untitled
|
|
- 인기 묵
- 6 years ago
- Views:
Transcription
1 통계청 통계분석연구 2001 년가을 ( 제 6 권제 2 호 ) 데이터마이닝기법을이용한도시가계소비성향분석 변루나 * 본논문에서는데이터마이닝과주요분석기법인로지스틱회귀분석, 신경망, 의사결정나무를소개하였다. 데이터마이닝적용사례로 2000년통계청에서실시한도시가계조사자료를데이터마이닝도구인 SAS Enterprise Miner를활용해분석하였다. 대량의통계조사결과자료에데이터마이닝기법을이용한분석을보임으로써지식기반사회에필요한새로운의미있는정보와지식을재생산할수있는가능성을제시하고검토하는데에본논문의의의가있다. < 차례 > Ⅰ. 서론 Ⅱ. 데이터마이닝의소개 Ⅲ. 도시가계소비성향분석 Ⅳ. 결론및토의 * 통계청통계기획국조사관리과
2 86 통계분석연구 2001년가을 ( 제6권제2호 ) Ⅰ. 서론 OLTP(On-Line Transaction Process), 데이터웨어하우징 (Data Warehousing) 등과같은데이터저장시스템출현과대용량, 초고속컴퓨터의보편화로인하여대용량자료가매순간자동적으로쌓이고있다. 이는비단고객에대한자료를관리하는기업뿐아니라정부, 연구및교육기관들도목적은상이하지만다양한형태의자료들이수없이시스템에저장되고있다. 이러한자료들은크기가대용량일뿐아니라자료의형태가다양하여기존의통계분석도구로는 ( 기법이나통계소프트웨어모두포함 ) 원하는정보를얻는데한계가있다. 고객 ( 정부의경우국민, 학교의경우학생이일종의고객이다 ) 의선호도나성향을분석하여고객이만족하는서비스를제공하지않으면경쟁력을잃게될정도로기업간시장경쟁은가속화되고있다. 그러므로대용량, 다양한형태의데이터분석에한계가있음에도불구하고자동적으로지식을추출해내는방안에대한요구가급속히증가하고있다. 대용량데이터로부터유용한정보를찾아내는과정이마치광산에묻혀있는금을캐내는것과유사하다고해서대용량자료로부터정보를얻어내는과정에사용되는시스템 ( 하드웨어 ) 과분석기법 ( 소프트웨어 ) 을데이터마이닝 (Data Mining) 이라한다. 데이터마이닝은시장바구니 (Market Basket) 이론에서처음시작되었다고보는견해가지배적이다. 그예로써, 미국의한대형슈퍼마켓에서고객들이쇼핑경향을조사하였더니금요일오후에어린자녀를둔신혼부부들은기저귀와맥주를함께사는것이었다. 그이유를알아보았더니어린자녀가있는부부들은주말에야외로나가는것이어려워, TV에서방영하는주말스포츠경기를시청하며마실맥주와어린아이를위한기저귀를동시에사는것이었다. 이에대해그슈퍼마켓은기저귀와맥주를한곳에진열시켜장을보는동안동선단축의편리성을느낀고객들로부터좋은평가를받게되었다. 이처럼데이터마이닝개념은고객에대한자료로부터고객에대한정보를얻어고객이원하는서비스를제공함으로
3 데이터마이닝기법을이용한도시가계소비성향분석 87 써기업의이미지를제고시키며, 또한이윤의극대화실현을위해필요한기업에서앞다투어도입하고있다. 선진국에서는기업뿐아니라정부나연구기관에서도데이터마이닝기법을도입하고있다. 미국 FBI에서는한사건이발생하면유사범죄를저지르는용의자를찾아낼때데이터마이닝기법을사용하기도하고, IRS에서는탈세자의패턴을분류하여탈세가능성이있는사람들을미리색출할때이용하기도한다. 그러나우리나라에서의데이터마이닝은아직은초기단계에머물러있을뿐아니라데이터마이닝을하기위한최적의시스템이되는데이터웨어하우스의구축도대기업을제외하고는전무한실정이다. 그러나기업의요구사항이주로고객관리에중점을두는데이터베이스마케팅쪽으로, 이를고객관계경영 (CRM: Customer Relationship Management) 이라함, 가고있기때문에데이터마이닝의발달은급속히이루어질수밖에없다. 따라서본논문에서는데이터베이스마케팅의핵심기술이라고할수있는데이터마이닝을소개하고이의적용사례로 2000년국내도시가계조사자료를이용하여도시가계의소비성향분석을하고자한다. 2장에서는최근국내외에서활발하게논의가되고있는데이터마이닝에대한의의와기법을소개하고 3장에서는 2장에서다룬기법을이용하여도시가계조사자료로부터도시가계의소비성향에영향력이높은변수와모형을찾아낸다. Spend를목표변수로데이터마이닝의다양한분석기법 (Logit Regression, Neural Network, Decision Tree) 을적용하여분석을실시하고 4장에서그결과를서로비교하였다. 데이터마이닝도구로사용되는것은 SAS의 Enterprise Miner와 SPSS Clementine 등이있는데가장널리사용되는 SAS Eminor를이용하여적용방법, 결과해석방법을기술하였다. 세가지분석기법을적용한분석결과중가장예측율이큰기법으로소비성향의패턴 ( 높음 / 낮음 ) 에영향을주는변수와모형을찾아내었다. 특히, 국가통계조사결과의분석결과는소요된비용과시간에견주어볼때, 1차원또는개별적가구속성에따른분석에그치고있고 2차원의분석결과는저조한실정이다. 향후이러한여러종류와형태를가진대용량의통계조사결과에데이터마이닝기법을활용하여지식기반사회에필요한새로운
4 88 통계분석연구 2001년가을 ( 제6권제2호 ) 의미있는정보와지식을재생산할수있는가능성을제시하고검토한다. Ⅱ. 데이터마이닝소개 데이터마이닝은 KDD(Knowledge Discovery in Database) 라고불리우듯대용량의자료, 혹은데이터웨어하우스로부터쉽게드러나지않는유용한정보들을찾아내는과정을말한다. 즉, 대용량 (massive) 의관측가능한데이터를기반으로숨겨진지식, 기대하지못했던패턴, 새로운법칙과관계를발견하고이를바탕으로의사결정등을위한정보로활용하는것이다. 실제데이터마이닝이적용되는과정은탐색 (Exploration) 을통해평균, 이상치, 결측치등을발견하고변형 (Modification) 으로자료를변환하며모형화 (Modeling) 와모델평가 (Assessment) 의단계를거치게된다 (SAS Eminer 중심 ). 데이터마이닝기법으로는군집분석 (Cluster Analysis), 연결분석 (Link Analysis), 판별분석 (Discrimination Analysis) 등과같은기존의통계분석과연관성규칙 (Association Rule), 의사결정나무 (Decision Tree), 신경망모형 (Neural Network), OLAP(On-Line Analytic Processing) 등변형된형태의분석기법이있다. 본장에서는데이터마이닝에서가장널리사용되는 Logit Regression, Neural Network, Decision Tree 기법을소개하고자한다. 2.1 Logit Regression Logit Regression은목표변수 ( 종속변수 ) 가순서형명목척도로측정되어있는경우목표변수와설명변수간의인과관계를분석하기위하여적용되는통계분석기법이다. Logit Regression 분석의사용은판별분석을사용하는것과마찬가지로두집단이상으로구분된개체에대해각개체가속하는집단을예측하거나집단의구분에서는어느설명변수가유의한지를알아보는데사용된다. Logit Regression모형은목표변수가이항형일때일반선형회귀모형의
