<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

Size: px
Start display at page:

Download "<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>"

Transcription

1 Ⅳ. 의사결정나무와 MARS 1. 실손의료보험자료를활용한 CART 분석 가. CART(Classification and Regression Tree) CART는데이터를가장잘분류해주는도구라고할수있는데데이터를잘분류해주는분리변수를선택하고분리지점을정해준다. 그리고가지치기를통해서분류의정도를결정할수있다. 데이터마이닝방법론들중가장널리쓰이는방법론으로반응변수가범주형또는연속형일때가능한의사결정나무의한알고리즘이다. 이는의사결정나무가다지분류가아닌두갈래로만나누어져예측력은낮지만해석하기가용이한장점이있다. 이번절에서는실손의료보험자료를활용한 CART 분석의예제를먼저보여주고방법론적인내용은다음절에서소개한다. 예제로사용한데이터의독립변수는성별, 연령, 상해급수, 직전연도발생건수이고종속변수는사고건수이다. 다음절에서는종속변수를심도인사고금액으로하여분석한다. 1) 빈도분석 아래의그림은빈도의사결정나무로각노드마다의예측값과전체의몇퍼센트가해당노드에있는지에대한정보를담고있다. 가장상위노드에서직전연도발생건수 0.5건을기준으로가지가분류된다. 0.25인첫번째노드에서직전연도발생건수가 0.5 이하인집단의예측값은 0.11로전체의 81% 를차지한다. 발생건수가 0.5 이상인노드의예측값은 0.84건으로전체의 19% 이다. 더하여직전연도 0.5건이상으로분류된노드는직전연도로다시구분된다.

2 32 연구보고서 의사결정나무는변수들중가장설명력이있는변수에최초로분리가일어난다. 이 러한점으로미루어보아아래의사결정나무는직전연도발생건수가중요한변수라는 것을알수있다. < 그림 Ⅳ-1> 빈도의사결정나무 cp=0.01 아래표는뿌리마디부터끝마디까지나무가성장하면서달라지는지표들을요약한것이다. 첫번째행에있는 cp(complexity parameter) 는나무의크기를통제할때쓰인다. 만약 cp가작으면, 끝마디의숫자가많아지는것에대한벌점이작으므로나무의크기가커진다. < 그림 Ⅳ-1> 과 < 그림 Ⅳ-2> 를비교하면 cp=0.005(< 그림 Ⅳ-2>) 일때의나무의사이즈가 cp=0.01(< 그림 Ⅳ-1>) 일때보다큰것을볼수있다. cp에관한더자세한내용은다음장에서서술한다. 두번째행에있는나뭇가지가분리됨에따라 rel.error가감소한다. 여기서 rel.error는 R-squared와관련된지표이다. < 표 Ⅳ-1> 빈도의사결정나무요약 구분 CP nsplit rel. error xerror xstd

3 의사결정나무와 MARS 33 < 그림 Ⅳ-2> 는 cp가 0.005로 < 그림 Ⅳ-1> 의의사결정나무에비해세분화되어있는것을볼수있다. 설명변수분류의순서를보면상위에서하위항목으로갈수록발생건수, 성별, 연령순이다. 이는 GLM 분석결과의 p-value 값이작은순과같다. GLM에서는 p-value 값이작을수록유의미한변수라고해석한다. < 그림 Ⅳ-2> 빈도의사결정나무 cp=0.005 처음의세번분리는 cp 가 0.01(< 표 Ⅳ-1>) 일때와같다. < 표 Ⅳ-2> 빈도의사결정나무요약 cp=0.005 구분 CP nsplit rel. error xerror xstd

4 34 연구보고서 ) 심도분석 심도의사결정나무모형은빈도모형보다다양한설명변수가채택되었지만여전히직전연도발생건수가최초분리변수로서설명력이높은변수라는것을보여준다. 위모델의데이터는빈도데이터에서지급액이 0 이상인것들을조건으로한후사용한다. 좌측으로분리되면분리기준에수긍하는것이고우측으로분리되면수긍하지않는다는것을의미한다. < 표 Ⅳ-3> 심도의사결정나무 구분 CP nsplit rel. error xerror xstd < 그림 Ⅳ-3> 심도의사결정나무

