Chapter 7 분산분석
|
|
- 괴옥 국
- 5 years ago
- Views:
Transcription
1 Chapter 8 실험계획및분산분석 (Experimental Design & ANalysis Of VAariance, ANOVA) 2017/5/01
2 8.1 선형모형과분산분석 (Linear Model & Analysis of Variance) 선형모형 (linear model): 설명변수들의선형의선형결합의형태로반응변수를설명하고자함. (to explain the response variable by the linear combinations of the explanatory variables) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악 (contribution of particular components) 목적 (Aims) : 모분산의추정과가설검정 (estimation & testing for the variances) 모평균의추정과가설검정 (estimation & testing for the means)
3 * motivation 비교하고싶은그룹이두개이면 (comparisons of two groups) -> t-test 비교하고싶은그룹이두개이상이면 (more than two groups) -> 두개그룹씩뽑아서쌍을만든후에여러개의 t-test 를실시한다. (pairwise t-tests) 번거롭기도하고이론적으로틀린결론에도달할수있다. (cumbersome & theoretically wrong -> 다중비교의문제 (multiple-comparisons problems) 전체자료를사용하지않고자료의부분만을사용하므로효율이떨어진다. (efficiency problems due to the usage of partial data) 전체자료를이용하여서세그룹이상을비교하는분석 (more than 3 groups using whole data) -> 분산분석 ANOVA ( 종속변수는연속형, 독립변수는이산형 ) response var: conti, explanatory var: categorical
4 <Ex 8.1.1> 혈청콜레스테롤을낮추는세가지약 A, B, C 를비교. 실험에참여한사람들에게 A, B, C 중하나를처방한뒤에, 혈청콜레스테롤이줄어들었는지측정. 처방받은약에따라그룹을나눴을때, 각그룹별표본평균에변동과각그룹내의관측값의변동을생각. 이때전자는그룹간변동 (between group variation), 후자는그룹내변동 (within group variation). 그룹간변동은처방약의효과, 그룹내변동은식습관의차이, 유전적차이등다양한이유로인하여발생. 따라서그룹간변동이그룹내변동에비하여상대적으로작으면, 약의효과는동일하다고결론. Response variable: reduction of cholesterol level Explanatory variable: drugs A, B, C Within group variation: due to other factors like genetic or nutrition, etc Between group variation: drug effect
5 Cholesterol level within group variation Cholesterol level A B C Treatments between group variation A B C Between group variation: small Within group variation: large
6 8.2 일원배치분산분석 (One-way ANOVA) [ 완전확률화계획법 ] : (complete randomization) 처리변수 (treatment) k x 11 x 12 x 13 x 1k x 21 x 22 x 23 (treatments) x 2k x 31 x 32 x 33 x 3k x n1 1 x n2 2 x n3 3 x nk k 합 (total) T.1 T.2 T.3 T.k T.. (total) 평균 (average) x.1 x.2 x.3 x.k x..
7 모형 (model) x ij j ij ij번째측정치 j처리의평균 ij번째오차 ij-th observation mean of j-th treatment group error of ij-th observation j ij k j j 1 k j j : 전체평균 Grand mean : j번째처리효과 Effect of j-th treatment group
8 x ij = μ j + ε ij = μ + τ j + ε ij 처리변수 (treatment) k x 11 x 12 x 13 x 1k x 21 x 22 x 23 x 2k x 31 x 32 x 33 x 3k (treatments) x n1 1 x n2 2 x n3 3 x nk k 합 (total) T.1 T.2 T.3 T.k T.. 평균 (average) x.1 x.2 x.3 x.k x.. pop mean μ 1 μ 2 μ 3 μ k μ effect τ 1 = μ 1 μ τ k = μ k μ
9 모형의가정 (Assumptions of the model) (a) 독립확률표본 (independent random sample) (b) x i,j ~N(μ j, σ 2 j ), i = 1,2,, n j k번째 -> j번째 (c) σ 1 2 = σ 2 2 = = σ k 2 = σ 2 (d) μ j 의평균은 μ. 따라서 τ j = μ j μ 이라고하면, τ j = 0 (e) x ij 의평균은 μ j 이고 ε ij 의평균은 0 이다. (f) ε ij 와 x ij 의차이는상수, ε ij 의분산은 x ij 의분산과동일. 따라서오차항의분산은 σ 2 이다. (g) ε ij 는독립이며정규분포를따른다. (indep. & normally dist) => x ij = μ j + ε ij = μ + τ j + ε ij, ε ij ~N(0, σ 2 ) independent