5 데이터마이닝기법을이용한도시가계소비성향분석 89 사용이불가능하므로로짓변환 (logit transformation) 을이용하게되는데모형은다음과같다. log p(y =1 x 1,,x p ) 1-p(y =1 x 1,,x p ) = α+β 1 x 1 + +β p x p 입력변수 x 1, x 2,,x p 에대해서다중로지스틱회귀모형화하여, 모형식의좌변과우변이모두실수상의값을가지도록하는것이다. 여기에서 log는자연로그 (natural log) 를의미한다. Logit Regression분석의목적은흔히추정된로짓모형을이용하여자료를분류하기위한것이기때문에일반적인판별분석과비교하여로지스틱판별분석 (logistic discrimination) 이라고불린다. 위의모형식으로부터추정된회귀계수 a,b 1,,b p 를이용하여다음과같이사후확률에대한추정식을얻을수있다. Pˆ( y =1 x 1,,x p )= exp ( â+ ˆx b ˆx b p p ) 1+exp( â + ˆx b ˆx b p p ) 이렇게얻어진각개체에대한추정사후확률 (posterior probability) pˆ( y =0 x 1,,x p )=1- pˆ( y =1 x 1,,x p ) 은개체를분류하기위해사용될수있다. 즉, 사후확률은 0과 1사이의값을가지게되므로, 적절한절단값 (cutoff value) 을정하여이값을기준으로각개체를분류하는것이다. 입력변수가분류결정에미치는영향의정도는오즈비 (Odds Ratio) 로계량화할수있다. 다른모든입력변수가일정한상태에서 x i 가 1단위증가하는데따른오즈비 (Odds Ratio) 는다음과같이계산된다. exp(α+β 1 x 1 + +β i (x i +1)+ β p x p ) exp(α+β 1 x 1 + +β i (x i )+ β p x p ) =exp(β i ) 여기서오즈비가 1 보다작다는것은입력변수 x i 가감소방향의영향으
6 90 통계분석연구 2001년가을 ( 제6권제2호 ) 로미침을의미하고, 반대로오즈비가 1보다크다는것은증가방향의영향으로미침을의미한다. 2.2 Neural Network 신경망 (Neural Network) 에는여러가지다양한모형이있으나, 자료분석을위해가장널리사용되는모형은 MLP(Multilayer Perceptron, 다층인식자 ) 신경망이다. MLP모형은입력층 (Input layer), 은닉마디로구성된은닉층 (hidden layer) 그리고출력층 (output layer) 으로구성된전방향 (feed-forward) 신경망이다. < 그림 2.1> MLP 의구조 입력층 (X ) 히든층 (H ) 출력층 (Y ) < 그림 2.1> 은입력층, 은닉층그리고출력층으로이루어진 MLP 신경망의구조이다. 입력층은각입력변수에대응되는마디들로구성되어있다. 명목형 (nominal) 변수에대해서는각수준에대응하는입력마디를가지게되는데, 이는통계적선형모형에서가변수 (dummy variable) 를사용하는것과같다. 은닉층은여러개의은닉마디로구성되어있다. 각은닉마디는입력층으로부터전달되는변수값들의선형결합 (linear combination) 을비선형함수 (nonlinear function) 로처리하여출력층또는다른은닉층에전
7 데이터마이닝기법을이용한도시가계소비성향분석 91 달한다. 그리고출력층은목표변수에대응하는마디들을갖는다. 여러개의목표변수또는세개이상의수준을가지는명목형목표변수가있을경우에는여러개의출력마디들이존재한다. < 그림 2.1> 의구조를수식으로도식화하면다음과같다. H 1 = f 1 (b 1+ w 11 X 1 +b 1+ w 21 X b 1+ w p1 X p) H 2 = f 2 (b 2+ w 12 X 1 +b 1+ w 22 X b 1+ w p2 X p) Y = g( b 0+ w 10 H 1+ w 20 H 2 ) 이처럼신경망에서사용되는함수는크게결합함수 (combination function) 와활성함수 (activation function) 가있다. 결합함수 (combination function) 는입력층또는은닉층의마디들을결합하는형태를의미한다. 각은닉마디 H 1 과 H 2 는입력변수들을선형결합, 즉 b j + w 1j X 1 + w 2j X w pj X p 하여이를변환한다. 대부분의신경망에서는결합함수로이와같은선형함수 (linear function) 를사용하지만 RBF 신경망은원형기준함수 (radial basis function) 를사용하는데이처럼다른형태의결합함수를사용하는신경망들도있다. 활성함수 (activation function) 는입력변수또는은닉마디의결합을변환하는함수를의미한다. 이의식에서 f 1, f 2 와 g는각각활성함수와출력활성함수 (output activation function) 라고불리며, 입력값들의선형결합함수를 S-자형태의곡면형태의출력을가지도록하는것이활성함수이다. 활성함수와출력활성함수는동일한함수를사용하는것이일반적인데활성함수는통계적선형모형에서, 연결함수 (link function) 의역함수와유사한의미를가지며, 가장보편적으로사용되는활성함수는로지스틱 (logistic) 함수와쌍곡탄젠트 (hyperbolic tangent) 함수이다. 한편, 목표변수가제한된범위를가지지않는연속형변수인경우에는, 출력활성함수로항등함수 (identity function) 를사용하여