5 의사결정나무와 MARS CART(Classification and Regression Trees) 2) 의사결정나무는쉽게말하면의사결정규칙 (Decision rule) 으로이루어진나무모양을그리는것이라고할수있다. 의사결정나무는과거에수집된데이터들을분석하고, 이데이터들사이에존재하는패턴들의특성을속성의조합으로나타내는분류모형이다. 이는새로운데이터에대해분류 (Classification) 하거나해당범주의값을예측하는목적으로쓰인다. 모형화 (Predictive Modeling) 자체가분류및예측모형으로도사용될수있다. 또한탐색 (Exploratory data analysis) 으로모형화에앞서, 이상치 (Outlier) 의검색, 변수의선택, 교호작용파악등에사용된다. 종속변수의유형이범주형, 연속형인지에따라각각분류나무 (Classification Tree) 와회귀나무 (Regression Tree) 로분류한다. CART의장점으로는모형을해석하고이해하기쉽고입력변수를선정하는데에도매우유용하다는점이다. 또한극단치 (Outlier) 에덜민감 (Robust) 하다. 그리고비모수적인방법이어서분포에대한가정이필요없고비선형적인방법이다. 의사결정나무 (Decision Trees, 이하 DT) 는주어진입력값을이용하여출력값을예측하는모형이며그종류로는분류나무 (Classification Trees) 와회귀나무 (Regression Trees) 모형이있다. 의사결정나무는예측한결과를나무형태의그래프로나타낼수있다는사실에기인하여이름이붙여졌다. 이장에서는분류및회귀의사결정나무의구조, 형성과정, 분리기준으로사용되는여러가지불순도의측도, 여러가지알고리즘에대하여자세히서술한다. 가. 의사결정나무의구조 의사결정나무 (DT) 의구조는크게노드 (Node), 가지 (Branch) 그리고깊이 (Depth) 로 구성되어있다. 가지 (Branch) 라는것은하나의마디부터끝마디까지하나로연결된마 디들을가리키고깊이 (Depth) 는가지를이루고있는마디의개수를말한다. 각 Node 2) 의사결정나무방법론은박창이 김용대 김진석 송종우 최호식 (2011) 을참고하여요약및정리함

6 36 연구보고서 마다불리는이름이있다. 뿌리마디 (Root Node) 는 DT가시작되는마디로전체데이터를구성한다. 자식마디 (Child Node) 는하나의마디로부터분리되어나간마디이다. 부모마디 (Parent Node) 는자식마디의상위마디를일컫는다. 끝마디 (Terminal Node) 는말그대로끝마디로더이상의분할이이루어지지않는마디를말한다. 중간마디 (Internal Node) 는나무구조의중간에있는마디이다. < 그림 Ⅳ-4> 의사결정나무예시 위그림은간단한의사결정나무예시를보여주고있다. 맨위쪽에나이를나누는노드는뿌리마디 (Root Node) 이다. 그다음에한칸내려와서 Car type이 Sports인지를나눠주는노드를중간마디 (Internal Node) 라고한다. 그리고끝단에서 Risk가 High인지 Low인지나타내주는노드는끝마디 (Terminal (Leaf) Node) 라고할수있다. 회귀나무 (Regression Trees) 에서사용되는분리기준은분산의감소량이다. 예측오차를최소화하는것과동일한개념으로분산의감소량을최대화하는것을최적분리의기준으로삼아자식마디를형성하면된다.

7 의사결정나무와 MARS 37 나. 의사결정나무의형성 의사결정나무의형성과정은크게성장 (Growing), 가지치기 (Pruning), 타당성평가그리고해석과예측으로이루어진다. 성장단계라는것은각마디에서최적의분리규칙을적절하게찾아서나무를성장시키는과정이며, 적절한정지규칙을만족하면중단하는것으로한다. 가지치기단계라는것은오차를크게할위험이높을경우나부적절한추론규칙을가지고있는가지또는불필요한가지를제거하는것을의미한다. 타당성평가단계라는것은이익도표 (Gain chart), 위험도표 (Risk chart) 또는시험자표를활용하여의사결정나무를평가하는것을의미한다. 마지막으로해석과예측단계라는것은구축된나무모형을해석하고예측모형을설정한후예측에적용하는것을의미한다. 의사결정나무는출력변수가연속형인회귀나무 (Regression Tree) 와범주형인분류나무 (Classification Tree) 로나눌수있다. 회귀나무와분류나무의형성과정을아래에서살펴본다. 1) 회귀나무 (Regression Trees) 회귀나무는회귀나무를어디까지성장시킬지가관심사일것이다. p개의입력변수와하나의종속변수로이루어진 N개의관측데이터가있다고가정한다. 으로정의하고, 인행벡터로정의한다. 알고리즘은분리변수 (Split variable) 와분리점 (Split point) 을결정하고또한나무모형이어떻게생길지도결정해야한다. 먼저전체영역을 개의영역 으로나누고상수값 을각영역의예측값으로하는나무모형은다음과같이표현된다. (Ⅳ-1) 여기서회귀나무기준으로오차제곱합 을그측도로서 사용한다. 그러면이에대해최솟값을갖는 은영역 에서 의평균일것이다.

