Tree 기반의 방법

Size: px
Start display at page:

Download "Tree 기반의 방법"

Transcription

1 Tree 기반의방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 1 / 25

2 학습내용 의사결정나무 (decision tree) 회귀나무 (regresion tree) 분류나무 (classification tree) 비교앙상블알고리즘 (ensemble algorithm) 배깅 (bagging) 랜덤포레스트 (random forest) 부스팅 (boosting) 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 2 / 25

3 개요 입력변수의공간을여러개의지역으로나누고, 주어진관측값에대한예측값으로그지역에속하는훈련데이터의반응변수평균값으로예측함. 입력변수에대한분할규칙이나무형태로요약되므로의사결정나무라고함해석이쉽지만예측력은떨어짐배깅 (bagging), 랜덤포레스트 (random forest), 부스팅 (boosting) 등여러개의나무모형을결합하여예측하는앙상블은예측력은향상되지만해석은어려워짐 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 3 / 25

4 의사결정나무 : 회귀나무 I Hitters 데이터에서 Years 와 Hits 를이용한 Salary 의예측 Salary 값이결측인관측값을제거하고 Salary 에대하여로그변환후회귀나무적용 회귀나무 Years < Hits < 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 4 / 25

5 의사결정나무 : 회귀나무 II 영역분할 238 R 3 Hits R R Years 1 R 1 = {X Years < 4.5}, R 2 = {X Years >= 4.5, Hits < 117.5}, R 3 = {X Years >= 4.5, Hits >= 117.5} Years<4.5일때평균로그 Salary가 5.107이므로 e 혹은 165,174 달러로예측 Years가가장중요한변수임 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 5 / 25

6 의사결정나무 : 회귀나무 III 회귀나무모형적합 ( 단계 1) 입력변수 X 1,..., X p 들의공간을 J j=1 i R j (y i ŷ Rj ) 2 이최소가되도록 J개의서로겹치지않는영역 R 1,..., R J 로나눔. 여기서 ŷ Rj 는 R j 에서훈련데이터들의평균반응값 ( 단계 2) R j 에속하는입력값에대하여 R j 에속하는훈련데이터의 출력변수값의평균으로예측 모든가능한분할에대하여단계 1 을실시하는것은불가능. 대신반복이진분할 (recursive binary split) 를이용함 R 1 (j, s) = {X X j < s}, R 2 (j, s) = {X X j s} arg min j,s i:x i R 1(j,s) (y i ŷ R1 ) 2 + i:x i R 2(j,s) (y i ŷ R2 ) 2 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 6 / 25

7 의사결정나무 : 회귀나무 IV 분할영역예시 R5 R2 t4 X2 X2 R3 t2 R4 R1 t1 t3 X1 X1 X1 t1 X2 t2 X1 t3 X2 t4 R1 R2 R3 X2 X1 R4 R5 왼쪽위 : 반복이진분할로는불가능, 오른쪽위, 아래 : 반복이진분할에 의한영역분할, 나무모형, 예측값 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 7 / 25

8 의사결정나무 : 회귀나무 V 분할은종료조건 ( 가령, 각영역은적어도 5개이상의관측값이있어야함 ) 을만족할때까지계속이렇게생성된나무모형은너무복잡하여과대적합하는경향이있음. 따라서일단큰나무모형 T 0 를적합하고가지치기 (pruning) 하여부분나무모형을얻음 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 8 / 25

9 의사결정나무 : 회귀나무 VI 보통비용복잡도가지치기 (cost complexity pruning) 를적용각 α에대하여 T m=1 i:x i R m (y i ŷ Rm ) 2 + α T 를최소화하는부분모형 T T 0 를찾음 여기서 T : T 의단말노드 (terminal node) 의갯수, R m : m 번째 단말노드에대응되는영역, ŷ Rm : R m 에서의예측값. α 는조율모수로 CV 를이용하여결정함. α = 0 이면 T = T 0 이고 α 가 커지면단말노드의갯수에벌점이부여됨 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 9 / 25

10 의사결정나무 : 회귀나무 VII 회귀나무적합알고리즘 1. 훈련데이터에반복이진분할을적용하여단말노드에서의관측값들의갯수의최소값의정지규칙만족할때까지나무모형을성장 2. 각 α에대하여비용복잡도가지치기를적용하여부분나무모형을얻음 3. K-fold CV를이용하여 MSE의 K-fold CV값을최소화하는 α를선택 4. 선택된 α에대응되는부분모형을최종모형으로함 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 10 / 25

11 의사결정나무 : 회귀나무 VIII Hitters 데이터에대한가지치기이전의나무모형 Years < 4.5 RBI < 60.5 Hits < Putouts < 82 Years < 3.5 Years < Walks < 43.5 Runs < Walks < 52.5 RBI < 80.5 Years < 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 11 / 25

