°Ÿ»4º¨Ö

Size: px
Start display at page:

Download "°Ÿ»4º¨Ö"

Transcription

1 나무모형 이재용 서울대학교통계학과 2015 년 2 월 16 일

2 의사결정나무 I Years < R 3 Hits R Hits < R Years 1 Hitters 자료 1. ISLR 패키지에있는자료 년 322 명의메이저리그선수들에대한관측치. 20 개의변수 3. log(salary) 를 Hits(1986 년안타의개수 ) 와 Years( 메이저리그에서뛴햇수 ) 등을이용해예측하는것이목적.

3 의사결정나무 II 개요 1. 예측변수의공간을분할하여분할된부분에서반응변수의값을예측하는회귀분석혹은분류방법. 2. 의사결정나무 (decision tree) 방법이라고도한다. 3. 예측변수의공간을분할하기때문에해석이쉽다. 4. 예측성능은보통좋지않다. 5. 배깅 (bagging), 랜덤숲 (random forest), 부스팅 (boosting) 과같이다수의나무를합치면종종매우좋은결과를나타낸다. 6. 반응변수 Y 가범주형인가, 연속형인가에따라분류나무, 회귀나무로나뉜다. 용어 1. 종점마디혹은종점노드 (terminal nodes, or leaves) : R 1, R 2, R 3 를말한다. 2. 내부마디혹은내부노드 (internal nodes) : 예측변수의공간이분할된곳으로종점노드가아닌노드를말한다. 3. 가지 (branch) : 노드에서분리되는나무의일부분을가지라한다.

4 의사결정나무의적합 I 의사결정나무의적합의요약 1. 예측변수공간의분할. 예측변수 X 1,..., X p 가취할수있는값들의공간을 R 1,..., R J 로분할한다. 2. 예측값 R j 에속하는예측변수의값에는동일한 ŷ 의값으로예측한다. 예. R j 에속한관측치들의평균을쓴다. 3. 의사결정나무의적합은나무기르기와가지치기두가지단계로이루어진다.

5 의사결정나무의적합 II 나무기르기 : 반복이진분할 (recursive binary splitting) 1. i:x i R 1(j,s) (y i ŷ R1 ) 2 + i:x i R 2(j,s) (y i ŷ R2 ) 2 를최소로하는 j 와 s 를 찾고예측변수의공간을 R 1 (j, s) 와 R 2 (j, s) 로나눈다. R 1 (j, s) = {X : X j < s} R 2 (j, s) = {X : X j s} ŷ R1 = R 1 에속한 y 들의평균 ŷ R2 = R 2 에속한 y 들의평균. 2. 동일한방식으로 R 1 이나 R 2 를분할하여 R 1, R 2, R 3 라고한다. 즉, R 1 내에서분할하여가장 RSS 를최소화하는분할과 R 2 내에서분할하여 RSS 를최소화하는분할을비교하여 RSS 를더작게하는분할을하여분할된공간을 R 1, R 2, R 3 라고한다. 3. R 1,..., R j 가주어져있을때, 각 R i 를두개로분할하는방법들을비교하여 RSS 를최소화하는분할방법을찾고새로분할된영역들을 R 1,..., R j+1 이라한다.

6 의사결정나무의적합 III 4. 분할을계속하여정해진기준이만족될때까지분할한다. 예. 모든 R i 가 5 개이하의관측치를포함한다.

7 의사결정나무의적합 IV 가지치기 : 비용복잡도가지치기 (cost complexity pruning) 모든부분나무를교차검증으로비교하는것은계산량이많으므로다음과같은방법을쓴다. 1. 주어진 α 0 에대해서, T m=1 를최소화하는 T α 를구한다. i:x i R m (y i ŷ Rm ) 2 + α T 2. α 의추정. K 겹교차검증을통해 ˆα 를구한다. T ˆα 이추정량이된다.

8 의사결정나무의적합 V 의사결정나무의적합 Years < 4.5 RBI < 60.5 Putouts < 82 Years < 3.5 Hits < Mean Squared Error Training Cross Validation Test Years < Walks < 43.5 Walks < 52.5 Runs < 47.5 RBI < Years < Tree Size

9 분류나무 I 분류나무의적합방식은회귀나무와동일하다. 다만, 잔차제곱합대신아래의순수성측도중하나를사용한다. 순수성측도 1. 오분류율 E = 1 max ˆp mk k 2. 기니지수 (Gini index) K G = ˆp mk (1 ˆp mk ) k=1 예측치 ŷ Rm = R m 에서가장빈도가높은범주 3. 엔트로피 (cross-entropy) K D = ˆp mk log ˆp mk k=1

10 분류나무 II 장점 1. 사람들에게설명하기쉽다. 2. 의사결정나무는사람들의의사결정과매우흡사하다. 3. 나무는그림으로표현될수있고, 비전문가도해석을쉽게할수있다. 4. 범주형예측변수도쉽게이용이가능하다. 가변수가필요없다. 의사결정나무방법의분산 단점 1. 예측력이떨어진다. 2. 분산이커서추정량이안정적이지않다. 의사결정나무방법은분산이매우크다. 주어진자료를반으로나누어의사결정나무를적합하면두개의매우다른나무가나온다. 회귀모형은그렇지않다.