10 모형의가설 (Hypothesis of the model) H 0 μ 1 = μ 2 = = μ k vs H A 적어도하나이상의 μ j 는다르다. 만약영가설이사실이면 ( 즉, 모평균이서로같다면 ) 처리효과는모두 0 이므로영가설과대립가설은다음과같이표현. H 0 τ j = 0, j = 1,2,, k vs H A 적어도하나이상의 τ j 은 0 이아니다. (More than one τ j s are not equal to 0.) 영가설이사실이고가정이만족될때, 모집단의분포 등분산과정규성의가정이만족되나영가설이사실이아닌경우모집단의분포 Under H 0 with normal and homogeneity assumptions Under H A with normal and homogeneity assumptions
11 총제곱합 (sum of squares, total) k SST ( x x ) k j 1 i 1 n j ( x x x x ) j 1 i 1 n j ij.. 2 ij. j. j.. 2 k n j k n j k n j 2 2 ( xij x. j ) 2 ( xij x. j )( x. j x.. ) ( x. j x.. ) j 1 i 1 j 1 i 1 j 1 i 1 k n j k 2 2 ( xij x. ) j n j ( x. j x.. ) j 1 i 1 j 1 Within-group SS Among(Between)-group SS
12 Within-group SS SST SSW SSA within among group 그룹내제곱합그룹간제곱합 그룹간평균제곱분산비 = 그룹내평균제곱 MSA variance ratio= MSW Among(Between)-group SS -> 분산비가커지면그룹간의 variation 이크다. 그룹간의성질이다르다. 그룹의효과가크다. ->larger VR -> larger between-group SS 0 -> groups are different -> bigger group effect!
13 σ 2 의불편추정량 MSW k n j j 1 i 1 k j 1 ( x x ) ij ( n 1) j j 2
14 ANOVA Table factor Sum of squares Degree of freedom Mean square Variance ratio Between group Within group total 요인제곱합자유도평균제곱합 F 집단간제곱합 SSA = j=1 집단내제곱합 SSW = j=1 총제곱합 k k k SST = j=1 n j n j i=1 n j i=1 x.j x ij x ij x.. 2 x.j 2 x.. 2 k 1 MSA = SSA/(k 1) N k N 1 MSW = SSW/(N k) MSA MSW
15 <Ex 8.2.3> 소의연령에따른육류의셀레늄 (selenium) 농도비교 (Age group of cows and selenium concentration of milk) (1) 데이터 표 연령에따른셀레늄함유량 (mg=100g) 나이그룹 A B C D
16
17 요인 제곱합 자유도 평균제곱합 F 집단간제곱 집단내제곱합 총제곱합 Critical value = 3.95, alpha=0.01 > qf(0.99,3,109) [1] > 1-pf(9.353,3,109) [1] e-05 >
18 SAS program data cele; input value group cards; 1820 A 1483 A 2588 A 1723 A 2670 A 727 A 1022 A 1463 A 1555 A 1777 A 222 A 1129 A 1197 A 1249 A 1520 A 489 A 2575 A 1426 A 1846 A 1088 A 912 A 1383 A 191 B 1098 B 644 B 136 B 1605 B 1247 B 1529 B 1422 B 445 B 990 B 489 B 2408 B 1064 B 629 B 724 C 1020 C 613 C 805 C 918 C 631 C 949 C 641 C 877 B 760 C 1368 C 1085 C 1692 C 775 C 697 C 1307 C 849 C 344 C 1199 C 961 C 429 C 239 C 798 C 944 C 631 C 1096 C 1016 C 1025 C 948 C 1652 D 775 D 752 D 1309 D 1393 D 804 D 1002 D 533 D 1182 D 966 D 734 D 1243 D 788 D 485 D 985 D 472 D 449 D 1295 D 471 D 236 D 1676 D 771 D 831 D 754 D 869 D 698 D 937 D 513 D 167 D 1022 D 731 D 824 D 1073 D 1130 D 448 D 948 D 1034 D 991 D 222 D 1261 D 590 D 721 D 42 D 994 D 375 D 767 D 1781 D 1187 D proc anova data=cele; class group; model value=group; means group/tukey; * means group/bon; run;
19
20 * Multiple Comparisons ( 다중비교 ) ex) significance level = for a test Let H : 0 p( do not reject H H is true) H : 0 p( do not reject H H is true) then p( do not reject H H ) where H H and H p( do not reject H01 and do not reject H02 H0 (1- ) (1- ) (1- ) In general, if we want to test, then k (1 ) (1 ) k (.95).95 overall is , not > inflated type I error!! )
21 * Bonferroni Correction : Set individual significance the overall significance level is about for m multiple tests. m m= example) When we have 10 hypotheses, Individual p=0.05 -> multiple comparisons problem (too many false findings) Individual p= This is often called Bonferroni corrected p-value.