12 의사결정나무 : 회귀나무 IX Hitters 데이터 : 단말노드의갯수에따른오차 Mean Squared Error Training Cross Validation Test Tree Size 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 12 / 25

13 의사결정나무 : 분류나무 I 주어진입력값에대하여예측할때입력값이속하는영역의 훈련데이터에서가장많이발생하는클래스 ( 다수결 ) 로예측함 오분류율자체는나무모형을성장시키는데있어충분히민감한측도가아님. 분류나무의영역분할에서는회귀나무의 RSS 대신지니지수 (Gini index) 나 cross-entropy 등의측도를사용함 지니지수 : G = K k=1 ˆp mk(1 ˆp mk ) Cross-entropy: D = K k=1 ˆp mk log ˆp mk 예측의정확도가목표일때에는가지치기시오분류율을측도로 이용함 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 13 / 25

14 의사결정나무 : 분류나무 II Heart 데이터 HD: 반응변수로 303명의가슴통증이있는환자들중혈관조형검사에서심장병유무를나타냄 Age, Sex, Chol과심장과폐의기능과관련된 13개의설명변수가있음 Sex, Thal(Thalium stress test), ChestPain은질적변수가지치기가안된모형에서 RestECG<1의두분할이동일한 Yes를예측하는것은오분류율이아닌지니지수나 cross-entropy를최소화하여생기는현상임. 사실그분할은오분류율을낮춰주지는않지만불순도의측도 ( 지니나 cross-entropy) 를낮춰줌 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 14 / 25

15 의사결정나무 : 분류나무 III Thal:a Ca < 0.5 Ca < 0.5 Slope < 1.5 Oldpeak < 1.1 MaxHR < RestBP < 157 Chol < 244 MaxHR < 156 MaxHR < Yes No No No Yes No ChestPain:bc Chol < 244 Sex < 0.5 No No No Yes Age < 52 Thal:b ChestPain:a Yes No No No Yes RestECG < 1 Yes Yes Yes Error Training Cross Validation Test MaxHR < No No Ca < 0.5 ChestPain:bc Thal:a Yes Ca < 0.5 Yes No Yes Tree Size 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 15 / 25

16 의사결정나무 : 비교 I 선형모형과나무모형 장단점 선형회귀모형 : f (X ) = β 0 + p j=1 β jx j 회귀나무모형 : f (X ) = M m=1 c mi (X R m ) 나무모형은설명하기가쉬움. 또한인간의의사결정과정과유사하다고 생각하는사람들도있음 나무모형은그래프형식으로나타낼수있으며더미변수없이 질적변수를다룰수있음 일반적으로나무모형의예측력은다른방법에비해떨어짐 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 16 / 25

17 의사결정나무 : 비교 II 분류문제예시 X X X 1 X 1 X X X 1 X 1 위 : 분류경계가선형, 아래 : 분류경계가비선형 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 17 / 25

18 배깅 I 선형회귀는다른데이터에반복적용해도유사한결과를얻는분산이작은방법인반면, 의사결정나무는적합할때마다다른결과를얻을수있는매우분산이큰방법임 Z 1,..., Z n 이서로독립이며분산이 σ 2 일때 Z 의분산은 σ 2 /n을줄어듬따라서모집단에서여러개의훈련데이터를얻어서로다른예측모형을만든후결과에대한평균으로예측하면분산을줄일수있음그러나모집단에서여러훈련데이터를얻기어렵고대신 B개의다른붓스트랩 (bootstrap) 표본을생성하고각표본에서모형 ˆf b (x) 를적합한후 ˆf bag (x) = 1 B ˆf B b=1 b (x) 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 18 / 25

19 배깅 II 배깅에서는가지치기를하지않음으로써분산은크지만편의가작은모형을적합함. 이후평균을냄으로써분산을줄임분류문제에서는예측시 B개의나무모형의예측값에대한다수결원칙을적용함 OOB(out-of bag) 관측값은붓스트랩표본에서선택되지않은표본을말함. i번째관측값에대하여그관측값이 OOB인나무모형을이용하여예측할수있음. OOB 오차는 LOOCV와유사함 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 19 / 25

20 배깅 III Heart 데이터 Error Test: Bagging Test: RandomForest OOB: Bagging OOB: RandomForest Number of Trees 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 20 / 25

21 배깅 IV 배깅은단일나무모형보다예측력은향상되지만해석이어려움각변수의중요도는주어진변수에의한분할로인하여줄어드는 RSS 의평균으로구할수있음 Heart 데이터에서변수의중요도 Fbs RestECG ExAng Sex Slope Chol Age RestBP MaxHR Oldpeak ChestPain Ca Thal Variable Importance 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 21 / 25