11 분류나무 R 코드 I library(tree) library(islr) attach(carseats) High=ifelse(Sales<=8,"No","Yes") Carseats=data.frame(Carseats,High) tree.carseats=tree(high~.-sales,carseats) summary(tree.carseats) ## ## Classification tree: ## tree(formula = High ~. - Sales, data = Carseats) ## Variables actually used in tree construction: ## [1] "ShelveLoc" "Price" "Income" "CompPrice" "Population" ## [6] "Advertising" "Age" "US" ## Number of terminal nodes: 27 ## Residual mean deviance: = / 373 ## Misclassification error rate: 0.09 = 36 / 400 Sales 를제거하고나무모형을적합했다. 가지치기이전의나무이다. 이탈도 (deviance) 는 2 n mk log ˆp mk 이다. 여기서, m 의마지막노드의인덱스이고, k 는카테고리인덱스이다.

12 분류나무 R 코드 II plot(tree.carseats) text(tree.carseats,pretty=0) ShelveLoc: Bad,Medium Price < 92.5 CompPrice Population Income < < 57 Advertising < 13.5 < CompPrice < NoYesYesYes Price < 106.5Price < Population < 177 Income < 100 Income < 60.5 ShelveLoc: CompPrice Bad < Price < 109.5Price 147 NoYes NoNo Age CompPrice < 49.5 < No No YesYesNo YesNo No Price < 135 Income < 46 US: No Price < 109 Age < 54.5 YesNo Yes NoYes CompPrice CompPrice < Price < 125 NoYes YesNo YesNo plot 은나무그림만그린다. text 는그림에변수들이름을써넣는다.

13 분류나무 R 코드 III tree.carseats 나무자체를출력한다. set.seed(2) train=sample(1:nrow(carseats), 200) Carseats.test=Carseats[-train,] High.test=High[-train] tree.carseats=tree(high~.-sales,carseats,subset=train) tree.pred=predict(tree.carseats,carseats.test,type="class") table(tree.pred,high.test) ## High.test ## tree.pred No Yes ## No ## Yes (86+57)/200 ## [1] 예측오차를계산한다.

14 분류나무 R 코드 IV set.seed(3) cv.carseats=cv.tree(tree.carseats,fun=prune.misclass) names(cv.carseats) ## [1] "size" "dev" "k" "method" cv.carseats ## $size ## [1] ## ## $dev ## [1] ## ## $k ## [1] -Inf ## [7] ## ## $method ## [1] "misclass" ## ## attr(,"class") ## [1] "prune" "tree.sequence"

15 분류나무 R 코드 V 교차검증오차를계산한다. cv.tree 함수에서 FUN=prune.misclass 는교차검증을할때, 오분류율을기준으로사용한다는뜻이다. 이옵션의디폴트는 deviance 이다. cv.carseats 의 size 는나무의끝마디의개수, k 는비용복잡도식의 α 에대응하는값이다. size 는작아지고 k 는커진다. dev 는교차검증오차로가장작은것이좋은것이다.

16 분류나무 R 코드 VI par(mfrow=c(1,2)) plot(cv.carseats$size,cv.carseats$dev,type="b") plot(cv.carseats$k,cv.carseats$dev,type="b") cv.carseats$dev cv.carseats$dev cv.carseats$size cv.carseats$k

17 분류나무 R 코드 VII par(mfrow=c(1,1)) 교차검증오차를나무의크기와조율파라미터에대해그렸다.

18 분류나무 R 코드 VIII prune.carseats=prune.misclass(tree.carseats,best=9) plot(prune.carseats) text(prune.carseats,pretty=0) ShelveLoc: Bad,Medium Price < 142 Price < ShelveLoc: Bad Price < 86.5 No Advertising < 6.5 Yes Age < 37.5 CompPrice < No Yes No Yes No Yes No 가지치기하여끝마디가 9 개인나무를얻는다.

19 분류나무 R 코드 IX tree.pred=predict(prune.carseats,carseats.test,type="class") table(tree.pred,high.test) ## High.test ## tree.pred No Yes ## No ## Yes 오차율을계산하였다.

20 회귀나무 R 코드 I MASS 패키지에있는 Boston 자료를이용한다. 보스톤내의 506 개동네에관한자료이다. 14 개의변수가있다. medv 는자가소유주택가격의중앙값으로단위는천불이다. library(mass) set.seed(1) train = sample(1:nrow(boston), nrow(boston)/2) tree.boston=tree(medv~.,boston,subset=train) summary(tree.boston) ## ## Regression tree: ## tree(formula = medv ~., data = Boston, subset = train) ## Variables actually used in tree construction: ## [1] "lstat" "rm" "dis" ## Number of terminal nodes: 8 ## Residual mean deviance: = 3099 / 245 ## Distribution of residuals: ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## plot(tree.boston) text(tree.boston,pretty=0)

21 회귀나무 R 코드 II lstat < rm < dis < rm < rm < lstat < lstat < 나무를적합하였다.

22 회귀나무 R 코드 III cv.boston=cv.tree(tree.boston) plot(cv.boston$size,cv.boston$dev,type='b') cv.boston$dev cv.boston$size 교차검증한결과이다.

23 회귀나무 R 코드 IV prune.boston=prune.tree(tree.boston,best=5) plot(prune.boston) text(prune.boston,pretty=0) lstat < rm < rm < lstat < 가지치기한결과이다.

24 회귀나무 R 코드 V yhat=predict(tree.boston,newdata=boston[-train,]) boston.test=boston[-train,"medv"] plot(yhat,boston.test) abline(0,1) boston.test yhat

25 회귀나무 R 코드 VI mean((yhat-boston.test)^2) ## [1] 시험자료에예측한결과이다.