22 [ 처리그룹쌍별두모평균차이의검정 ] Detecting pairwise differences After rejecting H0 : have larger differences?, which pairs 1. LSD (least significant difference, 최소유의차검정법 ) 2. Duncan s new multiple range test Duncan 의새로운다중범위검정법 3. Tukey s HSD Liberal Conservative Duncan LSD SNK Tukey HSD Scheffe
23 [Tukey 의 HSD (honestly significance difference) 검정 ] MSE HSD = q n, k, N k j n j MSE HSD q n * *, k, N k * j n j 's are the same : sample size of smaller cell ymax ymin q, k, N k : dist of, S 2/ n : significance level, k : number of gropus, N k: df [Bonferroni 방법 ] 계산된 p-value에가능한모든방법의수 k 2 를곱함. Bonferroni corrected p-value: multiply # of all possible k methods to the p-value 2
24 데이터의각처리그룹별표본평균의차이 Differences of means between pair of groups A B C D A B C D - α=0.05. k = 4, N k = 109 > qtukey(0.05, nmeans= 4, df=109, lower=f)= 3.689, MSE=
25 Tukey 의 HSD 결과 개별영가설 HSD* 검정결과 H 0 : μ A = μ B HSD = = > 이므로 H 0 을기각함. H 0 : μ A = μ C HSD = = > 이므로 H 0 을기각함. H 0 : μ A = μ D HSD = = > 이므로 H 0 을기각함. H 0 : μ B = μ C HSD = = < 이므로 H 0 을기각하지못함. H 0 : μ B = μ D HSD = = < 이므로 H 0 을기각하지못함. H 0 : μ C = μ D HSD = = < 이므로 H 0 을기각하지못함.
26
27
28 8.3 완전확률화완전블록계획법과이원배치분산분석 (Randomized complete block design & Two-way ANOVA) R.A.Fisher (1925) : to compare the yields of certain species 땅을블록 (block=land) 으로나누고블록안에서 Randomize (other factors) in a block 하는것이다. 처리 블록 k 합 total 1 x 11 x 12 x 13 x 1k T 1. 2 x 21 x 22 x 23 x 2k T 2. 평균 average x 1. x 2. 3 x 31 x 32 x 33 x 3k T 3. x 3. n x n1 x n2 x n3 x nk T n. 합 Total T.1 T.2 T.3 T.k T.. 평균 Average x.1 x.2 x.3 x.k x n. x..
29 모형 x ij = μ + β i + τ j + ε ij i = 1,2,, n; j = 1,2,, k x ij : 각실험단위로부터얻은관측값 (Observation) μ: 미지의상수로서전체평균. (grand mean) β i : i 번째블록의블록효과 block effect for i-th obs τ j : j 번째처리의처리효과. trt effect for j-th obs ε ij : 그외효과들의총합. random error 모형의가정 a x ij : 랜덤독립표본 (random and independent sample) (b) x ij ~independent N μ ij, σ 2 ε ij ~independent N 0, σ 2 k (c) j=1 τ j = n i=1 β i = 0 블록효과와처리효과는가법적이다. Block effect & trt effect are additive.