22 랜덤포레스트 I 배깅에서는 p개의설명변수모두를이용하여나무모형을적합하는반면랜덤포레스트는 m < p개의변수를랜덤하게선택하여나무모형을적합함. 보통 m p 설명변수들중하나가매우설명력이강한것이있을때, 배깅에서의모든나무모형은서로비슷해지며예측값에강한상관관계가존재하여평균을취하여분산이감소하는효과가줄어듬랜덤포레스트에서는평균적으로 (p m)/p개의분할에서는설명력이강한한변수가포함되지않음으로써예측값들의상관관계를줄여주는효과가있음 m = p인랜덤포레스트는배깅에해당 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 22 / 25

23 랜덤포레스트 II 15 클래스유전자데이터 (p = 500) Test Classification Error m=p m=p/2 m= p Number of Trees 단일분류나무 : 오분류율 45.7% 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 23 / 25

24 부스팅 I 회귀나무에대한부스팅알고리즘 1. ˆf (x) = 0, ri = y i, i 2. b = 1,..., B 에대하여 1 훈련데이터 (X, r) 에대하여 d 분할 (d + 1 개의단말노드 ) 나무모형 ˆf b 적합 2 ˆf (x) ˆf (x) + λˆf b (x) 3 r i r i λˆf b (x i ) 3. ˆf (x) = B b=1 λˆf b (x) 조율모수 나무모형의갯수 B 는너무크면과대적합이일어날수있음. CV 로선택 축소모수 λ = 0.01 혹은 사용 분할수 d( 교호작용의깊이 ). d = 1: stump 로가법모형 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 24 / 25

25 부스팅 II 15 클래스유전자데이터 Test Classification Error Boosting: depth=1 Boosting: depth=2 RandomForest: m= p Number of Trees 단일분류나무 : 시험오분류율 24%, λ = 0.01 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 25 / 25

°Ÿ»4º¨Ö

°Ÿ»4º¨Ö 나무모형 이재용 서울대학교통계학과 2015 년 2 월 16 일 의사결정나무 I Years < 4.5 238 R 3 Hits R 1 117.5 5.11 Hits < 117.5 R 2 6.00 6.74 1 4.5 24 Years 1 Hitters 자료 1. ISLR 패키지에있는자료 2. 1986 년 322 명의메이저리그선수들에대한관측치. 20 개의변수 3. log(salary)

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

세계 비지니스 정보

세계 비지니스 정보 - i - ii - iii - iv - v - vi - vii - viii - ix - 1 - 2 - 3 - - - - - - - - - - 4 - - - - - - 5 - - - - - - - - - - - 6 - - - - - - - - - 7 - - - - 8 - 9 - 10 - - - - - - - - - - - - 11 - - - 12 - 13 -

More information

통계적 학습(statistical learning)

통계적 학습(statistical learning) 통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과

More information

- i - - ii - - i - - ii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - - x - - xi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 -

More information

CONTENTS.HWP

CONTENTS.HWP i ii iii iv v vi vii viii ix x xi - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -

More information

INDUS-8.HWP

INDUS-8.HWP i iii iv v vi vii viii ix x xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

More information

CONTENTS C U B A I C U B A 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 9 C U B A 10 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 11 C U B

More information

00-1표지

00-1표지 summary _I II_ summary _III 1 1 2 2 5 5 5 8 10 12 13 14 18 24 28 29 29 33 41 45 45 45 45 47 IV_ contents 48 48 48 49 50 51 52 55 60 60 61 62 63 63 64 64 65 65 65 69 69 69 74 76 76 77 78 _V 78 79 79 81

More information

경제통상 내지.PS

경제통상 내지.PS CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V

More information

°æÁ¦Åë»ó³»Áö.PDF

°æÁ¦Åë»ó³»Áö.PDF CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V

More information

우루과이 내지-1

우루과이 내지-1 U R U G U A Y U r u g u a y 1. 2 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 3 U r u g u a y 2. 4 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 5 U r u g u a

More information

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 201 3. 마한문화공원 명소화 사업 219 4. 기찬랜드 명소화 사업 240

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 201 3. 마한문화공원 명소화 사업 219 4. 기찬랜드 명소화 사업 240 목 차 제1장 과업의 개요 1. 과업의 배경 및 목적 3 2. 과업의 성격 5 3. 과업의 범위 6 4. 과업수행체계 7 제2장 지역현황분석 1. 지역 일반현황 분석 11 2. 관광환경 분석 25 3. 이미지조사 분석 45 4. 이해관계자 의견조사 분석 54 제3장 사업환경분석 1. 국내 외 관광여건분석 69 2. 관련계획 및 법규 검토 78 3. 국내 외