26 배깅 (bagging) I 붓스트랩샘플 X 1, X 2,..., X B 를 X 에서추출한다. 각붓스트랩샘플 X b 에의사결정나무를적합해서 ˆf b 라부른다. 이를평균낸것이배깅추정량이다. 즉, ˆf bag (x) = 1 B B b=1 ˆf b (x) 이다. y 가범주형일때는다수결 (majority vote) 방법을쓴다. 즉, ˆf bag (x) 는 ˆf b (x), b = 1, 2,..., B 중가장많은값을갖는범주를예측값으로한다.

27 배깅 (bagging) II 근거 : Brieman 의설명 D 를주어진자료라하고 X, Y 를미래의관측치라하자. f (X, D) 를 D 로구축한추정량의 X 에서의값, 즉 Ŷ 이라하자. 또한, 평균추정량을 와같이표기하자. 젠센의부등식을이용하면 f A (X ) = E D f (X, D) E (X,Y ) E D (Y f (X, D)) 2 E (X,Y ) (Y f A (X )) 2 가성립하는것을알수있다. 자료 D 의분포를붓스트랩분포로근사를한다고생각하면 f A 는배깅추정량과비슷하다. 따라서, 우변은배깅추정량의예측오차와비슷하다. 좌변은 f 라는추정방법이평균적으로갖는예측오차이다. 여기서평균은주어진자료 D 와미래의자료 (X, Y ) 에대해이루어졌다. 이를해석하면배깅추정량의예측오차는주어진자료로한번구축한추정량 f (X, D) 보다평균적으로좋다고해석할수있다.

28 배깅 (bagging) III 배깅으로얻는것 예측오차의차이는 E (X,Y ) E D (Y f (X, D)) 2 E (X,Y ) (Y f A (X )) 2 = E (X,Y ) Var D f (X, D) 라는것이알려져있다. 이는배깅으로줄일수있는것은추정량의분산이라는것을알수잇다. 분산이작으면배깅으로얻는것이별로없다. 이는배깅을할때, 그루터기 (stump) 를이용하는이유이다.

29 랜덤숲 (random forest) I 랜덤숲도의사결정나무의배깅과매우흡사하다. 다른점은분할이필요할때마다모든 p 개의변수를다고려하는것이아니라 m p 개의변수를랜덤하게골라이변수들에서만분할을한다. m = p 이면배깅과같다. 직관적근거 주어진변수중한개의변수가매우중요하고나머지변수들은중간정도의중요성을가진다고하자. 배깅을하면모든나무들이매우중요한변수부터분할을하게될것이다. 그러면나무들이서로비슷해지고나무를이용한추정치사이에상관계수들이커질것이다. 그런데 m개의변수만고려한다면매우중요한변수로분할을시작하지않을나무가 p m 의확률이나될것이다. 이는붓스트랩나무들사이의상관성을 p 줄여서평균의분산을줄여준다.

30 배깅과랜덤숲 R 코드 I 배깅은랜덤숲의일종이다. randomforest 패키지를이용해서적합할수있다. library(randomforest) ## randomforest ## Type rfnews() to see new features/changes/bug fixes. set.seed(1) bag.boston=randomforest(medv~.,data=boston, subset=train, mtry=13, importance=true) bag.boston ## ## Call: ## randomforest(formula = medv ~., data = Boston, mtry = 13, importance = TRUE, subs ## Type of random forest: regression ## Number of trees: 500 ## No. of variables tried at each split: 13 ## ## Mean of squared residuals: ## % Var explained: mtry 옵션은매반복에서 13 개의설명변수가고려되어야한다는뜻이다. 다시말하면배깅을하라는뜻이다. importance 는변수의중요성을평가하라는뜻이다.

31 배깅과랜덤숲 R 코드 II yhat.bag = predict(bag.boston,newdata=boston[-train,]) plot(yhat.bag, boston.test) abline(0,1) boston.test yhat.bag

32 배깅과랜덤숲 R 코드 III mean((yhat.bag-boston.test)^2) ## [1] 시험오차를계산하였다. bag.boston=randomforest(medv~.,data=boston,subset=train,mtry=13,ntree=25) yhat.bag = predict(bag.boston,newdata=boston[-train,]) mean((yhat.bag-boston.test)^2) ## [1] ntree 옵션은계산하는나무의개수를정한것이다. set.seed(1) rf.boston=randomforest(medv~.,data=boston,subset=train,mtry=6,importance=true) yhat.rf = predict(rf.boston,newdata=boston[-train,]) mean((yhat.rf-boston.test)^2) ## [1] 나무숲을구했다. mtry=6 를썼다. 디폴트는회귀나무의경우는 p/3, 분류나무의경우는 p 이다.

33 배깅과랜덤숲 R 코드 IV importance(rf.boston) ## %IncMSE IncNodePurity ## crim ## zn ## indus ## chas ## nox ## rm ## age ## dis ## rad ## tax ## ptratio ## black ## lstat 변수의중요성을계산했다. 첫번째열은주어진변수를제거했을때, 나무모형의평균제곱오차의변화율이고, 두번째열은주어진변수를제거했을때노드의순수도 ( 분류나무의경우는이탈도, 회귀나무의경우는잔차제곱합 ) 의변화율이다. varimpplot(rf.boston)

34 배깅과랜덤숲 R 코드 V rf.boston rm lstat nox dis crim ptratio age indus tax black rad chas zn lstat rm dis crim indus nox ptratio age tax black rad chas zn %IncMSE IncNodePurity 변수의중요도를그림으로그렸다.