8 38 연구보고서 (Ⅳ-2) 주어진분리변수 가연속형인경우분리점을 라하면두영역 와 을정의할수있다. 범주형분리변수일경우에는전체범주를부분집합 2개로나눈다. 예를들면전체범주가 { 남, 여 } 일때 남과 여로나눌수있다. 그러면분리기준을정하는것은분리변수 j와분리점 s를찾는최적화문제로볼수있다. min min min (Ⅳ-3) 분리변수가주어지고나면어렵지않게분리점 를찾을수있으며적절한최적화 를통하여최적분리기준 를찾을수있다. 우선최적분리를찾고난후에는두 영역에대하여반복하여동일한과정거치면된다. 나무모형이너무크면자료를과대적합할가능성이있고, 반대로나무모형이너무 작으면자료를과소적합할가능성이있다. 즉, 의사결정나무에서는나무의크기가모 형의복잡도 (Complexity) 를의미하며, 최적의나무크기는사용하는자료들로부터추 정한다. 일반적으로사용되는방법은마디에속하는자료가일정수이하일때분할을 정지하고비용 - 복잡도가지치기 (Cost-complexity pruning) 를이용하여성장시킨나 무를가지치기하게된다. 성장시킨나무모형 를가지치기하여얻을수있는나무모형을 로나 타내자. 는 에서의끝마디개수, 은 의영역 에속하는자료수, 은영역 에속하는자료에대한 값들의평균, 그리고불순도는 정의된다. 로나타낸다. 이때최적화할비용함수는다음과같이 (Ⅳ-4)

9 의사결정나무와 MARS 39 가지치기는 에대하여 를최소화하는 를찾는문제가된다. 여기서 는 Complexity parameter이며데이터분석가가나무모형의크기와자료에대한적합도를조절하기위한조율모수로서선택할수있다. 값이크면 의크기는작아지고, 반대의경우도마찬가지이다. 그리고 이면가지치기는일어나지않고 를최종모형으로준다. 추정값 은자료로부터흔히 5 또는 10-묶음교차확인오차로얻을수있다. 가지치기된최종모형은 으로나타낼수있고시험자료가 이면 으로예측한다. 2) 분류나무 (Classification Tree) 출력변수가범주형인분류나무는불순도의측도로주로사용되는카이제곱통계량, 지니지수 (GINI index), 엔트로피지수 (Entropy index) 등을이용하여회귀나무와동일한방식으로성장시키게된다. 분류나무의가지치기는흔히오분류율을불순도의측도로사용하여회귀나무와동일한방식으로실시하여최종분류나무모형 을얻게된다. 를최종모형의영역 에속하는자료중출력변수의범주가 인자료의비율이라하자. 이면그예측값은 arg 로주어진다. 즉, 분류나무는각마디에서다수결원칙 (Majority vote) 으로정하는것이다. 다. 분류나무의여러가지불순도측도 불순도의측도는의사결정나무의성장단계에서최적의분리변수 (Splitting Variable) 와기준값 (Threshold) 을정하는데사용된다. 회귀나무에서는불순도의측도를 로정의하였다면분류나무에서사용되는측도는카이제곱 통계량, 지니지수, 엔트로피지수, 분류오차등이다. 분류나무의경우데이터의분리 / 분할은각자식마디에속하는자료의순수도 (Purity) 또는불순도 (Impurity) 가가장크게증가또는감소하도록진행된다.

10 40 연구보고서 < 그림 Ⅳ-5> 불순도측도비교 자료 : Hastie, Tibshirani, Friedman(2008), p. 309 불순도예시표를바탕으로각측도들이어떻게계산되는지살펴본다. < 표 Ⅳ-4> 불순도예시 구분 남성 여성 전체 왼쪽마디 47(42) 23(28) 70 오른쪽마디 73(78) 57(52) 130 부모마디 ) 카이제곱통계량 위의표는실제도수 (O) 와기대도수 (E)( 괄호안숫자 ) 를보여주고있다. 예를들어왼쪽의남성의기대도수라는것은 이며, 다른셀들의기대도수역시동일한방법으로구할수있다. 카이제곱통계량이라는것은각셀에대하여 (( 기대도수-실제도수 ) 의제곱 / 기대도수 ) 의합으로정의된다. 그리고카이제곱통계량이최대가되는분리를사용한다. 이표에서카이제곱통계량은다음과같이계산된다.

11 의사결정나무와 MARS 41. (Ⅳ-5) 2) 지니지수 (GINI index) 지니지수는 CART 에서쓰이는지표이며, 지니지수는다음과같이정의된다. (Ⅳ-6) (Ⅳ-7) 지니지수가최소가되는분리를선택한다. 앞의표에대하여지니지수를구하면다 음과같이주어진다. 2(P( 왼쪽에서남성 )P( 왼쪽에서여성 )P( 왼쪽 ) +P( 오른쪽에서남성 )P( 오른쪽에서여성 )P( 오른쪽 )) =. (Ⅳ-8) 3) 엔트로피지수 (Entropy measure) 엔트로피지수는 C4.5 에서불순도측도로사용되는것으로다음과같이정의된다. log (Ⅳ-9) 엔트로피지수 = 엔트로피 ( 왼쪽 )P( 왼쪽 ) (Ⅳ-10) + 엔트로피 ( 오른쪽 )P( 오른쪽 )