More information

[96_RE11]LMOs(......).HWP

[96_RE11]LMOs(......).HWP - i - - ii - - iii - - iv - - v - - vi - - vii - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

More information

i ii iii iv v vi vii viii 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XXXXXXXX 22 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

More information

À̶õ°³È²³»Áö.PDF

À̶õ°³È²³»Áö.PDF Islamic Republic of Iran I I S L A M I C R E P U B L I C O F I R A N 10 Part I 11 I S L A M I C R E P U B L I C O F I R A N 12 Part I 13 I S L A M I C R E P U B L I C O F I R A N 14 II I S L A M I C R

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅳ. 의사결정나무와 MARS 1. 실손의료보험자료를활용한 CART 분석 가. CART(Classification and Regression Tree) CART는데이터를가장잘분류해주는도구라고할수있는데데이터를잘분류해주는분리변수를선택하고분리지점을정해준다. 그리고가지치기를통해서분류의정도를결정할수있다. 데이터마이닝방법론들중가장널리쓰이는방법론으로반응변수가범주형또는연속형일때가능한의사결정나무의한알고리즘이다.

More information

통신1310_01-도비라및목차1~9

통신1310_01-도비라및목차1~9 ISSN 5-693 13. 1 13. 1 3 1 3 1 i .75 1.5.75 1. 1..9.9 7.5 ) 7.5 ) 3. 1.5 1.5 9. ) 1. ) ii 8 6 8 6 - - 3 1 1 11 1 9 8 7 iii 6 5 6 5 3 3 1 8 1 8 1 1 6 6-1 -1 - - iv . 1.5 1.. 1.5 1..5. -.5.5. -.5

More information

*통신1802_01-도비라및목차1~11

*통신1802_01-도비라및목차1~11 ISSN 25-2693 218. 2 218. 2 214 215 216 217 2.6 2.9 1.5 1.8 1.2 3.1 3.2 1.3 2.1 1.8 2.6 2.5 2.8 2.4.4 1.4.9 1.4 1.5 2.9 2.5 7.3 6.9 6.7 6.8 6.9 6.9 6.8 2.8 14 2.6 13 2.4 12 2.2 2. 11 1.8 1.6 1.4

More information

National Food & Nutrition Statistics 2011: based on 2008~2011 Korea National Health and Nutrition Examination Survey (Ⅱ) i ii iii iv v vi vii viii ix (N=33,745, 단위 : g) (N=33,745, 단위 : g) (N=33,745,

More information

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770> 제 출 문 보건복지부장관 귀 하 이 보고서를 정신질환자의 편견 해소 및 인식 개선을 위한 대상별 인권 교육프로그램 개발 연구의 결과보고서로 제출합니다 주관연구기관명 서울여자간호대학 산학협력단 연 구 책 임 자 김 경 희 연 구 원 김 계 하 문 용 훈 염 형 국 오 영 아 윤 희 상 이 명 수 홍 선 미 연 구 보 조 원 임 주 리 보 조 원 이 난 희 요

More information

°æÁ¦Àü¸Á-µ¼º¸.PDF

°æÁ¦Àü¸Á-µ¼º¸.PDF www.keri.org i ii iii iv v vi vii viii ix x xi xii xiii xiv xv 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 48 49 50 51 52 53

More information

표1

표1 i ii Korean System of National Accounts iii iv Korean System of National Accounts v vi Korean System of National Accounts vii viii Korean System of National Accounts 3 4 KOREAN SYSTEM OF NATIONAL ACCOUNTS

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

israel-내지-1-4

israel-내지-1-4 israel-내지-1-4 1904.1.1 12:49 AM 페이지1 mac2 2015. 11 Contents S T A T E O F I S R A E L 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 9 S T A T E O F I S R A E L 10 Part I Part

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

Overview Decision Tree Director of TEAMLAB Sungchul Choi

Overview Decision Tree Director of TEAMLAB Sungchul Choi Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based

More information

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위 01 노동법 법원으로서의 노동관행 15 - 대판 2002.4.23, 2000다50701 [퇴직금] (한국전력공사 사례) 02 노동법과 신의성실의 원칙 17 - 대판 1994.9.30, 94다9092 [고용관계존재확인등] (대한조선공사 사례) 03 퇴직금 청구권 사전 포기 약정의 효력 19 - 대판 1998.3.27, 97다49732 [퇴직금] (아시아나 항공

More information

커널 방법론

커널 방법론 커널방법론 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 커널방법론 1 / 31 학습내용 벌점화방법 재생커널힐버트공간 여러가지커널기계 박창이 ( 서울시립대학교통계학과 ) 커널방법론 2 / 31 커널방법론 회귀함수나베이즈분류함수가선형이라는가정은비현실적임최종모형의해석상의편리성또는과대적합문제를피하기위해선형모형을고려비선형모형의구축시적절한기저함수 (basis