8 92 통계분석연구 2001년가을 ( 제6권제2호 ) Y=b 0 +w 01 h 1 + w 02 H 2 와같이출력마디가생성되도록하는경우도있다. 신경망은다양한모형을포함하는매우유연한모형이나데이터로부터계수를추정해야하기때문에은닉층과은닉마디가많으면많을수록신경망은복잡해지며계수의수가급격히증가하기때문에최적화가다른회귀분석이나의사결정나무분석보다어렵다. 그러나해석의용이함이언제나예측모형의중요한특성이되는것은아니므로더많은해석적용이함을갖고있으면서도예측에덜효과적인모형보다는매우정확한예측을생산해내는신경망이더선호되는경우가많기때문이다. 2.3 Decision Tree 의사결정나무 (Decision Tree) 는의사결정규칙을나무구조로도표화하여관심대상이되는집단을몇개의소집단으로분류 (classification) 하거나예측 (prediction) 을수행하는분석방법이다. 분석과정이나무구조에의해서표현되기때문에분류또는예측을목적으로하는방법들즉, 회귀분석 (Regression Analysis), 신경망 (Neural Network), 판별분석 (Discriminant Analysis) 에비해연구자는분석과정을쉽게이해하고설명할수있다. 의사결정나무분석을수행하기위한다양한분리기준, 정지규칙, 가지치기방법들이제안되어있으며이들을어떻게결합하느냐에따라서서로다른의사결정나무형성방법이만들어진다. 의사결정나무분석의대표적인알고리즘으로는 CHAID(Kass 1980), CART(Breiman et al., 1984), C4.5(Quinlan, 1993) 등이있으며, 이들은 SPSS, SAS 등많은소프트웨어회사들에의해서다양한제품으로상용화되어있다. 의사결정나무의알고리즘은 CHAID(Chi-squared Automatic Interaction Detection, Kass(1980)) 는카이제곱검정 ( 범주형목표변수 ) 또는 F 검정 ( 연속형목표변수 ) 을이용하여다지분리 (multiway split) 를수행하는알고리즘이다. 다지분리란부모마디에서자식마디들이생성될때, 2개이상의
9 데이터마이닝기법을이용한도시가계소비성향분석 93 분리가일어나는것을허용함을의미한다. CHAID 목표변수가이산형일때, Pearson의카이제곱통계량또는우도비카이제곱통계량 (likelihood ratio Chi-square statistic) 을분리기준으로사용한다. 여기서목표변수가순서형또는사전그룹화된연속형인경우에는우도비카이제곱통계량이사용된다. 카이제곱통계량은관측도수 ( f ij ) 로이루어진 r c 분할표로부터계산된다. 분할표의구조는 < 표 2.1> 과같다. < 표 2.1> 분할표의구조 범주 1 범주 2 범주 c 합계 범주 1 f 11 f 12 f 1c f 1. 범주 2 f 21 f 22 f 2c f 2. 범주 r f r1 f r2 f rc f r. 합계 f.1 f.2 f.c f.. < 표 2.1> 의분할표로부터, Pearson 의카이제곱통계량은 χ 2 = i, j (f ij -e ij ) 2 e ij 과같이정의되고, 우도비카이제곱통계량은 χ 2 =2 i, j f ij log ( f ij e ij ) 으로정의된다. 이때두통계량의자유도 (degree of freedom) 는 (r-1)(c-1) 로서동일하다. 여기서, e ij 는분포의동일성또는독립성의가설하에서계산된기대도수 (expected frequency) 를말하며, 아래에주어진식
10 94 통계분석연구 2001년가을 ( 제6권제2호 ) e ij = f i. f.j f.. 과같이계산된다. 카이제곱통계량이자유도에비해서매우작다는것은예측변수의각범주에따른목표변수의분포가서로동일하다는것을의미한다. 따라서예측변수가목표변수의분류에영향을주지않는다고결론지을수있다. 자유도에대한카이제곱통계량값의크고작음은 P-값으로표현될수있는데, 카이제곱통계량값이자유도에비해서작으면 P-값은커지게된다. 결국분리기준을카이제곱통계량으로한다는것은 P-값이가장작은예측변수와그때의최적분리에의해서자식마디를형성시킨다는것을의미한다. CART(Classification and Regression Trees, Breiman et al.(1984)) 는지니 ( 범주형목표변수인경우적용 ) 또는분산의감소량 ( 연속형목표변수인경우적용 ) 을이용하여이지분리 (binary split) 를수행하는알고리즘이다. 지니지수 (Gini Index) 는불순도 (impurity) 를측정하는하나의지수이다. 임의의한개체가목표변수의 i 번째범주로부터추출되었고, 그개체를목표변수의 j 번째범주에속한다고오분류 (misclassification) 할확률은 P( i)p( j) 가된다. 여기에서 P( i) 는각마디에서한개체가목표변수의 i번째범주에속할확률이다. 이러한오분류확률을모두더하여 G = c j =1 i j P(i)P(j) 을얻을수있고이는위와같은분류규칙하에서오분류확률의추정치가된다. 여기서 c 는목표변수의범주의수를말한다. 일반적으로 CART는범주형목표변수에대해서는지니지수를분리기준으로사용한다. 지니지수는가마디에서의불순도또는다양도 (diversity) 를재는측도중의하나로써 G = c j=1 P(j)(1-P(j))= 1- c P(j) 2 =1- c ( n j j =1 j=1 n ) 2 와같이표현될수있다. 여기에서 n 은그마디에포함되어있는관찰치
11 데이터마이닝기법을이용한도시가계소비성향분석 95 수를말하고, n j 는목표변수의 i번째범주에속하는관찰치수를말한다. 지니지수는 n개의원소중에서임의로 2개를추출하였을때추출된 2개가서로다른그룹에속해있을확률을의미하며 Simpson의다양도지수 (diversity index) 로도알려져있다. 목표변수의범주가 2개인경우에는지니지수는다음과같이표현될수있으며 G =2P(1)P(2)=2( n 1 n )( n 2 n ) 이는카이제곱통계량을사용하는것과같은결과를갖는다. CART 알고리즘은지니지수를가장감소시켜주는예측변수와그변수의최적분리를자식마디로선택하는데, 지니계수의감소량은다음과같이계산된다. ΔG = G- n L n G L- n R n G R 여기서 n은부모마디의관측치수를말하고 n R 과 n L 는각각자식마디의관측치수를의미한다. 즉, 자식마디로분리되었을때의불순도가가장작도록자식마디를형성하는것이다. 이는다음과같은자식마디에서의불순도의가중합을최소화하는것과동일하다. P(L)G L + P(R)G R = n L n G L+ n R n G R Ⅲ. 도시가계소비성향분석 본장에서사용한자료는통계청에서실시한도시가계조사 2000년도 1 분기자료이다. 도시가계조사는 1963년이래로통계청에서매월실시하고있다. 이는도시가구의수입과지출을조사하여가구의생활실태와그
12 96 통계분석연구 2001년가을 ( 제6권제2호 ) 변동을명확히파악함으로써도시가계의생활수준과소비변화분석, 소비자물가지수편제에필요한가중치산정, 주거보상비산정, 각종경제 사회정책입안과평가등에유용한기초자료를제공하고있다. 이데이터셋은 15,618가구에대하여조사대상가구의각가구관련기본사항즉가구구분, 가구원수, 가구주, 배우자, 기타가구원에관한성별, 연령, 교육정도, 산업, 직업, 연간소득, 입주형태, 주택가격, 월세, 전세보증금등이있다. 주요조사내용으로는총수입및총지출에관련된사항으로구성되어있다. 이조사의원시자료는데이터마이닝의필수요소인신뢰도가높은충분한자료를포함하고있다. 그러나너무많은변수 (690 개 ) 의항목으로이루어져있어오히려데이터마이닝의예견능력을떨어뜨릴수있으므로최적의결과를산출할수있는자료의확보를위하여본연구에서사용한자료의변수는기본사항을포함하여 188개 (X1-X188) 의변수로재집계하여사용하였다. 3.1 Variable Selection 데이터셋을임의 (Family) 로지정한후 Response의역할을 Target으로지정하고나머지변수들의역할은 Input으로지정한다. Input 변수의 measurement을확인하여제대로지정되지않은변수에대하여수정한다. 목표변수 (Target) 는도시가계의소비성향의패턴 ( 높음 / 낮음 ) 을나타내는새로운변수 (Spend) 를생성하여분석하였다. 분류기준은 < 표 3.2> 에서보는바와같이한국은행에서정한 1999년도총저축율 33.7% 를사용하였다. < 표 3.1> 생성한목적변수 새로이생성된변수명 Spend 조건값 저축 (X175)/ 총수입 (X66) < ( 소비성향이큰집단 ) 저축 (X175)/ 총수입 (X66) > ( 소비성향이작은집단 )
