Size: px
Start display at page:

Download ""

Transcription

1 1 1 Department of Statistics University of Seoul August 29, 2017

2 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ = µ 0 K : µ > µ 0. ( X µ 0 )/(S/ n) T (n 1), 임이알려져있고유의수준 α 에따른기각역이결정된다 (Neyman-Pearson lemma).

3 T-test T- 검정의모형가정 : X i = µ + ɛ i 단, ɛ i iid N(0, σ 2 ) 가정에위배되는경우 X i 의분포가동일하지않을때. X i 의분산이존재하지않을때 ( 꼬리가두꺼운분포 ) 혹은 X i 분포가대칭이아닌경우 ; 데이터가독립이아닌경우. T- 검정이주는기각역을이용하여의사결정을했을때, 이미정해진유의수준 α (1 종오류 ) 과다른의사결정을하게된다.

4 ANOVA 분산분석은 (Analysis of variance: ANOVA) 여러개의모집단의평균을비교, 검정하는방법이다. 1 원배치분산분석의가정 : X ij iid N(µ j, σ 2 ) for j = 1,, p (p 개의처리 ) 귀무가설하에서 µ 1 = µ 2 = = µ p F = 급간분산 F (p 1, n p 1) 급내분산 임을이용한다.

5 ANOVA 1 원배치분산분석은 j 번째처리에대한반응변수가 X ij = µ j + ɛ ij (ɛ ij iid N(0, σ 2 )) 임을가정한다. 가정에위배되는경우 : X ij 가정규분포를따르지않는경우 ; X ij 의분산이이질적 (heterogeneous) 인경우 ; X ij 가독립이아닌경우 (cluster effect); 검정이주는기각역을이용하여의사결정을했을때, 이미정해진유의수준 α (1 종오류 ) 과다른의사결정을하게된다.

6 ANOVA 2 원배치분산분석의가정 : X ijk = α + µ j + γ k + ɛ ijk (ɛ ijk iid N(0, σ 2 )) 임을가정한다. 가정에위배되는경우 : EX ijk α + µ j + γ k ( 교호작용 : interaction effects) X ijk 의분산이이질적인경우 ; 데이터가독립이아닌경우 ; 검정이주는기각역을이용하여의사결정을했을때, 이미정해진유의수준 α (1 종오류 ) 과다른의사결정을하게된다.

7 예제 잘못된가정하의 t 검정결과 X 1 = 0 이라하고 X i+1 = 0.9X i + ɛ i (ɛ i iid N(0, 1)) 위모형에서는 Cov(X i+1, X i ) 0 로관측치가독립이아니다. 단 E(X i ) = 0 는성립한다. X i (i = 1,, 20) 를생성하고평균에대한 t 검정을실시한다 번의반복실험을통해유의수준 α 에서의 t 검정의결과와실제얻어진 1 종오류를비교한다.

8 예제 Rcode

9 Regression 선형회귀모형은반응변수 (Y ) 와설명변수 X 의관계를모형화한통계모형이다. 설명변수가 1 개인 X R 인선형회귀모형을알아보자 모형의가정 : 단, ɛ i iid N(0, σ 2 ) Y i = β 0 + β 1 X i + ɛ i

10 Regression 선형회귀모형은다음과같은관계를만족한다. E(Y i X i ) = β 0 + β 1 X i 모형가정의위배 ; E(Y i X i ) β 0 + β 1 X i E(Y i X i ) 이존재하지않는경우.

11 Regression E(Y i X i ) β 0 + β 1 X i 인예 E(Y i X i ) = β 0 + β 1 Xi 2 E(Y i X i ) = f (X i ) 단, f : R R. ɛ i 과 X i 상관계수가 0이아닌경우. E(Y i X i ) 가존재하지않는경우? ɛ i iid t(1) ( 자유도가 1인 t분포 ).