More information

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기 최종보고서 폐기물관리 규제개선방안 연구 ( 업계 건의사항 및 질의사례 중심) 2006. 9 환 경 부 제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장

More information

*통신1604_01-도비라및목차1~12

*통신1604_01-도비라및목차1~12 ISSN 25-2693 216. 4 216. 4 213 214 215 1.5 2.4 2.4.6 3.9 2. 1.4 -.3.9 1.6 2.3 1.6 1.2 1.3 1.4..5 4.6-1.4 1.4-1.1 7.7 7.3 6.9 7. 7. 6.9 6.8 14 13 12 11 1 9 8 7 5 4 3 2 1 i 4 4 3 3 2. 1.5 1. 2.

More information

*통신1510_01-도비라및목차1~12

*통신1510_01-도비라및목차1~12 ISSN 5-693 15. 11 15. 11 1 13 1 15. 1.5..3.1.6 3.9 -.8 -.3.9 1. 1.6.1 1. 1.7 1.6 -.1-1.1 1.3.5-1. 7.7 7.7 7.3 7. 7. 7. 7. 8 6 8 6 i 3 1-1 3 1-1 5 5 3 3 1 1 ii 1 8 5 3.5 3.5 3. 3..5.5.. 1.5 1.5

More information

미얀-내지-8차

미얀-내지-8차 미얀-내지-8차 2014.10.29 12:44 AM 페이지1 mac2 Contents I The Republic of the Union of Myanmar 12 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 13 The Republic of the Union

More information

An Effective Sentence-Extraction Technique Using Contextual Information and Statistical Approaches for Text Summarization

An Effective Sentence-Extraction Technique Using Contextual Information and  Statistical Approaches for Text Summarization 한국 BI 데이터마이닝학회 2010 추계학술대회 Random Forests 기법을사용한 저수율반도체웨이퍼검출및혐의설비탐색 고태훈, 김동일, 박은정, 조성준 * Data Mining Lab., Seoul National University, hooni915@snu.ac.kr Introduction 반도체웨이퍼의수율 반도체공정과웨이퍼의수율 반도체공정은수백개의프로세스로이루어져있음

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63>

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63> 第 46 期 定 期 柱 主 總 會 日 時 : 2006. 5. 26 午 前 11 時 場 所 : 大 熊 本 社 講 堂 株 式 會 社 大 熊 회 순 Ⅰ. 개회선언 Ⅱ. 국민의례 Ⅲ. 출석주주 및 출석주식수 보고 Ⅳ. 의장인사 Ⅴ. 회의의 목적사항 1. 보고사항 감사의 감사보고 영업보고 외부감사인 선임 보고 2. 의결사항 제1호 의안 : 제4기 대차대조표, 손익계산서

More information

Overview Ensemble Model Director of TEAMLAB Sungchul Choi

Overview Ensemble Model Director of TEAMLAB Sungchul Choi Overview Ensemble Model Director of TEAMLAB Sungchul Choi Ensemble Model - 하나의모델이아니라여러개모델의투표로 Y값예측 - Regression 문제에서는평균값을예측함 - meta-classifier - stacking (meta-ensemble) 등으로발전 - 학습은오래걸리나성능이매우좋음 - Kaggle

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

2012회계연도 고용노동부 소관 결 산 검 토 보 고 서 세 입 세 출 결 산 일 반 회 계 농 어 촌 구 조 개 선 특 별 회 계 에 너 지 및 자 원 사 업 특 별 회 계 광 역 지 역 발 전 특 별 회 계 혁 신 도 시 건 설 특 별 회 계 기 금 결 산 고 용 보 험 기 금 산 업 재 해 보 상 보 험 및 예 방 기 금 임 금 채 권 보 장 기 금 장

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

2 0 1 1 4 2011 1 2 Part I. 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 Part II. 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28

More information

세계 비지니스 정보

세계 비지니스 정보 1.... 1 2. /2005... 3 3.... 6 4.... 8 5. /... 9 6....12 7. /...17 8....23 9. /...26 10....28 11....29 12....30 13. /...31 14....32 15....33 16. /...35 17....39 - i 18....43 19....46 20....51 21....53 22....56

More information

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대 대한정치학회보 20집 1호 2012년 6월: 77~99 세종과 소학( 小 學 ) : 민풍( 民 風 ) 과 사풍( 士 風 ) 의 교화* 1) 박홍규 ㆍ송재혁 고려대학교 요 약 2 기존 소학 에 대한 연구들은 주로 중종( 中 宗 ) 시대 사림( 士 林 ) 과의 연관선상에서 소학 의 의미를 모색하고 있다. 그러나 소학 에 대한 존숭 의식은 이미 조선 전기 관학파들도