12 42 연구보고서 여기서 엔트로피 (Left)=-P( 왼쪽에서남성 )log P( 왼쪽에서남성 ) (Ⅳ-11) -P( 왼쪽에서여성 )log P( 왼쪽에서여성 ) 로정의되며, 오른쪽마디에대한엔트로피도이와동일한방법으로정의될수있다. 앞의표에서엔트로피지수를구하면다음과같이얻을수있다. (Ⅳ-12) 4) 분류오차 (Misclassification error) max (Ⅳ-13) 라. 여러가지의사결정나무알고리즘 위쪽에서는주로 CART 방법론에초점을맞춰살펴보았다. CART는가장많이쓰이는의사결정나무알고리즘으로 Breiman, Friedman, Stone & Olshen(1984) 가개발하였다. 출력변수가범주형인경우불순도를앞절에서살펴본지니지수를통해계산하고출력변수가연속형인경우는분산을이용한다. CART는이진분리 (Binary split) 하여해석성이좋다는장점이있다. 개별입력변수또는입력변수들의선형결합들중에서최적의분리를찾으면된다. CART 다음으로유명한의사결정나무방법론에는 ID3이있고그후에더발전된 C4.5와 C5.0이있다. ID3은처음호주의연구원인 Quimlan(1993) 에의하여개발되었다. 위에서언급한 CART와는달리각마디에서다지분리 (Multiple split) 가가능하며범주형입력변수에대해서는범주의수만큼분리가일어난다. 초기버전은범주형예측변수에만국한되어있었으나최근에발전된 C5.0은 CART와매우유사해졌다. 불순

13 의사결정나무와 MARS 43 도의측도로는앞장에서살펴본엔트로피지수를사용한다. CHAID(Chi squared Automatic Interaction Detection) 는카이제곱검정에근거한모수적인방법이며불순도의측도로는카이제곱통계량을사용한다. Hartigan(1975) 이제안한방법으로 Morgan & Sonquist(1963) 의 AID를발전시킨것으로볼수있다. CHAID는가지치기를하지않는대신나무모형의성장을적당한크기에서중지하면된다. 그리고한계점은입력변수가반드시범주형변수여야한다는점이있다. 마. CART 의특징 CART는이진분리의 if-then 형식의이해하기쉬운규칙을생성하며분류작업이쉽다. 또한연속형변수와범주형변수의형태모두입력변수로취급할수있으며비모수적방법이라는장점이있다. CART는가장설명력이있는변수에대하여최초로분리가일어난다는특징때문에요율산정에있어서중요변수를알아낼수있다. 단점으로는출력변수가연속형인회귀모형에서는예측력이감소한다는것이다. 일반적으로복잡한나무모형은예측력이저하되고해석이어렵다. 상황에따라서는많은양의계산작업이필요할수도있으며, 베이즈분류경계가사각형 (Rectangle) 이아닌경우에는결과가좋지않을수도있다. 특히자료가조금만달라져도전혀다른결과를얻을정도로분산이크고불안정한방법이다. 앙상블알고리즘을적용하여의사결정나무의분산을줄일수도있다. 3. MARS(Multivariate Adaptive Regression Splines) 가. MARS 방법론 MARS 방법론은주로 Francis(2003), Hastie, Tibshirani & Friedman(2008) 을주로 참고하여정리하였다. Friedman(1991) 이제안한 MARS 는입력변수가많은고차원의

14 44 연구보고서 회귀문제에적합한방법이다. 설명변수들이종속변수에대해직선이아닌꺾인선형형태 (Splines) 로설명된다. 단계별선형회귀의일반화또는의사결정나무의개선으로볼수있다. MARS는 와 형태의매듭점 (Knot point) t에서의조각별선형회귀의기저함수 (Basis function) 를사용한다. 여기서 를의미하며, 괄호안의값 의양수부분만을나타낸다. (Ⅳ-14) 기저함수의클래스는각입력변수 에대하여관측값 들을매듭점으로한선형 스플라인들로표현된다. MARS 모형은식 (Ⅳ-15) 로표현되며 은 상의기저 함수혹은 에속하는둘이상의기저함수들의곱이다. for (Ⅳ-15) 모델링은원래의입력값이아닌식 (Ⅳ-16) 과같이변형된형태로전진단계선형회귀 (Forward stepwise linear regression) 로한다. 어떤 을선택할지주어지면, 전 통적선형회귀와같이오차제곱합을최소화시키는 계수들을추정한다. (Ⅳ-16) 상의한기저함수만을사용하는경우에는주효과만을사용하는가법모형이고, 상의두기저함수들의곱까지허용하는경우에는 2인자교호작용이있는모형에해당된다. MARS에서기저함수는전진선택법을사용하여선택된다. 우선 에해당하는 을모형에투입하고, 각단계에서오차제곱합 을최소화 하는변수와매듭점을찾고, 해당기저함수쌍을모형에추가한다. 예를들어 M 개의기