12 모형가정이위배된경우 X i iid N(0, 1) for i = 1,, 100. Y i = 3 + X 2 i + ɛ i where ɛ i iid N(0, 1) E(Y X i = x) = 3 + x 2 는 x 의선형함수가아니다. 선형회귀분석에서가정한모형은 E(Y X i = x) = β 0 + xβ 1 이므로모형공간은다음과같이주어질것이다. F = {f : f (x) = β 0 + β 1 x, β 0, β 1 R}

13 모형가정이위배된경우 파란색선은잘못된모형가정하에서의 LSE 혹은 MLE 로구해진 E(Y X i = x) 에대한추정량이다.

14 다변량선형회귀모형 X i = (X i1,, X ip ) R Y i R β = (β 1,, β p ) 다항선형회귀모형 단, ɛ i iid (0, σ 2 ) Y i = X i1 β X ip β p + ɛ i = X iβ + ɛ i

15 다변량선형회귀모형 실제모형이 Y i = X i1 + X i2 + ɛ i 단, ɛ i iid N(0, 1) (X i1, X i2 ) N(µ, Σ) 단, µ = (0, 0) 이고 ( ) 1 ρ Σ = ρ 1 X i1 만관찰가능하다고하자. 회귀분석의결과를구해보자. 다음과같은상황일것이다. 여기서 ɛ i = X i2 + ɛ i 이며, Y i = X i1 + (X i2 + ɛ i ) = X i1 + ɛ i Cov(X i1, ɛ i ) = ρ

16 예제 > set.seed(1) > x <- sort(rnorm(100)) > y<- 3+x^2 + rnorm(100) > plot(x, y, pch = 20) > fit <- lm(y~x) > abline(a = fit$coefficients[1], + b = fit$coefficients[2], col = 'blue' ) > ytrue <- 3+ x^2 > lines(x, ytrue, lty = 2, col = 'black')

17 예제 > library(mass) > set.seed(1) > rho = 0.5 > n = 100 ; mu.vec = c(0,0) > Sigma.mat <- matrix(c(1,rho,rho,1),2,2) > x <- mvrnorm(n, mu.vec, Sigma.mat) > y<- x%*%c(1,1) + rnorm(100) > fit <- lm(y~x[,1]-1)

18 예제 > set.seed(1) > iter.num = 1000 > coef.vec <- rep(0,iter.num) > for (i in 1:iter.num) + { + x <- mvrnorm(n, mu.vec, Sigma.mat) + y<- x%*%c(1,1) + rnorm(100) + fit <- lm(y~x[,1]-1) + coef.vec[i]<- fit$coefficients + } > boxplot(coef.vec, col = 'orange', ylim = c(0,2)) > abline(h = 1, lty = 2, col = 'red')

19 예제 > set.seed(1) > iter.num = 1000 > rho.vec = seq(-0.7, 0.7, by = 0.1 ) > coef.mat <- matrix(0,iter.num, length(rho.vec)) > for (j in 1:length(rho.vec)) + { + rho = rho.vec[j] + Sigma.mat <- matrix(c(1,rho,rho,1),2,2) + for (i in 1:iter.num) + { + x <- mvrnorm(n, mu.vec, Sigma.mat) + y<- x%*%c(1,1) + rnorm(100) + fit <- lm(y~x[,1]-1) + coef.mat[i,j]<- fit$coefficients + } + } > colnames(coef.mat)<- paste0('rho=',round(rho.vec,2)) > boxplot(coef.mat, col = 'orange', ylim = c(0,2)) > abline(h = 1, lty = 2, col = 'red')

20 분류문제 로지스틱회귀분석 모형가정 : 단, θ(x i ) = exp(β 0+β 1 X i ) (1+exp(β 0 +β 1 X i )). Y i X i Bernoulli(θ(X i ))