13 데이터마이닝기법을이용한도시가계소비성향분석 97 < 표 3.2> 저축율검색결과화면 ( 작성기관 : 한국은행 ) 국민총저축율 민간저축율 개인순저축율 정부저축율 ( < 그림 3.1> 변수들의역할지정 모형화와타당성평가를위하여데이터셋 (Family) 을분석용, 평가용, 검증용세가지셋으로분할하여 Train, Validation, Test 데이터셋의비율을각각 40%, 30%, 30% 으로지정하였다. 모형구축에앞서목표변수 (Spend) 와관련성이높은변수들은결정계수 (R-square) 를기준으로선택하였고결정계수 (R-square) 를이용하여목표변수와관련성이높은입력변수를선택하였다. 또한, 분포도 (distribution) 등을이용하여각변수들의특성을살펴보았다. 조사년월 (X1), 조사구번호 (X2), 거처번호 (X3), 가구번호 (X4), 가구구분 (X5), 조사담당자 ID번호 (X63) 는소비성향패턴에영향을주지않는변수
14 98 통계분석연구 2001년가을 ( 제6권제2호 ) 이므로분석에서제외하였다. R-square를기준으로변수를선택하였는데목표변수에대한입력변수의 R-square값이 0.005보다작은변수를제거하였다. 그결과소비성향에영향을미치는변수는 < 표 3.3> 과같이 20개의변수가선택되었다. < 표 3.3> 목적변수와입력변수의데이터세트내용 Target Spend 0 : 소비성향이큰집단 1 : 소비성향이작은집단 Input 선택된입력변수설명선택된입력변수설명선택된입력변수설명 X10 가구주연령 X69 근로소득 X170 공적연금 X14 배우자성별 X71 배우자소득 X171 사회보험 X49 가구유형 X75 가구주 X173 기타지출 X50 세대구분 X93 저축찾은금액 X174 자산증가 X57 월세 X103 총지출 X175 저금 X67 소득 X148 납입금 X184 X68 경상소득 X169 조세 월말현금잔고 < 그림 3.2> 변수선택결과
15 데이터마이닝기법을이용한도시가계소비성향분석 99 또한선택된변수에대하여 Replacement 노드에서는결측값을다른값으로채워넣거나, 이상치에대한적절한대체를통해모형구축을효과적으로할수있는데이터변환을실시하였다. 이상치의자료에대한대체는연속형변수와범주형변수에대해기본대체값으로하고, 결측치에대한대체는연속형변수의결측치인경우 mean으로, 범주형변수의결측치인경우 most frequent value(count) 로사용하여 Imputation을실시하였다. 3.2 Logit Regression를이용한결과도시가계소비성향의패턴 ( 높음 / 낮음 ) 에대한영향, 즉목표변수를 Y라하고, 설명변수의수를 P라할때, Y가 0 또는 1인 Logit Regression 모형 Y는다음과같이모형을설정할수있다. log P ( Y =1 x 1,,x p ) 1-P ( Y =1 x 1,,x p ) =log P(Y =1 x 1,,x p ) P(Y =0 x 1,,x p ) =β 0 +β 1 x 1 +β 2 x 2 + +β p x p 연결함수 (Link function) 로는 logit 함수를사용한다. 가변수에대한코딩방식은 Deviation방식을사용하고변수선택을 Stepwise로지정했으며, 모형선택의기준은 Profit/Loss을사용했다. < 결과 3.1> 은 Logit Regression 분석을이용한결과로서총지출 (X103) 와저금 (X175) 가요인변수로선택되었다. 이요인변수를통하여소비성향패턴의반응확율에대한예측모형식을다음과같이만들수있다. Pˆ( y =1 x 1,,x p ) = Pˆ( spend =1 X 103, X 175 ) = X X 175
16 100 통계분석연구 2001년가을 ( 제6권제2호 ) < 결과 3.1> Logit Regression 분석을이용한모형 The DMREG Procedure Analysis of Maximum Likelihood Estimates Standard Wald Pr > Standardized Parameter DF Estimate Error Chi-square Chi-square Estimate exp(est) Intercept X X Odds Ratio Estimates Input Odds Ratio X X < 그림 3.3> Logit Regression 분석의모형평가 < 그림 3.3> 은 Logit Regression 분석의모형평가를그래프로나타내주고있다. < 그림 3.4> 은 Logit Regression 분석모형에의한오분류테이블이다. 민감도 (Sensitivity) 가 으로소비성향이큰집단을소비성
17 데이터마이닝기법을이용한도시가계소비성향분석 101 향이큰집단으로예측하는예측력이상당히높은것으로나타났다. 소비성향이큰집단에대한모형의예측율, 즉특이도 (Speciality) 는 이며, 소비성향이작은집단에대한모형의예측율인민감도도 로나타났다. Logit Regression 분석의모형전체에대한모형의정분류율 (Accuracy) 과오분류율 (Error rate) 도각각 , 으로잘분류되어졌다고할수있다. Logit Regression모형의예측력이가장높으므로영향력있는변수와모델을이기법으로부터도출한다. 또한추정된확률값을이용하여다른정보를도출할수도있다. < 그림 3.4> Logit Regression 모형의오분류테이블 3.3 Neural Network을이용 Neural Network 노드에서는디폴트로한개의은닉층을가지는 MLP(Multilayer Perceptron) 를이용하여 < 그림 3.5> 과같은과정으로 Neural Network 분석을수행한다. Neural Network 방법을사용하여입력변수에 20개의변수를지정하고히든노드의개수를 3으로지정하였다.