30 가설 (hypothesis) H : 0 j 1,2,, k H 0 j :All 0 is not true. Some 0. A j j * k SST ( x x ) n j 1 i 1 ij.. 2 k n k n j k n ( xi. x.. ) ( x. j x.. ) ( xij xi. x. j x.. ) j 1 i 1 j 1 i 1 j 1 i 1 SST SSBl SSTr SSE df : nk 1 ( n 1) ( k 1) ( n 1)( k 1)
31 ANOVA table 요인 (factor) 제곱합 (sum of square) 자유도 (df) 평균제곱 (mean square) F 처리 (trt) SSTr (k 1) MSTr = SSTr/(k 1) MSTr MSE 블록 (block) SSBl (n 1) MSBl = SSBl/(n 1) 잔차 (residual) SSE (n 1)(k 1) MSE = SSE/(n 1)(k 1) 합 (sum) SST kn 1
32 Ex 약의종류와나이에따라치료까지걸린시간 Trt time by drug and age group 약의종류 (drug) 나이그룹 (age group) A B C 합 total 평균 Age average < 20 11* 합 total 평균 average
33 response<-c(11, 6, 7, 9, 10, 8, 5, 10, 12, 17, 10, 11, 13, 13, 15) drug<-factor(c(rep('a',5),rep('b',5),rep('c',5))) age<-factor(rep(1:5)) dat<-data.frame(response=response,drug=drug,age=age) anova(lm(response~drug+age,data=dat)) Analysis of Variance Table Response: response Df Sum Sq Mean Sq F value Pr(>F) drug age Residuals Signif. codes: 0 *** ** 0.01 *
34
35 reduction of response time 8.4 요인실험과이원배치분산분석 (Factorial Experiment and two-way ANOVA) 반응시간 (reduction of response time ) = 약품수준 ( 소량, 중간, 다량 )* 연령층 ( 중년, 노년 ) drug level (min, med, max)*age(mid, old) 교호작용이없을때 (Without interaction) 요인 B 약품용량 (Factor-B, drug level) 요인 A 연령 Factor A-age j=1 j=2 j=3 중년층 (Mid) i= 노년층 (old) i= age Drug level Drug dosage age
36 교호작용이있을때 (With interaction) 요인B 약품용량 요인A j=1 j=2 j=3 j=2-1 j=3-2 - 연령 중년층 (i=1) 노년층 (i=2)
37 요인 (factor) A 1 요인 (factor) B 1 2 b 합 total 평균 average x 111 x 121 x 1b1 x 11n x 12n x 1bn T 1.. x x 211 x 221 x 2b1 x 21n x 22n x 2bn T 2.. x 2.. a x a11 x a21 x ab1 x a1n x a2n x abn T a.. x a.. 합 total 평균 average T.1. T.2. T.b. T... x.1. x.2. x.b. x...
38 모형 x ijk = μ + α i + β j + (αβ) ij +ε ijk, i = 1, 2,, a; j = 1, 2,, b; k = 1, 2,, n x ijk : 관측값 (observation) μ: 전체평균 (grand mean), α i : 요인 A의효과 (effect of factor A), β j : 요인 B의효과 (effect of factor B), (αβ) ij : 요인 A와요인 B의교호작용 (interaction), ε ijk : 실험오차 (random error).