21 Classification 로지스틱회귀모형은 Pr(Y i X i ) = θ(x i ) 에대하여다음과같은가정을한다. θ(x i ) = (Y i X i ) = exp(β 0 + β 1 X i ) 1 + exp(β 0 + β 1 X i ), 즉 θ(x i ) 의로짓 (logit), log θ(x i )/(1 θ(x i )), 이 β 0 + β 1 X i 임을가정한다. 가정의위배 ; link misspecification: θ(x i ) = Φ(β 0 + β 1 X i ) 단, Φ( ) 표준정규분포의 cdf. nonlinear model: θ(x i ) = exp(f (X i)) 1 + exp (f (X i )),

22 Classification 로지스틱모형결정경계 : {x : f (x) = 0} 즉, 결정경계는 {x : θ(x) = 0.5} 과같다. f 가 x의선형함수인경우에결정경계는항상선형으로나온다.

23

24 model and sub-models

25 여기서는다변량선형회귀모형을중심으로모형, 부모형, 모형선택의개념을알아보겠다. X i = (X i1,, X ip ) T R p Y i R 모형 : Y i = β 0 + p β j X ij + ɛ i j=1 실제참모형이 Y i = f (X i ) + ɛ i ( 여기서 f 는부드러운함수 ) 라고하자충분히큰 p 에대하여 f (X) β 0 + p j=1 β jx j 이므로 (Y i X i ) β 0 + p β j X ij j=1 로써기대값을근사 (approximation) 시킬수있다.

26 부모형 가장간단한모형 : y i = β 0 + ɛ i. 즉, 완전모형 (full model) 의입장에서는 y i = β 0 + p β j x ij + ɛ i j=1 ( 단, β j = 0 for j = 1,, p) 로주어지는특별한경우에해당한다. 1 개의변량에대응되는회귀계수만 0 이아닌부모형도생각할수있다. y i = β 0 + β 1 x i1 + ɛ i y i = β 0 + β p x ip + ɛ i 2 개의변량에대응되는회귀계수만 0 이아닌부모형도생각할수있다. y i = β 0 + β 1 x i1 + β 1 x i2 + ɛ i

27 부모형의개수 부모형의개수는 2 p+1 1 이다. p = 30 인경우, PC 가 1 초에 1000 번의회귀모형적합을할수있다고가정하자. 이때, 모든부모형에대한계산시간은대략 24 일이다. p = 50 인경우대락 7 만년이걸린다. p 가큰경우부모형에대한모형적합을가능한시간내에다할수가없다.

28 부모형구성전략 ( 전진법 ) 가장간단한모형으로부터변량을하나씩만추가해나간다. 어떤변량을넣을것인가?? 1 개의변량을가지는부모형을적합하는것을고려하자. min n i=1 (y i β 0 β j x ij ) 2 (j = 1,, p) 값을계산한후에, 가장작은값을가지는 j 를선택하여모형에반영한다. j = 3 이라고가정하자. 다시 min n i=1 (y i β 0 β 3 x i3 β j x ij ) 2 for j {1,, p} {3} 를계산한후에가장작은값을가지는 j 를선택한다. 이과정을반복한다. 이때계산횟수는 p 2 이하이며 p = 1000 에대해서도 8 분안에계산을끝낼수있다. 여기서얻어지는부모형의개수는 (p + 1) 개다.

29 부모형구성전략 ( 후진법 ) 완전모형에서하나씩변수를빼나간다. 어떤변수를빼나갈것인가? (p 1) 변수를가지는모형을찾는경우를고려하자. min n i=1 (y i β 0 j / B β jx ij ) 2 for B = {k} 을계산하고가장작은값을가지는 k 를선택한다. k = 3 이라고하자. 다시 min n i=1 (y i β 0 j / B β jx ij ) 2 for j {1,, p} {3, k} 를계산하고가장작은값을갖는 k 3 를선택한다. 이를반복한다.