35 부스팅 (boosting) I 알고리듬 1. ˆf (x) 0, r i = y i, i = 1, 2,..., n 이라놓는다. 2. b = 1, 2,..., B 2.1 잔차 r 을반응변수로하여 (X, r) 에종료노드가 d + 1 개인나무를적합하여 ˆf b 라한다. 2.2 ˆf ˆf (x) + λˆf b (x) 2.3 r i r i λˆf b (x i ) 3. 최종추정량 ˆf (x) = B λˆf b (x). b=1

36 부스팅 (boosting) II 근거 부스팅방법은느린예측모형 (slow learner) 라고하는데한꺼번에 ˆf 을발견하는것이아니라조금씩잔차를늘려가며 ˆf 을개선시켜나가는것이다. 조율파라미터 λ 의선택 교차검증을통해결정한다. 참고 1. B 가커지면배깅과다르게과적합할수있다. 과적합이매우느리게나타난다. 교차검증을통해 B 를결정한다. B 가커질수록모형공간이커진다. 즉유연해진다. 2. λ 를보통 0.01 이나 을쓴다. λ 가매우작으면 B 가커져야한다. 3. d = 1 인나무, 즉 1 번분할한나무를많이쓴다. 1 번분할한나무를그루터기 (stump) 라고한다.

37 부스팅 (boosting) III Test Classification Error Boosting: depth=1 Boosting: depth=2 RandomForest: m= p Number of Trees

38 부스팅 (boosting) IV 15 개범주 cancer gene expression 자료의예. boosting with d = 1 이가장좋다. 아다부스트 (adaboost) : 분류문제에서부스팅 여기서반응변수의값은 1, 1 를갖는다고하자. 1. 가중치 w i = 1, i = 1, 2,... 라초기화한다. n 2. b = 1, 2,..., B. 2.1 가중치 (w i ) 를이용하여분류기 f b 를적합한다. 2.2 오차를다음과같이계산한다. n i=1 err b := w ii (y i f b (x i )) n i=1 w i 2.3 c b := log 1 err b err b 로놓는다. 2.4 가중치를 w i = w i e c bi (y i f b (x i )) 로업데이트한다.

39 부스팅 R 코드 I library(gbm) ## Loading required package: survival ## Loading required package: lattice ## Loading required package: splines ## Loading required package: parallel ## Loaded gbm set.seed(1) boost.boston=gbm(medv~.,data=boston[train,], distribution="gaussian", n.trees=5000, interac summary(boost.boston)

40 부스팅 R 코드 II zn indus ptratio rm Relative influence

41 부스팅 R 코드 III ## var rel.inf ## lstat lstat ## rm rm ## dis dis ## crim crim ## nox nox ## ptratio ptratio ## black black ## age age ## tax tax ## indus indus ## chas chas ## rad rad ## zn zn 회귀나무이어서 distribution= gaussian 를썼다. 분류나무인경우는 bernoulli 를쓴다. n.tree=5000 은 B = 5000 개의반복을한다는뜻이다. interaction.depth=4, 는각반복에서더해지는나무의깊이를 4 로제한한다는뜻이다. summary 결과의 rel.inf 는상대적영향력 (relative influence) 를말한다. par(mfrow=c(1,2)) plot(boost.boston,i="rm") plot(boost.boston,i="lstat")

42 부스팅 R 코드 IV f(rm) f(lstat) rm lstat 변수들의주변효과 (marginal effect) 를그린다. yhat.boost=predict(boost.boston,newdata=boston[-train,],n.trees=5000) mean((yhat.boost-boston.test)^2) ## [1]

43 부스팅 R 코드 V 시험오차를계산한다. boost.boston=gbm(medv~.,data=boston[train,],distribution="gaussian",n.trees=5000,interactio shrinkage 옵션은부스팅알고리듬에서조율파라미터 λ 의값을정한다. 디폴트는 이다. 여기서는 λ = 0.2 를썼다. yhat.boost=predict(boost.boston,newdata=boston[-train,],n.trees=5000) mean((yhat.boost-boston.test)^2) ## [1]

44 참고문헌 1. 아래의책에서제공되는그림을써서슬라이드를만들었다. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: springer. 2. 배깅에관한설명은김진석교수 ( 동국대 ) 의배깅에관한강의노트를참고하였다.

Tree 기반의 방법

Tree 기반의 방법 Tree 기반의방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 1 / 25 학습내용 의사결정나무 (decision tree) 회귀나무 (regresion tree) 분류나무 (classification tree) 비교앙상블알고리즘 (ensemble algorithm) 배깅 (bagging) 랜덤포레스트 (random

More information

00-1표지

00-1표지 summary _I II_ summary _III 1 1 2 2 5 5 5 8 10 12 13 14 18 24 28 29 29 33 41 45 45 45 45 47 IV_ contents 48 48 48 49 50 51 52 55 60 60 61 62 63 63 64 64 65 65 65 69 69 69 74 76 76 77 78 _V 78 79 79 81

More information

세계 비지니스 정보

세계 비지니스 정보 - i - ii - iii - iv - v - vi - vii - viii - ix - 1 - 2 - 3 - - - - - - - - - - 4 - - - - - - 5 - - - - - - - - - - - 6 - - - - - - - - - 7 - - - - 8 - 9 - 10 - - - - - - - - - - - - 11 - - - 12 - 13 -