15 의사결정나무와 MARS 45 저함수가선택되었다고하자. 그러면이번에는자료의과대적합을막기위해후진소거법으로설명력이없는기저들을제거한다. 이때사용되는기저함수선택기준은식 (Ⅳ-17) 로 는 개의항들에기반한 의적합값이고 은모수의개수로정의되는복잡도함수이다. 최종적으로 argmin개의항을갖는모형을선택한다. (Ⅳ-17) 의사결정나무는각영역에서동일한상수값을추정하는반면 MARS에서는선형스플라인을사용하므로조각별로선형인연속함수로추정하게된다. 따라서일반적으로 MARS는의사결정나무에비해서예측력이높다. MARS에서조각별선형기저함수를사용하는이유는비선형적인모형을조각별선형함수로근사하기위한것이다. 자료의특성에따라서는교호작용을허용할수도있는데대체로과대적합의문제로 2인자이상의고차의교호작용은고려하지않는다. MARS와 CART는서로상이한방법론처럼보임에도불구하고굉장히유사한점들이있다 (Hastie, Tibshirani & Friedman 2008). MARS에서기저함수를 과 으로대체한다고가정하면 MARS의전진선택법알고리즘과 CART가나무를성장시키는알고리즘을동일하게볼수있다. 또한 MARS 모형에서기저함수의짝이곱형태가포함되어있으면 CART 모형에서나뭇가지가분리되는것과동일하다. 이러한것은 CART에서노드에서한번이상의분리를할수없도록제한하고이진분리로나타내게한다.

16 46 연구보고서 나. 실손의료보험자료를활용한 MARS 분석 1) 빈도분석 < 표 Ⅳ-5> 질병외래빈도 MARS 분석 구분 기저함수 계수 (Intercept) 성별여 년도발생건수 년도발생건수 년도발생건수 성별, 연령, 상해급수, 직전연도발생건수를입력변수로갖고있음에도불구하고빈 도모형에서는성별과발생건수변수가더중요한변수로선택되어사용된다. < 표 Ⅳ -5> 는다음식과같이쓸수있다. (Ⅳ-18) 여성일때의계수가양수인것을미루어보아기대빈도가남성보다여성일때높은것으로해석된다. 직전연도발생건수에대하여 1건과 2건이기준이되는데 0건일때의기대빈도는 만큼감소하는반면 2건일때에는 만큼증가한다. 2건초과일때에는과거실적 1건당 (= ) 씩기대빈도가높아진다.

17 의사결정나무와 MARS 47 2) 심도분석 < 표 Ⅳ-6> 질병외래심도 MARS 분석 thresh=0.001 구분 기저함수 계수 절편 172,646 성별여 28,346 연령 118,545 연령 -198,690 연령 257,027 연령 740 연령 -292,756 연령 171,010 연령 -60,951 년도발생건수 1,100 년도발생건수 210,175 년도발생건수 -320,938 년도발생건수 190,426 심도분석은지급금액이 0건이상인데이터를사용하여보험금액을모형화한다. terminal condition은빈도모형과같게했을때를먼저살펴보고조절하는방향으로한다. terminal condition 값은모형에항을하나추가하였을때개선되는 값이다. 예를들어 terminal condition이 0.01이라는것은모형에항을하나추가하였을때 값이 0.01보다커지지않으면모형의성장을멈춘다는것이다. 빈도분석일때보다계수들의항이증가한것을볼수있다. 성별이여성인경우남성보다 28,346원기대지급금액이증가한다. 성별에대한해석은쉬우나연령이나직전연도발생건수같은경우다수의항이있어해석하기불편할수도있다. < 표 Ⅳ-6> 의모형과같이해석이불편한모형이산출된경우에는함수안의옵션을바꿔보다간편한모형을모델링할수있다. terminal condition을 0.01로개선하여다시모델링하면위의모델에서중요도가높은변수들로구성된모형을얻는다. 연령은

18 48 연구보고서 세를기준으로 50 세미만일때에는 1 세감소할때기대지급금액이 7,365 원감소한 다. 50 세초과인연령대에서는연령이 1 세증가할때마다 451 원감소한다. 50 세를기 준으로뒤집어진 V 모양을볼수있다. < 표 Ⅳ-7> 질병외래심도 MARS 분석 thresh=0.01 구분 기저함수 계수 절편 293,289 연령 -7,365 연령 -451 년도발생건수 -14,529 년도발생건수 63,344 다. GLM option 이있는 MARS MARS 분석은단계별선형회귀의일반화로반응변수가 0 미만인값이나올가능성이있다. 하지만보험데이터의빈도나심도를모형화한경우반응변수가 0 미만인값이나오는것은현실과부합하지않으므로이를방지하기위하여 GLM option을사용한다. R 프로그램의 earth 패키지에서 MARS 분석을할때에 GLM option을삽입하고연결함수를로그로취하면 0 이상의값을갖는다. 1) 빈도분석 < 표 Ⅳ-8> 의결과를바탕으로한식은다음과같다. 앞절과다른점이있다면반응 변수에로그연결함수가적용되어있고양변에지수를취하면곱으로표현된다는것 이다. ln (Ⅳ-19) (Ⅳ-20)

19 의사결정나무와 MARS 49 앞절에서 GLM option이없을때와같은변수들이채택되는데곱으로표현할수있는장점이있다. 성별과발생건수만고려된아래의모형에따르면여성의기대빈도는 1.49배높다. 이는앞장의네가지변수가사용된 GLM 모형의상대도와비교하였을때변수가적게채택되어계수값이집중된것이라고볼수도있다. 직전연도발생건수는 1건일어났을때를기준으로 0건일때는 0.196배, 2건일때에는 배, 3건이상일때에는 1건이증가할때마다 1.306배라고해석할수있다. < 표 Ⅳ-8> 질병외래빈도 GLM option 이있는 MARS 분석 구분 기저함수 계수 Intercept 성별여 년도발생건수 년도발생건수 년도발생건수 < 표 Ⅳ-9> 질병외래빈도 GLM option 이있는 MARS 상대도 성별 15 년도발생건수 설명변수 상대도 남성 여성 건 건 건 건이상 ) 심도분석 위의심도분석과다른점이라면 GLM option 을사용한것이다. 계수의부호방향이 위의결과값과같게나왔다. 곱으로표현되어서비교하기쉬운점이있다.