More information

chap 5: Trees

chap 5: Trees Chapter 5. TREES 목차 1. Introduction 2. 이진트리 (Binary Trees) 3. 이진트리의순회 (Binary Tree Traversals) 4. 이진트리의추가연산 5. 스레드이진트리 (Threaded Binary Trees) 6. 히프 (Heaps) 7. 이진탐색트리 (Binary Search Trees) 8. 선택트리 (Selection

More information

시작하기 시작할 준비가 되었으면 다음 설명에 따라 설문조사를 실시한다. 1단계: 허락받기 클럽을 떠나는 회원에게 에 응해 줄 것인지 물어본다. 이 설문 조사는 클럽의 문제점을 보완해 향후 같은 이유로 이탈하는 회원들이 없도록 하기 위한 것이며, 응답 내용은 대외비로 처

시작하기 시작할 준비가 되었으면 다음 설명에 따라 설문조사를 실시한다. 1단계: 허락받기 클럽을 떠나는 회원에게 에 응해 줄 것인지 물어본다. 이 설문 조사는 클럽의 문제점을 보완해 향후 같은 이유로 이탈하는 회원들이 없도록 하기 위한 것이며, 응답 내용은 대외비로 처 떠나는 이유 알아보기 왜 클럽을 떠나는가? 이는 클럽을 떠나기로 결심한 동료들에게 반드시 물어봐야 할 질문이다. 그리고 그 답이 무엇이든 다시는 같은 이유로 클럽을 떠나는 회원이 없도록 개선책을 마련해야 한다. 를 사용해 왜 회원들이 클럽을 떠나는지, 그리고 앞으로 회원들의 이탈을 막으려면 어떻게 해야 할 것인지 논의를 시작한다. 클럽 회원위원회는 이 설문조사를

More information

목 차 Ⅰ. 조사개요 1 Ⅱ. 용어해설 13 Ⅲ. 조사결과 17 1. 과학기술인력 양성 및 활용에 관한 거시통계 분석 결과 9 1 가. 과학기술인의 양성 현황 19 나. 과학기술인의 취업 현황 24 다. 과학기술인의 경제활동 현황 27 라. 과학기술인의 고용 현황 28

목 차 Ⅰ. 조사개요 1 Ⅱ. 용어해설 13 Ⅲ. 조사결과 17 1. 과학기술인력 양성 및 활용에 관한 거시통계 분석 결과 9 1 가. 과학기술인의 양성 현황 19 나. 과학기술인의 취업 현황 24 다. 과학기술인의 경제활동 현황 27 라. 과학기술인의 고용 현황 28 목 차 Ⅰ. 조사개요 1 Ⅱ. 용어해설 13 Ⅲ. 조사결과 17 1. 과학기술인력 양성 및 활용에 관한 거시통계 분석 결과 9 1 가. 과학기술인의 양성 현황 19 나. 과학기술인의 취업 현황 24 다. 과학기술인의 경제활동 현황 27 라. 과학기술인의 고용 현황 28 2. 과학기술인력 활용 실태조사 분석 결과 23 가. 과학기술인의 고용 및 채용 현황 3

More information

2007KIP연2-05 연구용역보고서 중소기업 및 지방기업에 대한 정부조달 지원정책의 비용-편익(BC)분석 연구 2008. 1 제 출 문 조달청장 귀하 본 보고서를 중소기업 및 지방기업의 정부조달 지원정책의 비용-편익 (BC) 분석연구 의 최종보고서로 제출합니다. 2008. 1 한 국 조 달 연 구 원 원 장 신 삼 철 연구책임자 김정포 부연구위원 연구참여진

More information

15인플레이션01-목차1~9

15인플레이션01-목차1~9 ISSN 87-381 15. 1 15. 1 13 1 1.3 1. 1.8 1.5 1. 1.1 () 1.5 1..1 1.8 1.7 1.3 () 1..7.6...3 (). 1.5 3.6 3.3.9. 6.3 5.5 5.5 5.3.9.9 ().6.3.. 1.6 1. i 6 5 6 5 5 5 3 3 3 3 1 1 1 1-1 -1 13 1 1).6..3.1.3.

