºÃ¶ Ãâ·Â-1

±è¼ºÃ¶ Ãâ·Â-1 Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

자료의 이해 및 분석

자료의 이해 및 분석 7. 평균치비교 1 두집단간평균차이검정 2 연속형변수 Interval scale( 간격척도 ) : 20 C, 30 C,, 변수간의가감가능 Ratio scale( 비척도 ) : 12, 13세, 변수간의가감승제모두가능 범주형자료로변환하여다양한분석가능 ( 연령 10 대, 20 대, 30 대.) 3 범주형자료의기술 분할표 (Contingency table) : 범주형자료를각변수별값의

More information

05-08 087ÀÌÁÖÈñ.hwp

05-08 087ÀÌÁÖÈñ.hwp 산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구

More information

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구 Study on the characteristic of heavy rainfall in the middle northern Gangwon Province by using Gwangdeoksan radar data 2004. 12. 10. Fig. 2.2.1 Measurement range of Gwangdeoksan radar site Fig. 2.2.2

More information

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소 2012 년도기초과학연구소 대학중점연구소심포지엄 마이크로파센서를이용한 혈당측정연구 일시 : 2012 년 3 월 20 일 ( 화 ) 14:00~17:30 장소 : 서강대학교과학관 1010 호 주최 : 서강대학교기초과학연구소 Contents Program of Symposium 2 Non-invasive in vitro sensing of D-glucose in

More information

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D R&D : 2012. 6. Ⅰ. R&D 1. 2. OECD 3. Ⅱ. R&D 1. 2. - 1 - Ⅰ. R&D R&D. R&D (TFP). R&D R&D, GDP R&D (Ha and Howitt, 2007). : (1), R&D. 1. ( )(), 1 ( ), ( ). (2) -, (Penn World Table 7.0) (growth accounting)

More information

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i 11-1480523-000748-01 배경지역 ( 백령도 ) 에서의 대기오염물질특성연구 (Ⅲ) 기후대기연구부대기환경연구과,,,,,,, Ⅲ 2010 목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i 목차 Ⅳ ii 목차 iii 목차 iv 목차 μg m3 μg m3 v 목차 vi Ⅰ. 서론 Ⅰ μm μg m3 1 Ⅰ. 서론 μg m3 μg m3 μg m3 μm 2

More information

Microsoft Word - Chapter9.doc

Microsoft Word - Chapter9.doc CHAPTER 9 분산분석 9.1. 분산분석개념 분산분석 (ANOVA: Analysis of Variance) 이란종속변수 (dependent variable: 반응변수 : response variable) 의분산 (variation: 변동 통계에서는이를변수가가진정보라한다 ) 을설명하는독립변수 (independent: 설명변수 : explanatory) 의유의성

More information

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770> 한국 증권회사의 효율성 분석 이종원* 이상돈** 신기백*** Ⅰ. 서 론 1990년이후 증권시장의 개방화 및 자율화가 진전되어가고 있던 과정에서 1997년 12월 외환 위기사태가 발생하게 되었고, 이후 증권회사의 구조조정 가속화, 외국계 증권회사의 진입 확대 및 IT기술의 발전에 따른 증권 온라인거래의 확대, 외국인의 투자한도 완전철폐에 따른 외국인 거래비중의

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA FPS게임 구성요소의 중요도 분석방법에 관한 연구 2 계층화 의사결정법에 의한 요소별 상관관계측정과 대안의 선정 The Study on the Priority of First Person Shooter game Elements using Analytic Hierarchy Process 주 저 자 : 배혜진 에이디 테크놀로지 대표 Bae, Hyejin AD Technology

More information

(72) 발명자 정진곤 서울특별시 성북구 종암1동 54-398 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

(72) 발명자 정진곤 서울특별시 성북구 종암1동 54-398 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 - (51) Int. Cl. (19) 대한민국특허청(KR) (12) 등록특허공보(B1) H04B 7/04 (2006.01) H04B 7/02 (2006.01) H04L 1/02 (2006.01) (21) 출원번호 10-2007-0000175 (22) 출원일자 2007년01월02일 심사청구일자 2008년08월26일 (65) 공개번호 10-2008-0063590 (43)

More information

wess_usage.PDF

wess_usage.PDF 인터넷을 이용한 통계 분석. 통계학이란? 자료로부터 정보를 얻는 일련의 과정에 Data Collectio, Summaizatio, Aalysis, Repesetatio 관련된 학문이다. Statistics is about data. 통계에 대한 비난: Lie, Dam Lie, ad Statistics, Statistics ca pove aythig 통계가 거짓말을

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

untitled

untitled Six Sigma - - Grouping Brainstorming : Observ. 8 - - 22 27 32 37 5 5 Capability -27.7552 63.7552 22 Capability 3.SL=69.82 X=29.73-3.SL=-.35 3.SL=49.24 R=5.7-2.29 7.7578-3.SL=.E+ 22 Data Source: Time Span:

More information

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume Development of culture technic for practical cultivation under structure in Gastrodia elate Blume 1996. : 1. 8 2. 1 1998. 12. : : ( ) : . 1998. 12 : : : : : : : : : : - 1 - .. 1.... 2.. 3.... 1..,,.,,