More information

- i - - ii - - i - - ii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - - x - - xi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 -

More information

CONTENTS.HWP

CONTENTS.HWP i ii iii iv v vi vii viii ix x xi - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -

More information

INDUS-8.HWP

INDUS-8.HWP i iii iv v vi vii viii ix x xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

CONTENTS C U B A I C U B A 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 9 C U B A 10 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 11 C U B

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅳ. 의사결정나무와 MARS 1. 실손의료보험자료를활용한 CART 분석 가. CART(Classification and Regression Tree) CART는데이터를가장잘분류해주는도구라고할수있는데데이터를잘분류해주는분리변수를선택하고분리지점을정해준다. 그리고가지치기를통해서분류의정도를결정할수있다. 데이터마이닝방법론들중가장널리쓰이는방법론으로반응변수가범주형또는연속형일때가능한의사결정나무의한알고리즘이다.

More information

경제통상 내지.PS

경제통상 내지.PS CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V

More information

°æÁ¦Åë»ó³»Áö.PDF

°æÁ¦Åë»ó³»Áö.PDF CONTENTS I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 II 38 39 40 41 42 43 III 46 47 48 49 50 51 52 53 54 55 56 57 58 59 IV 62 63 64 65 66 67 68 69 V

More information

우루과이 내지-1

우루과이 내지-1 U R U G U A Y U r u g u a y 1. 2 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 3 U r u g u a y 2. 4 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 5 U r u g u a

More information

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 201 3. 마한문화공원 명소화 사업 219 4. 기찬랜드 명소화 사업 240

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 201 3. 마한문화공원 명소화 사업 219 4. 기찬랜드 명소화 사업 240 목 차 제1장 과업의 개요 1. 과업의 배경 및 목적 3 2. 과업의 성격 5 3. 과업의 범위 6 4. 과업수행체계 7 제2장 지역현황분석 1. 지역 일반현황 분석 11 2. 관광환경 분석 25 3. 이미지조사 분석 45 4. 이해관계자 의견조사 분석 54 제3장 사업환경분석 1. 국내 외 관광여건분석 69 2. 관련계획 및 법규 검토 78 3. 국내 외

More information

[96_RE11]LMOs(......).HWP

[96_RE11]LMOs(......).HWP - i - - ii - - iii - - iv - - v - - vi - - vii - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅

More information

통계적 학습(statistical learning)

통계적 학습(statistical learning) 통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과

More information

i ii iii iv v vi vii viii 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XXXXXXXX 22 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

À̶õ°³È²³»Áö.PDF

À̶õ°³È²³»Áö.PDF Islamic Republic of Iran I I S L A M I C R E P U B L I C O F I R A N 10 Part I 11 I S L A M I C R E P U B L I C O F I R A N 12 Part I 13 I S L A M I C R E P U B L I C O F I R A N 14 II I S L A M I C R

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

Overview Decision Tree Director of TEAMLAB Sungchul Choi

Overview Decision Tree Director of TEAMLAB Sungchul Choi Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based

More information

An Effective Sentence-Extraction Technique Using Contextual Information and Statistical Approaches for Text Summarization

An Effective Sentence-Extraction Technique Using Contextual Information and  Statistical Approaches for Text Summarization 한국 BI 데이터마이닝학회 2010 추계학술대회 Random Forests 기법을사용한 저수율반도체웨이퍼검출및혐의설비탐색 고태훈, 김동일, 박은정, 조성준 * Data Mining Lab., Seoul National University, hooni915@snu.ac.kr Introduction 반도체웨이퍼의수율 반도체공정과웨이퍼의수율 반도체공정은수백개의프로세스로이루어져있음

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기 최종보고서 폐기물관리 규제개선방안 연구 ( 업계 건의사항 및 질의사례 중심) 2006. 9 환 경 부 제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장

More information

통신1310_01-도비라및목차1~9

통신1310_01-도비라및목차1~9 ISSN 5-693 13. 1 13. 1 3 1 3 1 i .75 1.5.75 1. 1..9.9 7.5 ) 7.5 ) 3. 1.5 1.5 9. ) 1. ) ii 8 6 8 6 - - 3 1 1 11 1 9 8 7 iii 6 5 6 5 3 3 1 8 1 8 1 1 6 6-1 -1 - - iv . 1.5 1.. 1.5 1..5. -.5.5. -.5

More information

*통신1802_01-도비라및목차1~11

*통신1802_01-도비라및목차1~11 ISSN 25-2693 218. 2 218. 2 214 215 216 217 2.6 2.9 1.5 1.8 1.2 3.1 3.2 1.3 2.1 1.8 2.6 2.5 2.8 2.4.4 1.4.9 1.4 1.5 2.9 2.5 7.3 6.9 6.7 6.8 6.9 6.9 6.8 2.8 14 2.6 13 2.4 12 2.2 2. 11 1.8 1.6 1.4

More information

National Food & Nutrition Statistics 2011: based on 2008~2011 Korea National Health and Nutrition Examination Survey (Ⅱ) i ii iii iv v vi vii viii ix (N=33,745, 단위 : g) (N=33,745, 단위 : g) (N=33,745,