20 50 연구보고서 < 표 Ⅳ-10> 질병외래심도 GLM option 이있는 MARS thresh=0.01 구분 기저함수 계수 절편 연령 연령 년도발생건수 년도발생건수

Tree 기반의 방법

Tree 기반의 방법 Tree 기반의방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 1 / 25 학습내용 의사결정나무 (decision tree) 회귀나무 (regresion tree) 분류나무 (classification tree) 비교앙상블알고리즘 (ensemble algorithm) 배깅 (bagging) 랜덤포레스트 (random

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

비선형으로의 확장

비선형으로의 확장 비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

Overview Decision Tree Director of TEAMLAB Sungchul Choi

Overview Decision Tree Director of TEAMLAB Sungchul Choi Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based

More information

통계적 학습(statistical learning)

통계적 학습(statistical learning) 통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

표본재추출(resampling) 방법

표본재추출(resampling) 방법 표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

untitled

untitled 통계청 통계분석연구 제 4 권제 1 호 (99. 봄 ) 61-83 데이터마이닝의사결정나무의응용 최종후 * 서두성 ** 본논문의목적은최근국내에서활발하게논의되고있는데이터마이닝의주요한도구인의사결정나무를정리, 소개하는데에있다. 본논문에서는 1997에실시된체 15대대통령선거예측조사자료를이용한무응답의분류및예측문제와개인휴대통신의해지자분석에이를적용한결과를보인다. 끝으로효율적통계조사를위한전략수립에의사결정나무활용가능성을검토한다.

More information

Resampling Methods

Resampling Methods Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>

<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770> Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅

More information

chap 5: Trees

chap 5: Trees Chapter 5. TREES 목차 1. Introduction 2. 이진트리 (Binary Trees) 3. 이진트리의순회 (Binary Tree Traversals) 4. 이진트리의추가연산 5. 스레드이진트리 (Threaded Binary Trees) 6. 히프 (Heaps) 7. 이진탐색트리 (Binary Search Trees) 8. 선택트리 (Selection

More information

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생

More information

04 Çмú_±â¼ú±â»ç

04 Çмú_±â¼ú±â»ç 42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -

More information

제 5강 리만적분

제 5강 리만적분 제 5 강리만적분 리만적분 정의 : 두실수, 가 을만족핚다고가정하자.. 만일 P [, ] 이고 P 가두끝점, 을모두포함하는유핚집합일때, P 을 [, ] 의분핛 (prtitio) 이라고핚다. 주로 P { x x x } 로나타낸다.. 분핛 P { x x x } 의노름을다음과같이정의핚다. P x x x. 3. [, ] 의두분핛 P 와 Q 에대하여만일 P Q이면 Q

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

Chapter 7 – Classification and Regression Trees

Chapter 7 – Classification and Regression Trees 비선형분류모델링 의사결정나무 Decision Tree 교사학습패러다임 Plant 관측 계측 FDC + 계측치 교사학습패러다임 Plant 관측 계측 FDC + 계측치 학습 모델 ƒ Data (x, y) 교사학습패러다임 Plant 관측 계측 FDC χ FDC + 계측치 학습 모델 ƒ Data (x, y) 계측치 ; ˆy 예측 교사학습패러다임 Plant Data

More information

°Ÿ»4º¨Ö

°Ÿ»4º¨Ö 나무모형 이재용 서울대학교통계학과 2015 년 2 월 16 일 의사결정나무 I Years < 4.5 238 R 3 Hits R 1 117.5 5.11 Hits < 117.5 R 2 6.00 6.74 1 4.5 24 Years 1 Hitters 자료 1. ISLR 패키지에있는자료 2. 1986 년 322 명의메이저리그선수들에대한관측치. 20 개의변수 3. log(salary)

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

선형모형_LM.pdf

선형모형_LM.pdf 변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를

More information

단순 베이즈 분류기

단순 베이즈 분류기 단순베이즈분류기 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 1 / 14 학습내용 단순베이즈분류 구현 예제 박창이 ( 서울시립대학교통계학과 ) 단순베이즈분류기 2 / 14 단순베이즈분류 I 입력변수의값이 x = (x 1,..., x p ) 로주어졌을때 Y = k일사후확률 P(Y = k X 1 = x 1,..., X p =