18 102 통계분석연구 2001년가을 ( 제6권제2호 ) < 그림 3.5> 히든노드가 3 인 Neural Network 모형 X10( 가구주연령 ) X14( 배우자성별 ) X49( 가구유형 ) X175( 저금 ) X184( 월말현금잔고 ) 입력노드 히든노드 출력노드 < 결과 3.2> Neural Network 를이용한모형 < 결과 3.2> 는 Results 윈도우에서 Output 탭을선택하면 Neural Network 의모수추정치 (parameter estimate) 들을살펴볼수있다. < 그림 3.6> 은 Neural Network의모형을평가하는것이다.
19 데이터마이닝기법을이용한도시가계소비성향분석 103 < 그림 3.6> Neural Network 의모형평가 < 그림 3.7> 은 Neural Network 모형에의한오분류테이블이다. 소비성향이큰집단을소비성향이큰집단으로예측하는예측력이대체로높은것으로나타났다. 소비성향이큰집단에대한모형의예측율, 즉특이도 (Speciality) 는 이며, 소비성향이작은집단에대한모형의예측율인민감도 (Sensitivity) 는 로나타났다. Neural Network의모형전체에대한모형의정분류율 (Accuracy) 과오분류율 (Error rate) 은각각 , 으로잘분류되어졌다. < 그림 3.7> Neural Network 모형의오분류테이블
20 104 통계분석연구 2001년가을 ( 제6권제2호 ) 3.4 Decision tree 를이용 < 결과 3.3> Decision tree 를이용한모형 % 37.5% % 62.5% Total 소비성향이큰집단 60.6% 소비성향이작은집단 39.4% X175 < >= % 3.9% % 96.1% Total % 71.3% % 28.7% Total X175 저금 >=711500인그룹에서비소비집단은 72.8%, 소비집단은 27.2% 로나타남 < >= % 51.5% % 48.5% Total X % 83.8% % 16.2% Total X103 저금 >= 인그룹에서비소비집단은 85.5%, 소비집단은14.5% 로나타남 < >= < >= % 73.3% % 26.7% Total % 11.8% % 88.2% Total % 87.5% % 12.5% Total % 60.1% % 39.9% Total 저금 < 이며총지출 < 인그룹에서비소비집단은 77.4%, 소비집단은 23.6% 로나타남 저금 >= 이며총지출 < 인그룹에서비소비집단은 80.8%, 소비집단은 19.2% 로나타남
21 데이터마이닝기법을이용한도시가계소비성향분석 105 Decision Tree는의사결정규칙 (decision rule) 을도표화하여관심대상이되는집단을몇개의소집단으로분류하거나예측을수행하는분석방법이다. 나무구조로부터어떤변수가소비성향의패턴분류 ( 높음 / 낮음 ) 에영향을많이주는지그리고어떤경우에소비성향의패턴분류 ( 높음 / 낮음 ) 에영향을적게주는지를분류한다. < 결과 3.3> 를통하여총5개의끝마디 (leaves) 를가지는나무구조를파악할수있다. 이는카이제곱통계량 (Chi-square statistic) 의 p값을기준으로노드를분류한다. < 결과 3.3> 는 Decision Tree 알고리즘을이용한다중나무구조 (Multitree Structure) 의분류결과이다. 소비성향이큰집단의비율은 60.6%, 소비성향이작은집단의비율은 39.4% 로나타나고있음을볼수있다. 소비성향의패턴에가장영향을주는변수는저금 (X175) 이며, 다음으로는총지출 (X103) 로구분된다. < 그림 3.8> Decision Tree 의모형평가 < 그림 3.8> 은 Decision tree의모형평가도표이다. < 그림 3.9> 는 Decision Tree 모형의오분류테이블인데소비성향이큰집단을소비성향이큰집단으로예측하는확률인특이도 (Speciality) 가 로예측력이높은것으로나타났다. 소비성향이작은집단에대한모형의예측율인민
22 106 통계분석연구 2001년가을 ( 제6권제2호 ) 감도 (Sensitivity) 는 로나타났다. Decision Tree의모형전체에대한모형의정분류율 (Accuracy) 과오분류율 (Error rate) 도각각 , 으로잘분류되어졌다고할수있다. < 그림 3.9> Decision Tree 모형의오분류테이블 3.5 Assessment 본절에서는최적의모형을얻기위해세가지모형을비교 평가하고이를통해하나의모형이선택되면선택된모형이다른모형에비해우수하다는사실을입증한다. 따라서예측을위해만든모형이고려된서로다른모형들중어느것이가장우수한예측력을보유하고있는지를비교, 분석하는과정으로서앞서설정된세가지기법을이용한모형예측결과를비교해본다. < 그림 3.10> ROC 곡선은앞서구축한세가지모형의성능을민감도와특이도에의해판단하는곡선으로수평축에는 1-특이도가, 수직축에는민감도가자리잡고있다. 세로점선이동일한 1-특이도에서의경우 Logit Regression 분석의민감도가가장높음을알수있다. 다시말해 1-특이도의상황에서오분류율이가장낮음을뜻해세모형중가장좋은모형임을나타낸다. 그외에도여러개의모형에대해서리프트 (Lift), 민감도 (Sensitivity), 이익 (Profit) 등을비교하여모형평가를할수있다.