More information

<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770>

<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770> 외국인 투자기업의 노사관계 요 약 i ii 외국인 투자기업의 노사관계 요 약 iii iv 외국인 투자기업의 노사관계 요 약 v vi 외국인 투자기업의 노사관계 요 약 vii viii 외국인 투자기업의 노사관계 요 약 ix x 외국인 투자기업의 노사관계 요 약 xi xii 외국인 투자기업의 노사관계 요 약 xiii xiv 외국인 투자기업의 노사관계

More information

2010 6 - iii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20

More information

<28323129BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED20545220323031342D373929202D20C6EDC1FD2035B1B32E687770>

<28323129BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED20545220323031342D373929202D20C6EDC1FD2035B1B32E687770> 기술보고 TR 2014-79 북한 교육정책 동향 분석 및 서지 정보 구축 연구책임자 _ 김 정 원 (한국교육개발원 ) 공동연구자 _ 김 김 한 강 지 은 승 구 수 (한국교육개발원) 주 (한국교육개발원) 대 (한국교육개발원) 섭 (한국교육개발원) 연 구 조 원 _ 이 병 희 (한국교육개발원) 머리말 최근 통일에 대한 논의가 어느 때보다 활발합니다. 그에 따라

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

29-6(본문).pdf

29-6(본문).pdf The Korean Journal of Applied Statistics (2016) 29(6), 1095 1106 DOI: http://dx.doi.org/10.5351/kjas.2016.29.6.1095 Variable selection with quantile regression tree Youngjae Chang a,1 a Department of Information

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

<C0CEC5CDB3DDC1DFB5B6BDC7C5C2C1B6BBE75FC0CEBCE2C5EBC7D5BABB5F303530372E687770>

<C0CEC5CDB3DDC1DFB5B6BDC7C5C2C1B6BBE75FC0CEBCE2C5EBC7D5BABB5F303530372E687770> 조사보고 08-03 2008 인터넷중독 실태조사 연 구 기 관 한국정보문화진흥원 연 구 책 임 자 박효수 (정보화역기능대응단장) 공 동 연 구 원 고영삼 (미디어중독대응팀장) 김정미 (미디어중독대응팀 선임연구원) 자 문 위 원 나은영 (서강대학교 신문방송학과 교수) 배은주 (동명중학교 교사) 이수진 (국민대학교 교육학과 교수) 정 훈 (서울애화학교 교사) i

More information

1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ

More information

exp

exp exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고

More information

데이터 시각화

데이터 시각화 데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II

제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II 공공갈등의 정치화 경로분석 및 대응방안 연구 2014. 12. 국민대통합위원회 제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II 요 약 1 Ⅰ. 서론 6 1. 연구의 배경 및 목적 6 2. 연구의 범위

More information

Chapter 7 – Classification and Regression Trees

Chapter 7 – Classification and Regression Trees 비선형분류모델링 의사결정나무 Decision Tree 교사학습패러다임 Plant 관측 계측 FDC + 계측치 교사학습패러다임 Plant 관측 계측 FDC + 계측치 학습 모델 ƒ Data (x, y) 교사학습패러다임 Plant 관측 계측 FDC χ FDC + 계측치 학습 모델 ƒ Data (x, y) 계측치 ; ˆy 예측 교사학습패러다임 Plant Data

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

이슈분석 2000 Vol.1

이슈분석 2000 Vol.1 i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

More information

가볍게읽는-내지-1-2

가볍게읽는-내지-1-2 I 01. 10 11 12 02. 13 14 15 03. 16 17 18 04. 19 20 21 05. 22 23 24 06. 25 26 27 07. 28 29 08. 30 31 09. 32 33 10. 34 35 36 11. 37 12. 38 13. 39 14. 40 15. 41 16. 42 43 17. 44 45 18. 46 19. 47 48 20. 49

More information

kbs_thesis.hwp

kbs_thesis.hwp - I - - II - - III - - IV - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -

More information

한눈에-아세안 내지-1

한눈에-아세안 내지-1 I 12 I 13 14 I 15 16 I 17 18 II 20 II 21 22 II 23 24 II 25 26 II 27 28 II 29 30 II 31 32 II 33 34 II 35 36 III 38 III 39 40 III 41 42 III 43 44 III 45 46 III 47 48 III 49 50 IV 52 IV 53 54 IV 55 56 IV

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

zb 2) zb3) 나 위 시와 보기의 공통적인 표현 방법이 아닌 것은? 뻐꾹새야 뻐꾹새야 뻐꾹뻐꾹 울어 주면 < 보기> 고개를 넘어서 마을로 뻐꾹새야 뻐꾹새야 뻐꾹뻐꾹 울어 주면 밭을 매는 우리 엄마 허리 허리 덜 아프고 ᄂ밭을 매는 우리 엄마 허리 허리 덜 아프고

zb 2) zb3) 나 위 시와 보기의 공통적인 표현 방법이 아닌 것은? 뻐꾹새야 뻐꾹새야 뻐꾹뻐꾹 울어 주면 < 보기> 고개를 넘어서 마을로 뻐꾹새야 뻐꾹새야 뻐꾹뻐꾹 울어 주면 밭을 매는 우리 엄마 허리 허리 덜 아프고 ᄂ밭을 매는 우리 엄마 허리 허리 덜 아프고 zb1) 중 2014 년 1학기 중간고사 대비 국어 콘텐츠산업 진흥법 시행령 제33조에 의한 표시 1) 제작연월일 : 2014-03-04 2) 제작자 : 교육지대 3) 이 콘텐츠는 콘텐츠산업 진흥법 에 따라 최초 제작일부터 5 년간 보호됩니 콘텐츠산업 진흥법 외에도 저작권법 에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부 를 무단으로 복제하거나