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

¾DÁ ÖÖ„�Àº¨Ö´ä

¾DÁ ÖÖ„�Àº¨Ö´ä 비선형회귀모형들 이재용 서울대학교통계학과 2015 년 1 월 25 일 다항회귀 I d 차다항회귀모형 y i = β 0 + β 1 x i + β 2 x 2 i +... + β d x d i + ϵ i, ϵ i (0, σ 2 ), i = 1, 2,..., n 특성들 1. 가장간단하게 x 의비선형회귀함수를표현할수있는방법이다. 2. 4 차가넘어가면함수의모양이너무유연해져서,

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건

More information

exp

exp exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고

More information

슬라이드 1

슬라이드 1 회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석

동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4

More information

29-6(본문).pdf

29-6(본문).pdf The Korean Journal of Applied Statistics (2016) 29(6), 1095 1106 DOI: http://dx.doi.org/10.5351/kjas.2016.29.6.1095 Variable selection with quantile regression tree Youngjae Chang a,1 a Department of Information

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >

3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > . 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로 3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

untitled

untitled 통계청 통계분석연구 2001 년가을 ( 제 6 권제 2 호 ) 85-111 데이터마이닝기법을이용한도시가계소비성향분석 변루나 * 본논문에서는데이터마이닝과주요분석기법인로지스틱회귀분석, 신경망, 의사결정나무를소개하였다. 데이터마이닝적용사례로 2000년통계청에서실시한도시가계조사자료를데이터마이닝도구인 SAS Enterprise Miner를활용해분석하였다. 대량의통계조사결과자료에데이터마이닝기법을이용한분석을보임으로써지식기반사회에필요한새로운의미있는정보와지식을재생산할수있는가능성을제시하고검토하는데에본논문의의의가있다.

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.

More information

01

01 2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,

More information

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37 21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각

More information

최소비용흐름문제의선형계획모형 최소비용흐름문제는선형계획문제로표현할수있다. 예 4.1 의최소비용흐름문제는다음과같은선형계획문제가된다. min z = 5x 12 +4x 13 +7x 14 +2x x 34 +8x 35 +5x 45 sub.to x 12 +x 13 +x

최소비용흐름문제의선형계획모형 최소비용흐름문제는선형계획문제로표현할수있다. 예 4.1 의최소비용흐름문제는다음과같은선형계획문제가된다. min z = 5x 12 +4x 13 +7x 14 +2x x 34 +8x 35 +5x 45 sub.to x 12 +x 13 +x 최소비용흐름문제의선형계획모형 최소비용흐름문제는선형계획문제로표현할수있다. 예. 의최소비용흐름문제는다음과같은선형계획문제가된다. min z = 5x 2 +x +7x +2x 25 +0x +8x 5 +5x 5 sub.to x 2 +x +x = 0, x 2 +x 25 =, x +x +x 5 = -, x x +x 5 = -, x 25 x 5 x 5 = -7, x 2 apple,

More information

<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770>

<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770> IT OOKOOK 87 이론, 실습, 시뮬레이션 디지털논리회로 ( 개정 3 판 ) (Problem Solutions of hapter 7) . 반감산기와전감산기를설계 반감산기반감산기는한비트의 2진수 에서 를빼는회로이며, 두수의차 (difference, ) 와빌림수 (barrow, ) 를계산하는뺄셈회로이다. 에서 를뺄수없으면윗자리에서빌려와빼야하며, 이때빌려오는수는윗자리에서가져오므로

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

Microsoft PowerPoint - chap04-연산자.pptx

Microsoft PowerPoint - chap04-연산자.pptx int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); } 1 학습목표 수식의 개념과 연산자, 피연산자에 대해서 알아본다. C의 를 알아본다. 연산자의 우선 순위와 결합 방향에

More information

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 - 1. 분산분석 2. 회귀분석 준비 R과 R studio 설치 https://cran.r-project.org/bin/windows/base/ R 다운로드후설치 https://www.rstudio.com/products/rstudio/download/#download

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx 판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례

More information

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600 균형이진탐색트리 -VL Tree delson, Velskii, Landis에의해 1962년에제안됨 VL trees are balanced n VL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at

More information

Microsoft PowerPoint - MDA DA pptx

Microsoft PowerPoint - MDA DA pptx SPSS 2 집단 ( 데이터및준비 ) 데이터 TURKEY.SAV 미국 Kansas 주립대학 Dr. Michael Finnegan 교수는야생칠면조와사육칠면조를구별하기위하여수컷칠면조 82마리에대해 9개항목을조사하였다. ID: 칠면조 id HUM: 상완골길이 ULN: 척골길이 CAR: car metacarus 길이 COR: 오탁상길이 RAD: 요골길이 FEMUR:

More information

<B1B9BEEE412E687770>

<B1B9BEEE412E687770> 201 학년도대학수학능력시험 6 월모의평가문제및정답 2016 학년도대학수학능력시험 6 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두행렬 성분은? [2 점 ] 에대하여행렬 의 3. lim 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. 의값은? [2점] 1 2 3 4 5 4. 공차가 인등차수열 에대하여 의값은? [3 점 ] 1 2 3 4 5

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

Microsoft PowerPoint - chap06-2pointer.ppt

Microsoft PowerPoint - chap06-2pointer.ppt 2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

PowerPoint Presentation

PowerPoint Presentation 5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

실험 5

실험 5 실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.