23 데이터마이닝기법을이용한도시가계소비성향분석 107 < 그림 3.10> 세가지기법에의한 ROC 곡선 세가지기법에대한예측율의크기순서는 < 표 3.4> 에서보는바와같이 Logit Regression>Decision Tree>Neural Netwok 순으로나타났다. 세모형중에서 Logit Regression 분석에의한결과가가장우수한것으로판단되었다. 따라서 Logit Regression 분석을수행함으로써얻을수있는결과들중 Effect T-Scores를살펴보면 < 그림 3.11> 과같다. < 표 3.4> 세가지기법예측결과비교표 소비성향이큰집단 유형별예측율 소비성향이작은집단 모형전체의예측율 Logit Regression Neural Network Decision Tree
24 108 통계분석연구 2001년가을 ( 제6권제2호 ) < 그림 3.11> Logit Regression 의분석결과 Logit Regression의분석결과중 < 그림 3.11> 는선택된입력변수들에대한정보를시각적으로보여주고있다. 변수선택으로 Stepwise의방법에의해 Variable Selection 단계에서선택된변수들중 X103( 총지출 ) 과 X175( 저축 ) 이선택되었다. Ⅳ. 결론및토의 < 표 3.3> 에서선택된변수들을가지고 Logit Regression, Decision Tree, Neural Network 이세가지기법을이용해서도시가계의소비성향패턴을분석한결과세가지방법에의해산출된모형의예측정확도는대체로만족할만한것으로나타났다. 그결과중에서 Logit Regression 분석모형의예측도가가장높은것으로나타났다. 또한유형별예측정확도를살펴본결과세기법의모든결과에서소비성향이높은집단에대한예측정확도가그렇지않은집단에비해높은것으로나타났다. Logit Regression 분석을수행함으로써도시가계소비성향의패턴에가장영향을주는변수는 X103( 총지출 ) 과 X175( 저축 ) 이며특히 X103( 총지출 ) 이적
25 데이터마이닝기법을이용한도시가계소비성향분석 109 을수록, X175( 저축 ) 이많을수록소비성향이낮다는것을알수있다. 본본문의중요성은데이터마이닝 (Data mining) 의주요기법으로자리잡고있는 Logit Regression, Decision Tree, Neural Network 모형을이용하여공공기관에서조사한대용량의통계조사자료에유용하게활용될수있음을제시하는데있다. 분석결과가시각적이고분명한결과를나타낼수있어지식기반사회에필요한다양한정보와지식을재생산하거나정부의정책수립의기초자료로누구나용이하게사용될수있을것으로기대된다.
26 110 통계분석연구 2001년가을 ( 제6권제2호 ) < 참고문헌 > (1) 최종후, 한상태, 강현철, 김은석 (1998), AnswerTree를이용한데이터마이닝의사결정나무분석, 서울 : SPSS 아카데미. (2) 최종후, 한상태, 강현철, 김은석, 김미경 (1999), SAS Enterprise Miner를이용한데이터마이닝 -기능과사용법-, 서울 : 자유아카데미. (3) 강현철, 한상태, 최종후, 김차용, 김은석, 김미경 (1999), SAS Enterprise Miner를이용한데이터마이닝 -방법론및활용-, 서울 : 자유아카데미. (4) 강현철, 서두성, 최종후 (1998), Enterprise Miner의의사결정나무분석알고리즘, SAS사용자컨퍼런스발표자료집, 서울 : SAS-Korea, pp. 169~186. (5) 최종후, 서두성 (1999), 데이터마이닝의사결정나무의응용, 통계청 통계분석연구 제4권제1호 (99. 봄 ), pp.61~83. (6) 김정숙, 나종화 (2001), 데이터마이닝기법을이용한이동통신광고전략, 한국조사연구학회 2001춘계학술논문발표대회논문집, pp. 128~ 140. (7) 조용준, 허준, 최인규 (1998), Neural Connection을이용한데이터마이닝신경망분석, SPSS 아카데미 (8) 장남식, 홍성완, 장재호 (1999), 성공적인지식경영을위한핵심정보기술데이터마이닝, 대청 (9) M. J. Berry and G. Linoff (1997), Data Mining Techniques, Wiley Computer publishing. (10) Kurt Thearling, Ph.D(1995), From Data Mining to Database Marketing, IG White Paper 95/02.
27 데이터마이닝기법을이용한도시가계소비성향분석 111 Analysis of the Propensity to Consume for Urban Household Using Data Mining Technique. LuNa Byon <Abstract> In this paper, the introduction and techniques of data mining and its techniques such as Logistic Regression Analysis, Neural Network, and Decision Tree are discussed. For example, SAS Enterprise Miner, the most widely used data mining tool, has been applied to the urban household income and expenditure survey data which was carried out in 2000 by Korea National Statistical Office. The importance of this paper is to verify the possibility to reproduce new meaningful information and knowledge using data mining, according to application of the data mining method for the result of the massive statistical research, which are necessary for the knowledge based society.
슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More informationuntitled
통계청 통계분석연구 제 4 권제 1 호 (99. 봄 ) 61-83 데이터마이닝의사결정나무의응용 최종후 * 서두성 ** 본논문의목적은최근국내에서활발하게논의되고있는데이터마이닝의주요한도구인의사결정나무를정리, 소개하는데에있다. 본논문에서는 1997에실시된체 15대대통령선거예측조사자료를이용한무응답의분류및예측문제와개인휴대통신의해지자분석에이를적용한결과를보인다. 끝으로효율적통계조사를위한전략수립에의사결정나무활용가능성을검토한다.
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -
More informationMicrosoft PowerPoint - MDA DA pptx
SPSS 2 집단 ( 데이터및준비 ) 데이터 TURKEY.SAV 미국 Kansas 주립대학 Dr. Michael Finnegan 교수는야생칠면조와사육칠면조를구별하기위하여수컷칠면조 82마리에대해 9개항목을조사하였다. ID: 칠면조 id HUM: 상완골길이 ULN: 척골길이 CAR: car metacarus 길이 COR: 오탁상길이 RAD: 요골길이 FEMUR:
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More informationuntitled
통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information강의록
Analytic CRM 2006. 5. 11 tsshin@yonsei.ac.kr Analytic CRM Analytic CRM Data Mining Analytical CRM in CRM Ecosystem Operational CRM Business Operations Mgmt. Analytical CRM Business Performance Mgmt. Back
More information비선형으로의 확장
비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )
More information<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>
Ⅳ. 의사결정나무와 MARS 1. 실손의료보험자료를활용한 CART 분석 가. CART(Classification and Regression Tree) CART는데이터를가장잘분류해주는도구라고할수있는데데이터를잘분류해주는분리변수를선택하고분리지점을정해준다. 그리고가지치기를통해서분류의정도를결정할수있다. 데이터마이닝방법론들중가장널리쓰이는방법론으로반응변수가범주형또는연속형일때가능한의사결정나무의한알고리즘이다.