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770> 제 출 문 보건복지부장관 귀 하 이 보고서를 정신질환자의 편견 해소 및 인식 개선을 위한 대상별 인권 교육프로그램 개발 연구의 결과보고서로 제출합니다 주관연구기관명 서울여자간호대학 산학협력단 연 구 책 임 자 김 경 희 연 구 원 김 계 하 문 용 훈 염 형 국 오 영 아 윤 희 상 이 명 수 홍 선 미 연 구 보 조 원 임 주 리 보 조 원 이 난 희 요

More information

°æÁ¦Àü¸Á-µ¼º¸.PDF

°æÁ¦Àü¸Á-µ¼º¸.PDF www.keri.org i ii iii iv v vi vii viii ix x xi xii xiii xiv xv 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 48 49 50 51 52 53

More information

표1

표1 i ii Korean System of National Accounts iii iv Korean System of National Accounts v vi Korean System of National Accounts vii viii Korean System of National Accounts 3 4 KOREAN SYSTEM OF NATIONAL ACCOUNTS

More information

israel-내지-1-4

israel-내지-1-4 israel-내지-1-4 1904.1.1 12:49 AM 페이지1 mac2 2015. 11 Contents S T A T E O F I S R A E L 8 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII 9 S T A T E O F I S R A E L 10 Part I Part

More information

¾DÁ ÖÖ„�Àº¨Ö´ä

¾DÁ ÖÖ„�Àº¨Ö´ä 비선형회귀모형들 이재용 서울대학교통계학과 2015 년 1 월 25 일 다항회귀 I d 차다항회귀모형 y i = β 0 + β 1 x i + β 2 x 2 i +... + β d x d i + ϵ i, ϵ i (0, σ 2 ), i = 1, 2,..., n 특성들 1. 가장간단하게 x 의비선형회귀함수를표현할수있는방법이다. 2. 4 차가넘어가면함수의모양이너무유연해져서,

More information

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위 01 노동법 법원으로서의 노동관행 15 - 대판 2002.4.23, 2000다50701 [퇴직금] (한국전력공사 사례) 02 노동법과 신의성실의 원칙 17 - 대판 1994.9.30, 94다9092 [고용관계존재확인등] (대한조선공사 사례) 03 퇴직금 청구권 사전 포기 약정의 효력 19 - 대판 1998.3.27, 97다49732 [퇴직금] (아시아나 항공

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 2 3 4 5 6 ln ln 7 8 9 [ 그림 1] 해상풍력단지건설로드맵 10 11 12 13 < 표 1> 회귀분석결과 14 < 표 2> 미래현금흐름추정결과

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

*통신1604_01-도비라및목차1~12

*통신1604_01-도비라및목차1~12 ISSN 25-2693 216. 4 216. 4 213 214 215 1.5 2.4 2.4.6 3.9 2. 1.4 -.3.9 1.6 2.3 1.6 1.2 1.3 1.4..5 4.6-1.4 1.4-1.1 7.7 7.3 6.9 7. 7. 6.9 6.8 14 13 12 11 1 9 8 7 5 4 3 2 1 i 4 4 3 3 2. 1.5 1. 2.

More information

Chapter 7 – Classification and Regression Trees

Chapter 7 – Classification and Regression Trees 비선형분류모델링 의사결정나무 Decision Tree 교사학습패러다임 Plant 관측 계측 FDC + 계측치 교사학습패러다임 Plant 관측 계측 FDC + 계측치 학습 모델 ƒ Data (x, y) 교사학습패러다임 Plant 관측 계측 FDC χ FDC + 계측치 학습 모델 ƒ Data (x, y) 계측치 ; ˆy 예측 교사학습패러다임 Plant Data

More information

*통신1510_01-도비라및목차1~12

*통신1510_01-도비라및목차1~12 ISSN 5-693 15. 11 15. 11 1 13 1 15. 1.5..3.1.6 3.9 -.8 -.3.9 1. 1.6.1 1. 1.7 1.6 -.1-1.1 1.3.5-1. 7.7 7.7 7.3 7. 7. 7. 7. 8 6 8 6 i 3 1-1 3 1-1 5 5 3 3 1 1 ii 1 8 5 3.5 3.5 3. 3..5.5.. 1.5 1.5

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

미얀-내지-8차

미얀-내지-8차 미얀-내지-8차 2014.10.29 12:44 AM 페이지1 mac2 Contents I The Republic of the Union of Myanmar 12 Part I Part II Part III Part IV Part V Part VI Part VII Part VIII Part IX 13 The Republic of the Union

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

Overview Ensemble Model Director of TEAMLAB Sungchul Choi

Overview Ensemble Model Director of TEAMLAB Sungchul Choi Overview Ensemble Model Director of TEAMLAB Sungchul Choi Ensemble Model - 하나의모델이아니라여러개모델의투표로 Y값예측 - Regression 문제에서는평균값을예측함 - meta-classifier - stacking (meta-ensemble) 등으로발전 - 학습은오래걸리나성능이매우좋음 - Kaggle

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63>

<4D6963726F736F667420576F7264202D20B4EBBFF5203230303520BFB5BEF7BAB8B0EDBCAD2E646F63> 第 46 期 定 期 柱 主 總 會 日 時 : 2006. 5. 26 午 前 11 時 場 所 : 大 熊 本 社 講 堂 株 式 會 社 大 熊 회 순 Ⅰ. 개회선언 Ⅱ. 국민의례 Ⅲ. 출석주주 및 출석주식수 보고 Ⅳ. 의장인사 Ⅴ. 회의의 목적사항 1. 보고사항 감사의 감사보고 영업보고 외부감사인 선임 보고 2. 의결사항 제1호 의안 : 제4기 대차대조표, 손익계산서