39 모형의가정 (Assumptions of the model) i. 각칸의관측값들은두요인의수준들의특정조합으로정의된모집단에서뽑은 n 개의독립표본으로구성되어있다. (independent sample) ii. ab 개의모집단은각각정규분포를따른다. Normal distribution iii. 모든모집단은동일한분산을가진다. Same variances x ijk = μ + α i + β j + (αβ) ij +ε ijk, ε ijk ~iid N(0, σ 2 ), i = 1, 2,, a; j = 1, 2,, b; k = 1, 2,, n
40 Hypotheses( 가설 ) H : 0 i 1,, a 0 H : Not H 0 for some i. A 0 0 i 0 0 H : 0 j 1,, b j H : Not H 0 for some j. A 0 i j H :( ) 0 i 1,, a j 1,, b ij H :Not H ( ) 0 for some i, j. A ij SST=SSA+SSB+SSAB+SSE
41 이요인완전확률화설계의분산분석표 ( 고정효과모형 ) ANOVA table for two-way complete randomized design 요인 factor 제곱합 SS 자유도 df 평균제곱 MS F A SSA a 1 MSA = SSA/(a 1) B SSB b 1 MSB = SSB/(b 1) AB SSAB (a 1)(b 1) MSAB = SSAB/(a 1)(b 1) MSA MSE MSB MSE MSAB MSE 처리 trt SSTr ab 1 잔차 residual SSE ab(n 1) MSE = SSE/ab(n 1) SST = SSTr + SSE SSTr = SSA + SSB + SSAB
42 <Ex > 간호사의가정방문시간 (time of staying home for a nurse) = 간호사의연령, 환자의질환 (age of the nurse, disease of the patient) 모형 (Model) x ijk i j ( ) ij ijk i 1,, a j 1,, b k 1,, n
43
44 * miscellaneous ( 기타 ) Log transformation: when normal assumption is violated. Normality is still problematic even after the variable transformation. Sample size is too small to check normality -> Nonparametric approach e.g. income, concentration
45 Type of Sum of Squares * Type Ⅰ:sequential (if we know the relative importance of the variables) Type Ⅱ: partial without interaction terms **TypeⅢ:partial with interactions (If we don t know the relative importance of the variables) TypeⅣ: There are missing cells (if none, same as TypeⅢ) *, ** : defaults One way ANOVA model : Y Ai ij
Chapter 7 분산분석
Chapter 8 실험계획및분산분석 (ANalysis Of VAariance, ANOVA) Updated 2018/4/30 7.1 머리말 (Introduction) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악
More informationChapter 7 분산분석
Chapter 7 분산분석 (ANalysis Of VAariance, ANOVA) 2014/4/29 7.1 머리말 (Introduction) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악 (contribution
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information고객관계를 리드하는 서비스 리더십 전략
제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0
More informationnonpara6.PDF
6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,
More informationANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행
Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID
More informationMicrosoft PowerPoint - ANOVA pptx
분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는
제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationMicrosoft Word - sbe_anova.docx
ANOVA 기본개요세집단이상인평균비교 => 일원분산분석집단을요인 (factor) 혹은처리효과 (treatment effect) 라하고집단의개별값을수준 (level) 이라한다. 요인이하나인경우 one-way ANOVA 분산분석 (ANOVA Analyss Of VArance) 은실험설계로부터유래, 분산 ( 변동 ) 에의해요인 ( 모형 ) 의유의성를검증한다. 실험관심대상에대한정보를얻기위한계획된테스트나관측절대실험
More informationPPT Template
External Use SPSS 를이용한분산분석 (ANOVA) 013 년 11 월 13 일 임찬수 0 Table of Contents 1 분산분석과실험계획법 일원배치분산분석 (One-way ANOVA) 3 사후분석 (Post-hoc test) 4 일원배치분산분석의예제 5 HomeWork 1 1 분산분석과실험계획법 분산분석 분산분석 : 평균값을기초로하여여러집단을비교하고,
More informationabstract.dvi
통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More informationMicrosoft Word - sbe13_anova.docx
실험설계개요어떤원인이반응에유의한영향을주고있는가를파악하고그영향이양적으로어느정도큰가를알아내고자실시함 ( 추정과검정 적은영향밖에미치지못하는요인 ( 오차 들은전체적으로어느정도도영향을주고있으며, 측정오차는어느정도인가를알아내고자실시함 ( 오차항추정 유의한영향을미치는원인들이어떠한조건을수있는가를알아내기위해서실시함 ( 최적화 가질때가장바람직한반응을얻을 용어 요인 (Factor:
More information제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라
제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을
More informationPPT Template