30 LASSO 를이용한부모형의생성 LASSO: ˆβ(λ) = argmin β n (y i β 0 i=1 p β j x ij ) 2 + λ j=1 λ 를조정하면서부모형을구성할수있다. λ = 9 ˆβ(λ) = ( ˆβ 0, 0, 0, 0,, 0) λ = 7 ˆβ(λ) = ( ˆβ 0, 0, 0, ˆβ 3 (λ),, 0) λ = 4 ˆβ(λ) = ( ˆβ 0, 0, ˆβ 2 (λ), ˆβ 3 (λ),, 0) λ = 1 ˆβ(λ) = ( ˆβ 0, ˆβ 1 (λ), ˆβ 2 (λ), ˆβ 3 (λ),, 0) λ 조정함을써부모형을쉽게생성할수있다. p β j j=1

31 정규화방법론연구정규화방법론은다음함수를최소화하는추정량에대한연구다. n (y i β 0 i=1 p β j x ij ) 2 + λ j=1 위식은아래와같이이해할수있다. p β j. risk function based on data + penalty function on the model complexity j=1

32 모형선택

33 F 검정을통한모형선택 전진법변수를하나씩추가해가면서부모형들을만든다. 변수를추가할때마다, 위험함수값 (eg. SSE) 이얼마나줄어드는지계산한다. 변수를추가하면항상위험함수값은늘어날수없다. F- 검정을통해위험함수값이유의하게줄어드는지확인한다. 즉, F 통계량은유의미한위험함수의감소다시말해, 유의미한변수가모형으로들어왔는지그렇지않은지를위험함수를통해판별한다. 유의미한위험함수의감소가보이지않을때까지변수를추가한다.

34 F 검정을통한모형선택 후진법변수를완전모형으로부터하나씩빼가면서부모형을만든다. 변수를제거할때마다, 위험함수값 (eg. SSE) 이얼마나늘어나는지계산한다. 변수를제거하면항상위험함수값은줄어들수없다. F- 검정을통해위험함수값의감소량에유의한증거가없는지확인한다. 유의미한위험함수의감소가보일때까지변수를추가한다.

35 모형선택기준에의한모형선택 σ 2 = 1 이라고가정하자 AIC (Akaike information criteria) n (y i ˆβ 0 i=1 p ˆβ j x ij ) 2 + 2k j=1 단 k = # of nonzero coefficients in ˆβ j for j = 1,, p.

36 모형선택기준에의한모형선택 BIC (Bayesian information criteria) n p (y i ˆβ 0 ˆβ j x ij ) 2 + k log(n) i=1 j=1 단 k = # of nonzero coefficients in ˆβ j for j = 1,, p.

37 데이터기반통한모형선택검증데이셋 (Validation set) 의이용훈련집합과독립인 validation set 의확보훈련집합의데이터를이용하여부모형들을만들고검증데이터를이용해모형을평가 ( 우도, 정확도등 ) 검증데이터셋에서좋은성능을보이는부모형을선택 /

38 데이터기반통한모형선택교차검증방법 (Cross validation:cv) 데이터집합을 k 개의분할로만듬. 그중하나를검증데이터셋으로나머지를훈련데이터셋으로선택. 훈련집합의데이터를이용하여부모형들을만들고검증데이터를이용해모형을평가 ( 우도, 정확도등 ) 훈련데이터중하나를검증데이터셋으로선택하고, 나머지를다시훈련데이터셋으로놓음. 훈련집합의데이터를이용하여부모형들을만들고검증데이터를이용해모형을평가 ( 우도, 정확도등 ) 가하고같은작업을반복함. 총 k 개의평가결과를이용하여부모형을선택함 일반화교차검증 (Generalized Cross Validation: GCV): 계산의복잡성을피하기위해개발됨. GCV 는식의형태로주어져빠른시간내에계산이가능함.