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

<28C3D6C1BEC0CEBCE2BFEB29BCADBFEFBDC3B0F8B0F8C5F5C0DABBE7BEF7B0FCB8AEC7D5B8AEC8ADB9E6BEC82E687770>

<28C3D6C1BEC0CEBCE2BFEB29BCADBFEFBDC3B0F8B0F8C5F5C0DABBE7BEF7B0FCB8AEC7D5B8AEC8ADB9E6BEC82E687770> 서울시 공공투자사업관리 합리화 방안 -투자심사 및 민간투자사업 제도를 중심으로- Improvement on Management of Public Investment Projects in Seoul Metropolitan Government 2009 서울시정개발연구원 SEOUL DEVELOPMENT INSTITUTE 연구진 연구책임 연 구 원 이 세 구 창의시정연구본부

More information

¾DÁ ÖÖ„�Àº¨Ö´ä

¾DÁ ÖÖ„�Àº¨Ö´ä 비선형회귀모형들 이재용 서울대학교통계학과 2015 년 1 월 25 일 다항회귀 I d 차다항회귀모형 y i = β 0 + β 1 x i + β 2 x 2 i +... + β d x d i + ϵ i, ϵ i (0, σ 2 ), i = 1, 2,..., n 특성들 1. 가장간단하게 x 의비선형회귀함수를표현할수있는방법이다. 2. 4 차가넘어가면함수의모양이너무유연해져서,

More information

200220427.hwp

200220427.hwp 碩 士 學 位 論 文 주거환경개선을 위한 주민 요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 指 導 敎 授 申 南 秀 2004 年 2 月 주거환경개선을 위한 주민요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 上 記 者 의 工 學 碩 士 學 位 論 文 을 認 准 함 所 屬 職

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

<3035C0CEB9AEC1A4C3A5BFACB1B8C3D1BCAD2076362E687770>

<3035C0CEB9AEC1A4C3A5BFACB1B8C3D1BCAD2076362E687770> 경 제 인 문 사 회 연 구 회 인문정책연구총서 2005-06 문화산업 분야에서의 인문학 활용현황과 활성화 방안 연구책임자 : 옥성수(한국문화관광정책연구원) 공동연구자 : 심광현(한국예술종합학교) 이상빈(한국외대) 문희경(고려대) 경제 인문사회연구회 이 보고서는 경제 인문사회연구회 2005년 인문정 책연구사업 의 일환으로 수행된 연구과제 중 하나입니다. 이

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

단순 베이즈 분류기

단순 베이즈 분류기 단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

국 립 중앙 도서 관 출 판시 도서 목록 ( C I P ) 청소년 인터넷 이용실태조사 보고서 / 청소년보호위원회 보호기준과 편. -- 서울 : 국무총리 청소년보호위원회, 20 05 p. ; cm. -- (청소년보호 ; 2005-03) 권말부록으로 '설문지' 수록 ISB

국 립 중앙 도서 관 출 판시 도서 목록 ( C I P ) 청소년 인터넷 이용실태조사 보고서 / 청소년보호위원회 보호기준과 편. -- 서울 : 국무총리 청소년보호위원회, 20 05 p. ; cm. -- (청소년보호 ; 2005-03) 권말부록으로 '설문지' 수록 ISB 발간등록번호 11-1150000-000223-01 청소년보호 2005-03 청소년 인터넷 이용 실태조사 보고서 2004년 12월 국무 총리 청소년보호위원회 국 립 중앙 도서 관 출 판시 도서 목록 ( C I P ) 청소년 인터넷 이용실태조사 보고서 / 청소년보호위원회 보호기준과 편. -- 서울 : 국무총리 청소년보호위원회, 20 05 p. ; cm. -- (청소년보호

More information

저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비

저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비 저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는,

More information

볼리비아-내지-01-1

볼리비아-내지-01-1 Estado Plurinacional de Bolivia 볼리비아 개황 2016. 11 P L U R I N A T I O N A L S T A T E O F B O L I V I A / 6 I 7 P L U R I N A T I O N A L S T A T E O F B O L I V I A / 8 I 9 P L U R I N A T I O N A

More information

슬라이드 제목 없음

슬라이드 제목 없음 계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.

More information

i

i 저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information