More information

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770> 부동산학연구 제16집 제1호, 2010. 3, pp. 117~130 Journal of the Korea Real Estate Analysts Association Vol.16, No.1, 2010. 3, pp. 117~130 비선형 Mankiw-Weil 주택수요 모형 - 수도권 지역을 대상으로 - Non-Linear Mankiw-Weil Model on Housing

More information

보고서(겉표지).PDF

보고서(겉표지).PDF 11-13 10148-000092- 01 200 1 04 ( ) 2 0 0 1 ( ) E fficient Rules for Oper atin g the Det en tion B asin an d P umpin g St ation ( ) 2 0 0 1. 12 1 2 11-1310148- 000092-01 ( ) E fficien t Ru les for Oper

More information

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong An 1 & Kyoo-jeong Choi 2 * 1 Korea National Wrestling

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2014) 27(1), 13 20 DOI: http://dx.doi.org/10.5351/kjas.2014.27.1.013 Maximum Tolerated Dose Estimation by Stopping Rule and SM3 Design in a Phase I Clinical Trial

More information

SRC PLUS 제어기 MANUAL

SRC PLUS 제어기 MANUAL ,,,, DE FIN E I N T R E A L L O C E N D SU B E N D S U B M O TIO

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

<313920C0CCB1E2BFF82E687770>

<313920C0CCB1E2BFF82E687770> 韓 國 電 磁 波 學 會 論 文 誌 第 19 卷 第 8 號 2008 年 8 月 論 文 2008-19-8-19 K 대역 브릭형 능동 송수신 모듈의 설계 및 제작 A Design and Fabrication of the Brick Transmit/Receive Module for K Band 이 기 원 문 주 영 윤 상 원 Ki-Won Lee Ju-Young Moon

More information

서론 34 2

서론 34 2 34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of

More information

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) Simple Type System - - 1+malloc(), {x:=1,y:=2}+2,... (stuck) { } { } ADD σ,m e 1 n 1,M σ,m e 1 σ,m e 2 n 2,M + e 2 n

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

step 1-1

step 1-1 Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:3~20 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/27, Published: 2016/12/30 [ABSTRACT] This study aims to comprehensively analyze

More information

IASB( ) IASB (IASB ),, ( ) [] IASB( ), IASB 1

IASB( ) IASB (IASB ),, ( ) [] IASB( ), IASB 1 IASB( ) IASB (IASB ),, 2007 8 31 ( ) [] IASB( ), IASB 1 ,,,,,,,, 2 IASB IFRS(International Financial Reporting Standards) IASB, IASB IASC(International Accounting Standards Committee) IAS(International

More information

2005 7

2005 7 2005 7 ii 1 3 1...................... 3 2...................... 4 3.................... 6 4............................. 8 2 11 1........................... 11 2.................... 13 3......................

More information

Minimax lower bound 이광민 May Notation 모수공간 : Θ Action space : A Loss function : L : Θ A [0, ) Sample space : X Data : X P θ (Probability measure

Minimax lower bound 이광민 May Notation 모수공간 : Θ Action space : A Loss function : L : Θ A [0, ) Sample space : X Data : X P θ (Probability measure Minix lower bound 이광민 My 08 ottion 모수공간 : Θ Action spce : A Loss function : L : Θ A [0, Sple spce : Dt : θ (robbility esure on sple spce Decision rule : D : A Minix isk : inix := inf D sup θ Θ E θ L(θ,

More information

6자료집최종(6.8))

6자료집최종(6.8)) Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter

More information

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

LIDAR와 영상 Data Fusion에 의한 건물 자동추출 i ii iii iv v vi vii 1 2 3 4 Image Processing Image Pyramid Edge Detection Epipolar Image Image Matching LIDAR + Photo Cross correlation Least Squares Epipolar Line Matching Low Level High Level Space

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Crt114( ).hwp

Crt114( ).hwp cdna Microarray Experiment: Design Issues in Early Stage and the Need of Normalization Byung Soo Kim, Ph.D. 1, Sunho Lee, Ph.D. 2, Sun Young Rha, M.D., Ph.D. 3,4 and Hyun Cheol Chung, M.D., Ph.D. 3,4 1

More information

untitled

untitled X-Ray FLUORESCENCE NON-DESSTRUCTIVE & NON-CONTAC COATING THICKNESS TESTER EX-3000 Ex WIN Ver.1.00 INSTRUCTION MANUAL ELEC FINE INSTRUMENTS CO., LTD 2-31-5 CHUO, NAKANO-KU, TOKYO, JAPAN PHONE : (03) 3365-4411

More information

歯14.양돈규.hwp

歯14.양돈규.hwp : The Korean Journal of Counseling and Psychotherapy 2003. Vol. 15, No. 3, 615-631. 1 2 3 1,410.,, ( ),., ( 69%),.,, ( ), ( ).,,.., ( ).,. :,,. :, (390-711) 21-1, : 043-649-1362 E-mail : ydk9498@hanmail.net

More information