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft PowerPoint - ANOVA pptx

Microsoft PowerPoint - ANOVA pptx 분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

¾DÁ ÖÖ„�Àº¨Ö´ä

¾DÁ ÖÖ„�Àº¨Ö´ä 비선형회귀모형들 이재용 서울대학교통계학과 2015 년 1 월 25 일 다항회귀 I d 차다항회귀모형 y i = β 0 + β 1 x i + β 2 x 2 i +... + β d x d i + ϵ i, ϵ i (0, σ 2 ), i = 1, 2,..., n 특성들 1. 가장간단하게 x 의비선형회귀함수를표현할수있는방법이다. 2. 4 차가넘어가면함수의모양이너무유연해져서,

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

Tree 기반의 방법

Tree 기반의 방법 Tree 기반의방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 1 / 25 학습내용 의사결정나무 (decision tree) 회귀나무 (regresion tree) 분류나무 (classification tree) 비교앙상블알고리즘 (ensemble algorithm) 배깅 (bagging) 랜덤포레스트 (random

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

untitled

untitled Mathematics 4 Statistics / 6. 89 Chapter 6 ( ), ( /) (Euclid geometry ( ), (( + )* /).? Archimedes,... (standard normal distriution, Gaussian distriution) X (..) (a, ). = ep{ } π σ a 6. f ( F ( = F( f

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - 동태적 모형.doc

Microsoft Word - 동태적 모형.doc 동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임

More information

i

i 저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

μ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

Microsoft Word - sbe_anova.docx

Microsoft Word - sbe_anova.docx ANOVA 기본개요세집단이상인평균비교 => 일원분산분석집단을요인 (factor) 혹은처리효과 (treatment effect) 라하고집단의개별값을수준 (level) 이라한다. 요인이하나인경우 one-way ANOVA 분산분석 (ANOVA Analyss Of VArance) 은실험설계로부터유래, 분산 ( 변동 ) 에의해요인 ( 모형 ) 의유의성를검증한다. 실험관심대상에대한정보를얻기위한계획된테스트나관측절대실험

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

공간계량경제학을 응용한 사례분석

공간계량경제학을 응용한 사례분석 공간계량경제학을응용한사례분석 서울대학교사회과학대학지리학과교수 손정렬 2 Anselin versus Griffith Anselin versus Griffith 3 On Anselin s, Griffith says 두서적의비교를통한서평 오자 (multicollinearity), 개념적오류, 오해등의문제존재 공간통계분야문헌들의언급부재혹은미약 중복되는부분이적어두서적간의보완성상당히높음

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

i f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)

More information

- 1 -

- 1 - - 1 - - 2 - χ loglog log - 3 - σ - 4 - - 5 - ψφ θθ - 6 - σ 월이윤년인경우 월이윤년이아닌경우 α - 7 - - 8 - π π π - 9 - - 10 - - 11 - - 12 - 모형 모형 - 13 - 모형 모형 - 14 - - 15 - - 16 - - 17 - σ σ - 18 - σ MSR 크기 MSR 2.5 3.5

More information

슬라이드 1

슬라이드 1 회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

자료분석론 - 국민건강영양조사 분석

자료분석론 - 국민건강영양조사 분석 2014. 5. 10 ( 토 ) 자료분석론 국민건강영양조사자료 - 자료분석 (2) 서울대학교보건대학원 홍지민 강의순서 1) 국민건강영양조사이해 (4/19) - 자료의개요및원시자료 DB 2) 가중치및자료분석개요 (4/26) 3) 국민건강영양조사자료활용실습 (5/10) 2014-05-10 2 목차 자료분석개요 복합표본설계자료회귀분석 복합표본설계자료로지스틱회귀분석

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 제 4 장 회귀분석 Chapter 4 Regression Analysis 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

Data Mining 1 regularized model을 이용한 이미지 분류 1 Introduction 이미지 데이터는 매트릭스 형태이다. 이미지 분류를 하기 위해서 이미지 형식을 매트릭스 에서 벡터로 변환하는 작업이 필요하다. 그러면 하나의 이미지는 p차원인 벡터형