External Use SPSS 를이용한분산분석 (ANOVA) 009 년 11 월 09 일 임찬수 0 Table of Contents 1 분산분석과실험계획법 일원배치분산분석 (One-way ANOVA) 3 사후분석 (Post-hoc test) 4 일원배치분산분석의예제 5 이원배치분산분석 (Two-way ANOVA) 1 Table of Contents 6 일원배치반복측정분산분석
More information분산분석.pages
예제데이터 R. A. Fisher (1919 영국통계학자, 생물학자, 수학자 - 분산분석창시자 iris 분꽃데이터 - 3 개종, 4 개변수관측데이터 - sepal 꽃받침 ( 길이, 넓이 - petal 꽃잎 ( 길이, 넓이 분산개념정의 변수의데이터흩어짐의척도이다. (x s i x = n 1 활용 변동계수 Coefficient of Variation CV - CV
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationChapter 8 단순선형회귀분석과 상관분석
Chapter 9 회귀모형 regression analysis 9.1 머리말 (Intro) Sir Francis Galton (18-1911) s studies on genetics Heights of parents and children: 부모의신장에비해 세의신장이일반평균치에복귀 (revert to the pop mean) 하는특성을발견하였다. 복귀 (revert)
More informationMicrosoft Word - Chapter9.doc
CHAPTER 9 분산분석 9.1. 분산분석개념 분산분석 (ANOVA: Analysis of Variance) 이란종속변수 (dependent variable: 반응변수 : response variable) 의분산 (variation: 변동 통계에서는이를변수가가진정보라한다 ) 을설명하는독립변수 (independent: 설명변수 : explanatory) 의유의성
More information(000-000)실험계획법-머리말 ok
iii Design Analysis Optimization Design Expert Minitab Minitab Design Expert iv 2008 1 v 1 1. 1 2 1. 2 4 1. 3 6 1. 4 8 1. 5 12 2 2. 1 16 2. 2 17 2. 3 20 2. 4 27 2. 5 30 2. 6 33 2. 7 37 2. 8 42 46 3 3.
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More informationMicrosoft Word - SBE2012_anova.docx
실험설계개요어떤원인이반응에유의한영향을주고있는가를파악하고그영향이양적으로어느정도큰가를알아내고자실시함 ( 추정과검정 ) 적은영향밖에미치지못하는요인 ( 오차 ) 들은전체적으로어느정도영향을주고있으며, 측정오차는어느정도인가를알아내고자실시함 ( 오차항추정 ) 유의한영향을미치는원인들이어떠한조건을가질때가장바람직한반응을얻을수있는가를알아내기위해서실시함 ( 최적화 ) 용어 요인
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 293~316 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2015. 12. 04 2015. 12. 24 2016. 02. 25 ABSTRACT
More informationMicrosoft Word - multiple
Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj
More informationnonpara1.PDF
Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710)
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information012임수진
Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar
More information01-07-0.hwp
선거와 시장경제Ⅱ - 2000 국회의원 선거시장을 중심으로 - 발간사 차 례 표 차례 그림 차례 제1부 시장 메커니즘과 선거시장 Ⅰ. 서 론 Ⅱ. 선거시장의 원리와 운영방식 정당시장 지역구시장 문의사항은 Q&A를 참고하세요 정당시장 한나라당 사기 종목주가그래프 c 2000 중앙일보 Cyber중앙 All rights reserved. Terms
More information<4D F736F F F696E74202D20C1A63132C0E520C0CCBFF8BAD0BBEABAD0BCAE205BC8A3C8AF20B8F0B5E55D>
제 12 장이원분산분석 1 t분포와정규분포의관계 일반적으로자료수 n이증가하면 t분포는정규분포에접근 2 두집단평균비교 : 가설검정절차 [ 단계 1] 두집단집단간의간의등분산성에등분산성에대한대한검정을검정을먼저먼저수행한다. [ 단계 2] [ 단계 1] 의결과에따라따라다음의다음의두가지의검정검정방법이방법이있다. (1) 두집단집단간의간의분산이분산이동일한동일한경우 : 두집단집단간의간의평균차이평균차이검정
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More informationhttp://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between
More information- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α
More informationuntitled
5.8 PROC UNIVARIATE (hitogram, tem and leaf plot, box-whiker plot), (p- ). Univariate( ).. NORMAL (Shapiro- Wilk Kolmogorov-Smirno D- OUTPUT( SAS ). PROC MEANS PROC MEANS. (moment) E( X ). k Sehyug Kwon,
More information서론 34 2
34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of
More information(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re
EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:3~20 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/27, Published: 2016/12/30 [ABSTRACT] This study aims to comprehensively analyze
More information슬라이드 1
논문사례로보는실험계획법특강 이레테크소프트웨어사업부박재하 목차. 실험계획법논문소개. 실험계획법개요 3. OFAT 실험 4. Plackett-Burman 실험 5. 3 완전배치법실험 6. factor 중심합성계획법 7. Design Space 활용 통계적방법을적용한생산배지최적화 04 Minitab, Inc. 실험계획법절차 BACILUS LICHENIFORMIS_DATA.mpj