More information

2007KIP연2-05 연구용역보고서 중소기업 및 지방기업에 대한 정부조달 지원정책의 비용-편익(BC)분석 연구 2008. 1 제 출 문 조달청장 귀하 본 보고서를 중소기업 및 지방기업의 정부조달 지원정책의 비용-편익 (BC) 분석연구 의 최종보고서로 제출합니다. 2008. 1 한 국 조 달 연 구 원 원 장 신 삼 철 연구책임자 김정포 부연구위원 연구참여진

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

2 0 1 1 4 2011 1 2 Part I. 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 Part II. 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

세계 비지니스 정보

세계 비지니스 정보 1.... 1 2. /2005... 3 3.... 6 4.... 8 5. /... 9 6....12 7. /...17 8....23 9. /...26 10....28 11....29 12....30 13. /...31 14....32 15....33 16. /...35 17....39 - i 18....43 19....46 20....51 21....53 22....56

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong* Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes th

A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong* Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes th A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong*Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes that the factors which influence the apartment price are

More information

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대

2 ㆍ 大 韓 政 治 學 會 報 ( 第 20輯 1 號 ) 도에서는 고려 말에 주자학을 받아들인 사대부들을 중심으로 보급되기 시작하였고, 이후 조선시대에 들어와서는 국가적인 정책을 통해 민간에까지 보급되면서 주자 성리학의 심 화에 커다란 역할을 담당하였다. 1) 조선시대 대한정치학회보 20집 1호 2012년 6월: 77~99 세종과 소학( 小 學 ) : 민풍( 民 風 ) 과 사풍( 士 風 ) 의 교화* 1) 박홍규 ㆍ송재혁 고려대학교 요 약 2 기존 소학 에 대한 연구들은 주로 중종( 中 宗 ) 시대 사림( 士 林 ) 과의 연관선상에서 소학 의 의미를 모색하고 있다. 그러나 소학 에 대한 존숭 의식은 이미 조선 전기 관학파들도

More information

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600 균형이진탐색트리 -VL Tree delson, Velskii, Landis에의해 1962년에제안됨 VL trees are balanced n VL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at

More information

단순 베이즈 분류기

단순 베이즈 분류기 단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =

More information

<BAB8C5EBB1B3BACEBCBC20BBEAC1A4B9E6BDC4BFA120B0FCC7D120BFACB1B82E687770>

<BAB8C5EBB1B3BACEBCBC20BBEAC1A4B9E6BDC4BFA120B0FCC7D120BFACB1B82E687770> 요 약 요 약 연구배경 및 목적 박근혜 정부는 지방재정 개혁의 틀 안에서 지방교부세의 대폭적인 재편을 추진하고 있다. 이와 같은 정책적 변화는 복지확대로 인하여 재정지출이 급증하는 반면 조세수입은 정체를 면치 못하고 있는 상황에 처해 있는 지방자치단체들에게 큰 충격으로 작용할 수 있다. 이와 더불어 복지수요의 급증은 지자체별로 상이한 여건으로 인하여 향후 지역

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

서론 1.1 연구배경및목적 Table 1. Cancer mortality Stomach cancer no. of deaths 11,701 11,190 10,935 10,716 10,563 10,312 m

서론 1.1 연구배경및목적 Table 1. Cancer mortality Stomach cancer no. of deaths 11,701 11,190 10,935 10,716 10,563 10,312 m 342 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 139152 139 이혜선 1), 명성민 2), 김도영 3), 한광협 3), 송기준 1) 1) 2) 3) A study on the updating of prediction

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1

More information

200220427.hwp

200220427.hwp 碩 士 學 位 論 文 주거환경개선을 위한 주민 요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 指 導 敎 授 申 南 秀 2004 年 2 月 주거환경개선을 위한 주민요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 上 記 者 의 工 學 碩 士 學 位 論 文 을 認 准 함 所 屬 職

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) 전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) 전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II) - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - -

More information

Valuation (DCF Multiple ) VIII Case Study 3 1 NOA, IBD ( 1 ) 2 ( 2 ) 3 (DCF 3 ) 4 WACC (DCF 4 ) 5 EBITDA (Multiple 3 ) 6 Multiple (Multiple 4 ) 7 ( 5

Valuation (DCF Multiple ) VIII Case Study 3 1 NOA, IBD ( 1 ) 2 ( 2 ) 3 (DCF 3 ) 4 WACC (DCF 4 ) 5 EBITDA (Multiple 3 ) 6 Multiple (Multiple 4 ) 7 ( 5 Valuation (DCF Multiple ) Valuation (DCF Multiple ) I Valuation 1 Valuation 2 valuation II VBM Valuation 1 VBM 2 M&A III 1 2 IV 1 NOA, IBD ( 1 ) 2 ( 2 ) 3 (DCF 3 ) 4 WACC (DCF 4 ) 5 EBITDA (Multiple 3

More information

<322EBCF8C8AF28BFACBDC0B9AEC1A6292E687770>

<322EBCF8C8AF28BFACBDC0B9AEC1A6292E687770> 연습문제해답 5 4 3 2 1 0 함수의반환값 =15 5 4 3 2 1 0 함수의반환값 =95 10 7 4 1-2 함수의반환값 =3 1 2 3 4 5 연습문제해답 1. C 언어에서의배열에대하여다음중맞는것은? (1) 3차원이상의배열은불가능하다. (2) 배열의이름은포인터와같은역할을한다. (3) 배열의인덱스는 1에서부터시작한다. (4) 선언한다음, 실행도중에배열의크기를변경하는것이가능하다.