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 제 4 장 회귀분석 Chapter 4 Regression Analysis 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례
More information딥러닝 첫걸음
딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More information아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information歯4차학술대회원고(장지연).PDF
* 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More informationOverview Decision Tree Director of TEAMLAB Sungchul Choi
Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information데이터베이스-4부0816
04 269 270 2012 Database White Paper 271 272 2012 Database White Paper 273 274 2012 Database White Paper 275 276 2012 Database White Paper 277 278 2012 Database White Paper 279 280 2012 Database White
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationuntitled
ª Œª Œ 27ƒ 2B Á 2007 3œ pp. 193 ~ 199 ª ƒ w d w ƒ sƒ Methodology of Drought Assessment Using National Groundwater Monitoring Network Data «x Á½ Kwon, Hyung JoongÁKim, Seong Joon Abstract The objective
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ
More information슬라이드 1
대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45
3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information에듀데이터_자료집_완성본.hwp
단위학교성과제고를위한 교육여건개선방안탐색 모시는글 2012 년도에듀데이터활용학술대회프로그램 목차 n n [ 주제 1] 교육지원청수준에서기초학력결정요인분석연구 천세영 이성은 3 [ 주제 2] 비용함수모형에의한국 공립중학교적정교육비및가중치산출연구 오범호 윤홍주 엄문영 37 n n [ 주제 1] 토론 김영애 67 [ 주제 2] 토론 김성식 73 n n [ 주제
More information<B3EDB4DC28B1E8BCAEC7F6292E687770>
1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)
More informationNo Title
昤 昤 昤 ...43 ...45 ...45 ...59 (1-)...63 (1-)...63 ...68 (1)...71 [2-1] CRM... 11 [2-2] CRM...20 [2-3]...39 [3-1]...46 [3-2]...47 [3-3]...48 [3-4]...49 [3-5]...49
More informationTree 기반의 방법
Tree 기반의방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Tree 기반의방법 1 / 25 학습내용 의사결정나무 (decision tree) 회귀나무 (regresion tree) 분류나무 (classification tree) 비교앙상블알고리즘 (ensemble algorithm) 배깅 (bagging) 랜덤포레스트 (random
More informationabstract.dvi
통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)
More informationMicrosoft PowerPoint - MDA DA pptx
판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More information3Æí2Àå¨éÀç
333 442 443 1e 1.1 eecrmeprocurement e eelectronic e e IT 321 444 online offline e front back IT 445 2000 com 1 1.2 322 e e 10 potential customers 446 1.3 e 323 447 Michael Porter 323 2 value chain enterprise
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe
Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.405-425 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.405 * A Study on the Perceptions and Factors of Immigrant Background Youth
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED28313531323231292D2DB1E8C7F5C1D62E687770>
통계연구(2015), 제20권 제3호, 71-92 변수선택 기법을 이용한 한국 프로야구의 득점과 실점 설명 1) 김혁주 2) 김예형 3) 요약 한국 프로야구에서 팀들의 득점과 실점에 영향을 미치는 요인들을 규명하기 위한 연구를 하였 다. 2007년부터 2014년까지의 정규리그 전 경기 자료를 대상으로 분석하였다. 전방선택법, 후방 소거법, 단계별 회귀법, 선택법,
More informationDBPIA-NURIMEDIA
FPS게임 구성요소의 중요도 분석방법에 관한 연구 2 계층화 의사결정법에 의한 요소별 상관관계측정과 대안의 선정 The Study on the Priority of First Person Shooter game Elements using Analytic Hierarchy Process 주 저 자 : 배혜진 에이디 테크놀로지 대표 Bae, Hyejin AD Technology
More information878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu
한 국 통 계 학 회 논 문 집 2012, 19권, 6호, 877 884 DOI: http://dx.doi.org/10.5351/ckss.2012.19.6.877 Maximum Tolerated Dose Estimation Applied Biased Coin Design in a Phase Ⅰ Clinical Trial Yu Kim a, Dongjae Kim
More informationWeb-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P
Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 Presented by Boyoung Kim April 25, 2018 Boyoung Kim
More informationASETAOOOCRKG.hwp
청년층 희망 일자리와 실제 취업 일자리 격차 분석 - 고학력 청년 실업 원인에 대한 일고찰 - 홍 성 민 * ** 박 진 희 세계적인 경기침체가 본격화되는 2009년에는 실업문제가 가장 큰 사회경제적 이슈로 등장할 가 능성이 높으며, 특히 청년층의 고실업 문제와 더불어 일자리 기피 인해 나타날 가능성이 있는 NEET 화 현상에 대한 우려가 커질 것으로 예상된다.
More informationMATLAB for C/C++ Programmers
오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More information- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
More information슬라이드 1
Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치
More information14-X25-JSJ.hwp
지경택 송영호 * 정국삼 ** ( 주 ) 한라 * 충북대학교대학원안전공학과 ** 충북대학교안전공학과 (2001. 9. 12. 접수 / 2001. 10. 30. 채택 ) Categorical Analysis for the Factors of Industrial Accident Cases Kyung-Tek Jhee Young-Ho Song * Kook-Sam Chung
More information표본재추출(resampling) 방법
표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과
More informationResampling Methods
Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )
More information<BFACB1B831382D31365FBAF2B5A5C0CCC5CD20BAD0BCAEBFA120C0C7C7D120BFE4C0B2BBEAC1A420B9E6B9FD20BAF1B1B35F33C2F7BCF6C1A E687770>
Ⅴ. 앙상블기법과신경망모형 1. 앙상블기법 3) 앙상블 (Ensemble) 기법은 CART라는도구가괜찮다는철학하에만들어진것이다. 하지만 CART의성능이우수하지못할수있기때문에이를개선하기위해만들어졌다. 주어진자료를이용하여여러개의예측모형을먼저만들고, 그예측모형들을결합하여최종적으로하나의예측모형을만드는방법이다. 최초로제안된앙상블알고리즘은 1996년에만들어진 Breiman의배깅
More information???? 1
The Korean Journal of Applied Statistics (2014) 27(1), 13 20 DOI: http://dx.doi.org/10.5351/kjas.2014.27.1.013 Maximum Tolerated Dose Estimation by Stopping Rule and SM3 Design in a Phase I Clinical Trial
More information< B3E220B0DCBFEFC8A32E687770>
우체국보험 CRM 강화를위한추가가입유망고객에관한연구 3) 김소연 * 생명보험시장이포화되고시장내경쟁이심화됨에따라신규고객을유치하는것만큼이나기존고객을활용하여추가가입을유도하는것에대한전략적중요성이강조되고있다. 본연구에서는로지스틱회귀분석모형과의사결정트리모형을활용하여우체국보험고객을대상으로어떠한요인이추가가입에영향을미치는지에대해살펴봄으로써우체국보험사업 CRM 강화방안을모색해본다.