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information<3130C0E5>
Redundancy Adding extra bits for detecting or correcting errors at the destination Types of Errors Single-Bit Error Only one bit of a given data unit is changed Burst Error Two or more bits in the data
More informationeda_ch7.doc
( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug
More informationuntitled
Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:237~251 Received: 2016/11/20, Accepted: 2016/12/24 Revised: 2016/12/21, Published: 2016/12/30 [ABSTRACT] Recently, there is an increasing
More informationJeeshim & KUCC625 (08/04/2009) Statistical Data Analysis Using R:22 6. 집단간평균비교 집단간평균을비교하는것은기본방법이다. 따라서비교할변수는평균을계산할수있어야하고, 의미있게해석할수있어야한다. 두집단
2008-2009 Jeeshim & KUCC625 (08/04/2009) Statistical Data Analysis Using R:22 6. 집단간평균비교 집단간평균을비교하는것은기본방법이다. 따라서비교할변수는평균을계산할수있어야하고, 의미있게해석할수있어야한다. 두집단을비교하는것은 T-test 로, 두집단이상이라면 ANOVA 를사용한다. 그림 6.1 은 T-test
More informationBreathing problems Pa t i e n t: I have been having some breathing problems lately. I always seem to be out of breath no matter what I am d o i n g. ( Nurse : How long have you been experiencing this problem?
More information歯14.양돈규.hwp
: The Korean Journal of Counseling and Psychotherapy 2003. Vol. 15, No. 3, 615-631. 1 2 3 1,410.,, ( ),., ( 69%),.,, ( ), ( ).,,.., ( ).,. :,,. :, (390-711) 21-1, : 043-649-1362 E-mail : ydk9498@hanmail.net
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information<B0A3C3DFB0E828C0DBBEF7292E687770>
초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),
More information???? 1
The Korean Journal of Applied Statistics (2013) 26(1), 201 208 DOI: http://dx.doi.org/10.5351/kjas.2013.26.1.201 A Note on Model Selection in Mixture Experiments with Process Variables Jung Il Kim a,1
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although
More information한국성인에서초기황반변성질환과 연관된위험요인연구
한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -
More informationpublic key private key Encryption Algorithm Decryption Algorithm 1
public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More informationsna-node-ties
Node Centrality in Social Networks Nov. 2015 Youn-Hee Han http://link.koreatech.ac.kr Importance of Nodes ² Question: which nodes are important among a large number of connected nodes? Centrality analysis
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information02김헌수(51-72.hwp
보험금융연구 제26권 제1호 (2015. 2) pp. 51-71 손해보험사의 출재는 과다한가? -RBC 규제에 기초한 분석 - * Do P/L Insurers Cede Too Much? - An Analysis Based on the RBC Regulation - 김 헌 수 ** 김 석 영 *** Hunsoo Kim Seog Young Kim 경제가 저성장으로
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information메타분석: 통계적 방법의 기초
메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성
More informationBuy one get one with discount promotional strategy
Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE
More informationChapter 분포와 도수분석
2 χ Chapter 10 분포와도수분석 Chi-square dist n & the analysis of frequencies 2014/5/22 2 χ 10.2 분포의수리적특징 2 χ 의정의 (definition) Z,, Z ~ independent N(0,1) 1 n n i = 1 Z ~ χ 2 2 i n Y µ 2 eg.. Z = i Y ~ N( µσ,
More information- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
More information- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina
More information<3136C1FD31C8A320C5EBC7D52E687770>
고속도로건설에 따른 지역간 접근성 변화분석 A study on the impact of new highway construction on regional accessibility The purpose of this is to analyse the interregional accessibility changes due to highway construction.