Data Mining 1 regularized model을 이용한 이미지 분류 1 Introduction 이미지 데이터는 매트릭스 형태이다. 이미지 분류를 하기 위해서 이미지 형식을 매트릭스 에서 벡터로 변환하는 작업이 필요하다. 그러면 하나의 이미지는 p차원인 벡터형 1 regularized model을 이용한 이미지 분류 1 Introduction 이미지 데이터는 매트릭스 형태이다. 이미지 분류를 하기 위해서 이미지 형식을 매트릭스 에서 벡터로 변환하는 작업이 필요하다. 그러면 하나의 이미지는 p차원인 벡터형식이다. 만약 n개의 이미지 데이터가 있다면 행은 n개이고 열은 p차원인 매트릭스 형식이 필요 하다. 여기서 사용할

More information

untitled

untitled 통계청 통계연구 제 10 권제 1 호, 2005, pp. 165-188 몬테카를로실험에의한 Augmented Dickey-Fuller 단위근검정법의검정력에관한연구 조성일 * 최종수 ** 1) < 요약 > 이연구에서는몬테카를로실험 (Monte Carlo Experiment) 을통하여 Augmented Dickey-Fuller 단위근검정법의검정력을측정하였다. 컴퓨터시뮬레이션을통한자료생성과정에있어서상수항과시간추세의포함여부에따라세가지형태를가정하였다.

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) Ch. 6 다중회귀모형에관한 추가적인논의 013 년 1 학기 윤성민 6장의주요내용 다중회귀모형의모수에관한둘이상의가설로구성된귀무가설을동시에검정하는경우 ( 결합가설의검정 ) F-검정 표본의정보이외에비표본정보도함께이용하는경우 제한최소제곱법 모형설정의오류를찾는방법 RESET 검정 다중공선성문제의탐지와해결방법

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

abstract.dvi

abstract.dvi 통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

2013 건설공사표준품셈기계설비부문 제 I 편 공통사항제 1 장 적용기준제 2 장 가설공사제 II 편 기계설비공사제 1 장 공통공사제 2 장 공기조화설비공사제 3 장 위생및소화설비공사제 4 장 가스설비공사제 Ⅲ 편 플랜트설비공사제 1 장 공통공사제 2 장 화력발전기계설비공사제 3 장 수력발전기계설비공사제 4 장 제철기계설비공사제 5 장 쓰레기소각기계설비공사제

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx 판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

회귀분석의 기초 한국보건사회연구원 2017년 6월 19일(월요일) & 22일(목요일) 강의 슬라이드 9 1/ 78 목차 1 2 3 4 2/ 78 지난 시간 복습 모집단 평균 µ에 대한 통계적 추론을 하는 방법: σ 신뢰구간: x ± t 유의성 검정: t = x µ σ/ 위 공식을 보면 모집단 표준편차 σ가 들어 있는데 이 σ를 모르니까 표본 표준편차 s로 대체해서

More information

PPT Template

PPT Template External Use SPSS 를이용한분산분석 (ANOVA) 013 년 11 월 13 일 임찬수 0 Table of Contents 1 분산분석과실험계획법 일원배치분산분석 (One-way ANOVA) 3 사후분석 (Post-hoc test) 4 일원배치분산분석의예제 5 HomeWork 1 1 분산분석과실험계획법 분산분석 분산분석 : 평균값을기초로하여여러집단을비교하고,

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

Microsoft PowerPoint - Info R(3) pptx

Microsoft PowerPoint - Info R(3) pptx Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y

More information

Microsoft Word - ch2_simple.doc

Microsoft Word - ch2_simple.doc REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?