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770>

<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770> 외국인 투자기업의 노사관계 요 약 i ii 외국인 투자기업의 노사관계 요 약 iii iv 외국인 투자기업의 노사관계 요 약 v vi 외국인 투자기업의 노사관계 요 약 vii viii 외국인 투자기업의 노사관계 요 약 ix x 외국인 투자기업의 노사관계 요 약 xi xii 외국인 투자기업의 노사관계 요 약 xiii xiv 외국인 투자기업의 노사관계

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

<28323129BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED20545220323031342D373929202D20C6EDC1FD2035B1B32E687770>

<28323129BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED20545220323031342D373929202D20C6EDC1FD2035B1B32E687770> 기술보고 TR 2014-79 북한 교육정책 동향 분석 및 서지 정보 구축 연구책임자 _ 김 정 원 (한국교육개발원 ) 공동연구자 _ 김 김 한 강 지 은 승 구 수 (한국교육개발원) 주 (한국교육개발원) 대 (한국교육개발원) 섭 (한국교육개발원) 연 구 조 원 _ 이 병 희 (한국교육개발원) 머리말 최근 통일에 대한 논의가 어느 때보다 활발합니다. 그에 따라

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

<4D F736F F F696E74202D FC0E5B4DCB1E220BCF6BFE4BFB9C3F8205BC8A3C8AF20B8F0B5E55D>

<4D F736F F F696E74202D FC0E5B4DCB1E220BCF6BFE4BFB9C3F8205BC8A3C8AF20B8F0B5E55D> 생산관리론 장단기수요예측 서강대학교경영학부 경영전문대학원교수서창적 -1-1 학습내용 수요예측기법 예측오차의측정과통제 수요예측기법의선정 수요예측의의의 수요예측 (demand forecasting) 이란? 기업의제품과서비스에대한수요의양과시기를예측하는것 수요예측이이루어지면수요를충족시키기위해필요한자원에대한예측이이루어지는데이는구매되는부품과원자재뿐만아니라기업의설비, 기계,

More information

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770> 부동산학연구 제16집 제1호, 2010. 3, pp. 117~130 Journal of the Korea Real Estate Analysts Association Vol.16, No.1, 2010. 3, pp. 117~130 비선형 Mankiw-Weil 주택수요 모형 - 수도권 지역을 대상으로 - Non-Linear Mankiw-Weil Model on Housing

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

이슈분석 2000 Vol.1

이슈분석 2000 Vol.1 i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

More information

가볍게읽는-내지-1-2

가볍게읽는-내지-1-2 I 01. 10 11 12 02. 13 14 15 03. 16 17 18 04. 19 20 21 05. 22 23 24 06. 25 26 27 07. 28 29 08. 30 31 09. 32 33 10. 34 35 36 11. 37 12. 38 13. 39 14. 40 15. 41 16. 42 43 17. 44 45 18. 46 19. 47 48 20. 49

More information

kbs_thesis.hwp

kbs_thesis.hwp - I - - II - - III - - IV - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -

More information

한눈에-아세안 내지-1

한눈에-아세안 내지-1 I 12 I 13 14 I 15 16 I 17 18 II 20 II 21 22 II 23 24 II 25 26 II 27 28 II 29 30 II 31 32 II 33 34 II 35 36 III 38 III 39 40 III 41 42 III 43 44 III 45 46 III 47 48 III 49 50 IV 52 IV 53 54 IV 55 56 IV

More information

<C7FCBBE7B9FDC0C720BDC5B5BFC7E22832BFF9C8A3292DC3D6C1BE2D312E687770>

<C7FCBBE7B9FDC0C720BDC5B5BFC7E22832BFF9C8A3292DC3D6C1BE2D312E687770> 2010. 2. 2010 2 통권 제24호 연구논문 우리 헌법상 검사의 영장신청권 조항의 의의 안미영/ 1 미국 대통령 선거제도와 선거사범 처벌규정 송진섭/46 오스트리아 개정 형사소송법상의 검사의 지위와 수사절차에 관한 연구 이정봉/116 법학교수 검찰실무연구회 우수논문 재외선거범죄에 대한 법적 쟁점 이효원/313 성범죄자처우의 새로운 동향과 그 과제 -

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

1997 - - A Study on Forest Policy in Korea by Imperial Japan - With an Emphasis on the National Forest Policy - 1997. 5.

1997 - - A Study on Forest Policy in Korea by Imperial Japan - With an Emphasis on the National Forest Policy - 1997. 5. - - A S tudy on the Chos un Fo re s t Policy unde r the Rule of Japanese Imperialism - W ith an E m phas is on the N ational F ores t Policy - 1997 8 1997 - - A Study on Forest Policy in Korea by Imperial

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II

제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II 공공갈등의 정치화 경로분석 및 대응방안 연구 2014. 12. 국민대통합위원회 제 출 문 국민대통합위원회 위원장 귀하 이 보고서를 연구용역사업 공공갈등의 정치화 경로분석 및 대응방안 연구 과제의 최종보고서로 제출합니다. 2014년 12월 단국대학교 산학협력단장 박 성 완 II 요 약 1 Ⅰ. 서론 6 1. 연구의 배경 및 목적 6 2. 연구의 범위

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information