More informationVol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2018.01 Vol.259 C O N T E N T S 02 06 28 61 69 99 104 120 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2018.1 3 4 2018.1 1) 2) 6 2018.1 3) 4) 7 5) 6) 7) 8) 8 2018.1 9 10 2018.1 11 2003.08 2005.08
More information(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.
1 (, ), ( ) 2 1. 2. (, sta*s*cal disclosure control) - (Risk) and (U*lity) - - 3. (Synthe*c Data) 4. 5. 3 1. + 4 1. 2.,. 3. K + [ ] 5 ' ', " ", " ". (SNS), '. K KT,, KG (PG), 'CSS'(Credit Scoring System)....,,,.
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -
More information歯4차학술대회원고(장지연).PDF
* 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information44-4대지.07이영희532~
A Spatial Location Analysis of the First Shops of Foodservice Franchise in Seoul Metropolitan City Younghee Lee* 1 1 (R) 0 16 1 15 64 1 Abstract The foodservice franchise is preferred by the founders who
More information2017.09 Vol.255 C O N T E N T S 02 06 26 58 63 78 99 104 116 120 122 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.9 3 4 2017.9 6 2017.9 7 8 2017.9 13 0 13 1,007 3 1,004 (100.0) (0.0) (100.0)
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information슬라이드 1
Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More informationDBPIA-NURIMEDIA
27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT
More information<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D31C8A3292E687770>
소비자 식생활 라이프스타일이 구매에 미치는 영향 분석 김지윤 안병일 소비자 식생활 라이프스타일이 구매에 미치는 영향 분석* Effect of Consumers' Dietary Lifestyle on the Consumption Pattern of Processed Foods 김지윤** 안병일*** 6) Kim, Ji-Yoon Ahn, Byeong-Il 목 차
More information... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...
... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13
More information1..
Volume 12, Number 1, 6~16, Factors influencing consultation time and waiting time of ambulatory patients in a tertiary teaching hospital Jee-In Hwang College of Nursing Science, Kyung Hee University :
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More informationTrue number of clusters = 3 V V1 2 군집의수선택 2.1 군집내와군집간제곱합이용 군집분석은각군집의평균의차이를크게하고 ( 군집간의변동을크게하고 ) 군집내의변동을작게하는 것이좋다. 군집의개수가늘어날수록커지고
군집분석 : 군집의개수 서울시립대통계학과이용희 FALL 2017 1 예제자료의준비 k- 평균군집분석의예제로서다음과같은 3 개의군집을인공적으로만들었다. library(mvtnorm) set.seed(244211) # number units in each cluster nn
More informationDBPIA-NURIMEDIA
FPS게임 구성요소의 중요도 분석방법에 관한 연구 2 계층화 의사결정법에 의한 요소별 상관관계측정과 대안의 선정 The Study on the Priority of First Person Shooter game Elements using Analytic Hierarchy Process 주 저 자 : 배혜진 에이디 테크놀로지 대표 Bae, Hyejin AD Technology
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More information<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>
양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More information가능한연구가설제시 가설 1 : 지지후보의선택은유권자의나이에따라차이가있을것이다. 유권자의나이는지지후보의선택에영향을미칠것이다. 유권자의나이에따라지지후보는다를것이다. 가설 2 : 유권자의사회생활만족도는지지후보의선택에영향을미칠것이다. 지지후보의선택은유권자의사회생활만족도에따라차
가능한연구가설제시 가설 1 : 지지후보의선택은유권자의나이에따라차이가있을것이다. 유권자의나이는지지후보의선택에영향을미칠것이다. 유권자의나이에따라지지후보는다를것이다. 가설 2 : 유권자의사회생활만족도는지지후보의선택에영향을미칠것이다. 지지후보의선택은유권자의사회생활만족도에따라차이가있을것이다. 가설 3 : 유권자의학력수준에따라지지후보는다를것이다. 지지후보의선택은유권자의학력수준에따라차이가있을것이다.
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More information歯15-ROMPLD.PDF
MSI & PLD MSI (Medium Scale Integrate Circuit) gate adder, subtractor, comparator, decoder, encoder, multiplexer, demultiplexer, ROM, PLA PLD (programmable logic device) fuse( ) array IC AND OR array sum
More information