More information

Chapter 7 분산분석

Chapter 7 분산분석 Chapter 8 실험계획및분산분석 (Experimental Design & ANalysis Of VAariance, ANOVA) 2017/5/01 8.1 선형모형과분산분석 (Linear Model & Analysis of Variance) 선형모형 (linear model): 설명변수들의선형의선형결합의형태로반응변수를설명하고자함. (to explain the

More information

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63> 제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는 제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의

More information

22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를

22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 22 장정규성검정과정규화변환 22.1 시각적방법 22.1.1 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 판단하는시각적분석방법이다. Q-Q 플롯은자료의분위수와특정( 이론적) 분포의분위수를구하여산점도로나타내거나,

More information

(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)

More information

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자

시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자 시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

歯4차학술대회원고(장지연).PDF

歯4차학술대회원고(장지연).PDF * 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

슬라이드 1

슬라이드 1 Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i

More information

<4D F736F F F696E74202D20332E20B0F8B0A3B0E8B7AEB0E6C1A6B8F0C7FCC0C720C3DFC1A428C3D6B8EDBCB72C20C0B1BCBAB5B52C20B1E8C0C7C1D8292E7

<4D F736F F F696E74202D20332E20B0F8B0A3B0E8B7AEB0E6C1A6B8F0C7FCC0C720C3DFC1A428C3D6B8EDBCB72C20C0B1BCBAB5B52C20B1E8C0C7C1D8292E7 제3회지역분석여름학교 2008. 08. 26 서울대학교농경제사회학부지역정보전공 최명섭 / 윤성도 / 김의준 목 차 I. 공간계량경제모형의기본구조 II. 공간가중치행렬 III. 공간자기상관 IV. 추정사례및주요이슈 V. 기타공간계량경제모형 I. 공간계량경제모형의기본구조 공간계량경제학 (Spatial Econometrics) - 공간종속성 (Spatial Dependence)

More information

베이지안통계분석 전종준 1 1 University of Seoul, Korea Spring 2017 1/49 Outline 들어가며베이지안추론베이지안분석모형 Monte-Carlo Markov Chain (MCMC) 2/49 들어가며 확률변수 동전던지기실험 실험결과는앞면또는뒷면확률변수 X 는앞면일때 1, 뒷면일때 0 의값을갖는다. 주가의로그수익률실험 ( 관찰

More information

농림수산식품 연구개발사업 운영규정

농림수산식품 연구개발사업 운영규정 - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - 1. - 29 - - 30 - - 31 - -

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 회귀분석 (Regression Analysis) 1 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지.. 2 변수간의관계 확정적 (deterministic)

More information

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp

More information

- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

LM_matrix.pages

LM_matrix.pages 설명변수가 개이상인경우이를다중회귀라한다. 물론종속변수는하나이다. 종속변수가하나이상인회귀모형을 Simulteous Equtio( 연립방정식모형 ) 이라한다. 설명변수가 개존재하는경우선형다중회귀모형을다음과같다. Y i α + βx i + βxi +... + β Xi + ei i,,..., ( 모형 ), --- () α, β, β,..., β X 는회귀계수이고 i,

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2013) 26(6), 889 902 DOI: http://dx.doi.org/10.5351/kjas.2013.26.6.889 Comparison of Goodness-of-Fit Tests using Grouping Strategies for Multinomial Logit Regression

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

Microsoft Word - ch3_residual.doc

Microsoft Word - ch3_residual.doc REGRESSION / 3 장. 잔치분석 50 Chapter 3 잔차분석 이론이나경험에의해변수간의회귀모형을설정하고 y = α + βx ( 선형 : lnearty), 관측치가 ( x, y ), = 1,,..., n 얻어지면이를이용하여회귀분석을실시한다. 설정된회귀모형에 는오차항에대한 3가지가정 e ~ dnormal(0, σ ) 을한다. ( 정규성 normalty,

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

통계적 학습(statistical learning)

통계적 학습(statistical learning) 통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과

More information

분산분석.pages

분산분석.pages 예제데이터 R. A. Fisher (1919 영국통계학자, 생물학자, 수학자 - 분산분석창시자 iris 분꽃데이터 - 3 개종, 4 개변수관측데이터 - sepal 꽃받침 ( 길이, 넓이 - petal 꽃잎 ( 길이, 넓이 분산개념정의 변수의데이터흩어짐의척도이다. (x s i x = n 1 활용 변동계수 Coefficient of Variation CV - CV

More information