More information

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다

이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다 이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,

More information

커널 방법론

커널 방법론 커널방법론 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 커널방법론 1 / 31 학습내용 벌점화방법 재생커널힐버트공간 여러가지커널기계 박창이 ( 서울시립대학교통계학과 ) 커널방법론 2 / 31 커널방법론 회귀함수나베이즈분류함수가선형이라는가정은비현실적임최종모형의해석상의편리성또는과대적합문제를피하기위해선형모형을고려비선형모형의구축시적절한기저함수 (basis

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 (   ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각 JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.

More information

슬라이드 1

슬라이드 1 1 장수치미분 1.1 소개및배경 1. 고정확도미분공식 1.3 Richardson 외삽법 1.4 부등간격의미분 1.5 오차가있는데이터의도함수와적분 1.6 MATLAB 을이용한수치미분 1.1 소개및배경 (1/4) 미분이란무엇인가? 도함수 : 독립변수에대한종속변수의변화율 y f( xi + x) f( xi) dy f( x = i + x) f( xi) = lim =

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

<4D F736F F D20B1B8C1B6BFAAC7D0325FB0ADC0C7C0DAB7E15F34C1D6C2F75F76332E646F63>

<4D F736F F D20B1B8C1B6BFAAC7D0325FB0ADC0C7C0DAB7E15F34C1D6C2F75F76332E646F63> 구조역학 5. 모멘트분배법 (oment Distribution ethod) Objective of this chapter: 모멘트분배법의개념이해와 다차부정정구조물해석에 의적용. What will be presented: 모멘트분배법용어와개념이해 모멘트분배법을 모멘트분배법을 이용한연속보해석 이용한골조해석 Theoretical background 미국 Univ.

More information

Microsoft Word - FunctionCall

Microsoft Word - FunctionCall Function all Mechanism /* Simple Program */ #define get_int() IN KEYOARD #define put_int(val) LD A val \ OUT MONITOR int add_two(int a, int b) { int tmp; tmp = a+b; return tmp; } local auto variable stack

More information

- 1 -

- 1 - - 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - logic2005.doc

Microsoft Word - logic2005.doc 제 8 장 Counters 실험의목표 - Catalog counter 의동작원리에대하여익힌다. - 임의의 counter를통하여 FSM 구현방법을익힌다. - 7-segment display 의동작원리를이해한다. 실험도움자료 1. 7-segment display 7-segment는디지털회로에서숫자를표시하기위하여가장많이사용하는소자이다. 이름에서알수있듯이 7개의 LED(

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지수학영역 1 5 지선다형 1. 의값은? [2점] 일차방정식 의해는? [2 점 ] 두수, 의최대공약수는? [2 점 ] 일차함수 의그래프에서

제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지수학영역 1 5 지선다형 1. 의값은? [2점] 일차방정식 의해는? [2 점 ] 두수, 의최대공약수는? [2 점 ] 일차함수 의그래프에서 제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지 1 5 지선다형 1. 의값은? [2점] 1 2 3 4 5 3. 일차방정식 의해는? [2 점 ] 1 2 3 4 5 2. 두수, 의최대공약수는? [2 점 ] 1 2 3 4 5 4. 일차함수 의그래프에서 절편과 절편의합은? [3 점 ] 1 2 3 4 5 1 12 2 5. 함수 의그래프가두점, 를지날때,

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

2_안드로이드UI

2_안드로이드UI 03 Layouts 레이아웃 (Layout) u ViewGroup의파생클래스로서, 포함된 View를정렬하는기능 u 종류 LinearLayout 컨테이너에포함된뷰들을수평또는수직으로일렬배치하는레이아웃 RelativeLayout 뷰를서로간의위치관계나컨테이너와의위치관계를지정하여배치하는레이아웃 TableLayout 표형식으로차일드를배치하는레이아웃 FrameLayout

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

문제여섯사람이일곱개의발판위에있다. 빈발판을중심으로세사람은왼쪽에서가운데를보고서있고, 다른세사람은오른쪽에서가운데를보고서있다. Figure: 양창모 ( 청주교육대학교컴퓨터교육과 ) Problems and Algorithms 2015 년여름 1 / 35 목표왼쪽에서있던세사람을오른쪽으로, 오른쪽에서있던사람을왼쪽으로이동한다. 가운데발판은여전히비어있어야한다. 최소의움직임으로목표를달성하도록한다.

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

00-10.hwp

00-10.hwp 연구보고서 2000-10 기업집단의 부실화 원인과 부도예측모형 분석 기업집단의 부실화 원인과 부도예측모형 분석 3 4 5 6 7 제1장 서 론 1 11 12 제2장 기업집단의 내부시장과 기업집단의 부실화 2 15 16 2 17 18 2 19 20 2 21 22 2 23 24 2 25 26 2 27 28 2 29 30 2 31 32 2 33 제3장 기업집단의

More information