More information서론 34 2
34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More information서울도시연구_13권4호.hwp
~ An Analysis of Spatial-Temporal Changes in the Longevity Degree and Characteristics of the Long-live Community in Seoul Jae Hun Sim* Seung Cheol Noh** Hee Yeon Lee*** 7)8)9) 요약 주제어 This paper aims to
More information자료의 이해 및 분석
7. 평균치비교 1 두집단간평균차이검정 2 연속형변수 Interval scale( 간격척도 ) : 20 C, 30 C,, 변수간의가감가능 Ratio scale( 비척도 ) : 12, 13세, 변수간의가감승제모두가능 범주형자료로변환하여다양한분석가능 ( 연령 10 대, 20 대, 30 대.) 3 범주형자료의기술 분할표 (Contingency table) : 범주형자료를각변수별값의
More information조사연구 aim of this study is to find main cause of the forecasting error and bias of telephone survey. We use the telephone survey paradata released by N
조사연구 권 호 DOI http://dx.doi.org/10.20997/sr.17.3.5 연구노트 2016 년국회의원선거전화여론조사정확성분석 Analysis of Accuracy of Telephone Survey for the 2016 National Assembly Elections 1)2) a) b) 주제어 선거여론조사 전화조사 예측오차 편향 대국회의원선거
More information1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속
1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More informationChapter 7 – Classification and Regression Trees
비선형분류모델링 의사결정나무 Decision Tree 교사학습패러다임 Plant 관측 계측 FDC + 계측치 교사학습패러다임 Plant 관측 계측 FDC + 계측치 학습 모델 ƒ Data (x, y) 교사학습패러다임 Plant 관측 계측 FDC χ FDC + 계측치 학습 모델 ƒ Data (x, y) 계측치 ; ˆy 예측 교사학습패러다임 Plant Data
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More information제 1 부 연구 개요
2 출 문 차 1 부 과업의 개요 25 귀하 1 장 과업의 목적 27 1. 과업의 목적 및 목표 27 보고서를 2012년도 한돈자조금 성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2013년 2월 제 2 장 주요 과업 내용 29 1. 과업 진행 과정 29 2. 과정별 수행 방법 30 가. 한돈자조금사업의 경제적 성과분석 30 나.
More informationPowerPoint 프레젠테이션
[ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information보도자료 2014 년국내총 R&D 투자는 63 조 7,341 억원, 전년대비 7.48% 증가 - GDP 대비 4.29% 세계최고수준 연구개발투자강국입증 - (, ) ( ) 16. OECD (Frascati Manual) 48,381 (,, ), 20
보도자료 2014 년국내총 R&D 투자는 63 조 7,341 억원, 전년대비 7.48% 증가 - GDP 대비 4.29% 세계최고수준 연구개발투자강국입증 - (, ) 2014 10 30() 16. OECD(Frascati Manual) 48,381 (,, ), 2014,. * 통계법국가승인지정통계 ( 제 10501 호 ) 로서 1963 년에최초실시된이래, 매년시행하고있는전국
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 3~30 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 01. 08 2016. 01. 09 2016. 02. 25 ABSTRACT
More information3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >
. 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과
More information통계적 학습(statistical learning)
통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과
More informationMicrosoft PowerPoint - SPSS14_모듈별 구성소개
SPSS 모듈별구성 SPSS Korea 데이타솔루션 1 SPSS 제품구성 C/S 기능별제품구성 SPSS Server SPSS Client 기능 대량의데이터를처리할수있는고성능 machine 에탑재 서버의강력한스칼라처리기능과향상된수행능력을전달 SPSS Client 의처리요구를받아서통계분석작업을수행하는 Multi-thread Backend Engine 통계분석자
More information<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 4 pp. 1525-1531, 2012 http://dx.doi.org/10.5762/kais.2012.13.4.1525 저예산 독립영화의 구전 마케팅을 위한 스마트폰 모바일 애플리케이션 모델 개발 연구 김혜원 1* 1 청운대학교
More information<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D31C8A3292E687770>
소비자 식생활 라이프스타일이 구매에 미치는 영향 분석 김지윤 안병일 소비자 식생활 라이프스타일이 구매에 미치는 영향 분석* Effect of Consumers' Dietary Lifestyle on the Consumption Pattern of Processed Foods 김지윤** 안병일*** 6) Kim, Ji-Yoon Ahn, Byeong-Il 목 차
More information자료분석론 - 국민건강영양조사 분석
2014. 5. 10 ( 토 ) 자료분석론 국민건강영양조사자료 - 자료분석 (2) 서울대학교보건대학원 홍지민 강의순서 1) 국민건강영양조사이해 (4/19) - 자료의개요및원시자료 DB 2) 가중치및자료분석개요 (4/26) 3) 국민건강영양조사자료활용실습 (5/10) 2014-05-10 2 목차 자료분석개요 복합표본설계자료회귀분석 복합표본설계자료로지스틱회귀분석
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770>
IT OOKOOK 87 이론, 실습, 시뮬레이션 디지털논리회로 ( 개정 3 판 ) (Problem Solutions of hapter 9) . T 플립플롭으로구성된순서논리회로의해석 () 변수명칭부여 F-F 플립플롭의입력 :, F-F 플립플롭의출력 :, (2) 불대수식유도 플립플롭의입력 : F-F 플립플롭의입력 : F-F 플립플롭의출력 : (3) 상태표작성 이면,
More informationPowerPoint 프레젠테이션
빅데이터분석의현재와미래 2018 동국대학교통계학과이영섭 yung@dongguk.edu 데이터마이닝 (Data Mining) 데이터마이닝과 KDD KDD (Knowledge Discovery in Data) 란? - 데이터에서숨겨져있는유용한패턴들을알아나가는전체적인과정 KDD 학회의변천사 - Knowledge Discovery in Databases(1989)
More informationPowerPoint Presentation
5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.
More information외국인투자유치성과평가기준개발
2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.
More information슬라이드 1
회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고
More informationKDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경
KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>
자연과학연구 제27권 Bulletin of the Natural Sciences Vol. 27. 2013.12.(33-44) 교통DB를 이용한 교통정책 발굴을 위한 통계분석 시스템 설계 및 활용 Statistical analytic system design and utilization for transport policy excavation by transport
More informationMicrosoft PowerPoint - e pptx
Import/Export Data Using VBA Objectives Referencing Excel Cells in VBA Importing Data from Excel to VBA Using VBA to Modify Contents of Cells 새서브프로시저작성하기 프로시저실행하고결과확인하기 VBA 코드이해하기 Referencing Excel Cells
More informationKCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion
KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion
More information04김호걸(39~50)ok
Journal of Environmental Impact Assessment, Vol. 22, No. 1(2013) pp.39~50 Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model Kim, Hogul* Lee, Dong-Kun** Mo, Yongwon*
More information<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770>
미디어 경제와 문화 2014년 제12권 2호, 7 43 www.jomec.com TV광고 시청률 예측방법 비교연구 프로그램의 장르 구분에 따른 차이를 중심으로 1)2) 이인성* 단국대학교 커뮤니케이션학과 박사과정 박현수** 단국대학교 커뮤니케이션학부 교수 본 연구는 TV프로그램의 장르에 따라 광고시청률 예측모형들의 정확도를 비교하고 자 하였다. 본 연구에서
More information