슬라이드 1
|
|
- 서용 맹
- 5 years ago
- Views:
Transcription
1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 제 4 장 회귀분석 Chapter 4 Regression Analysis
2 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제 - 2 -
3 회귀분석 (Regression Analysis) 반응변수 (response variable) 목표변수 (target variable) 종속변수 (dependent variable) 설명 ( 예측 ) 되어지는변수 y = f,,, ( 1 2 p ) 설명변수 (eplanatory variable) 입력변수 (input variable) 독립변수 (independent variable) 반응변수를설명 ( 예측 ) 하는데이용되는변수 회귀분석이란반응변수가설명변수들에의해어떻게설명 ( 예측 ) 되는지를알아보기위 해적절한함수식으로표현하여분석하는통계적자료분석방법 - 3 -
4 회귀분석의종류 선형 (linear) vs 비선형 (nonlinear) 선형회귀분석 : 반응변수와설명변수의관계를선형함수로표현 비선형회귀분석 : 반응변수와설명변수의관계가비선형 단순 (simple) vs 다중 (multiple) 단순회귀분석 : 설명변수가한개 다중회귀분석 : 설명변수가두개이상 일변량 (univariate) vs 다변량 (multivariate) 일변량회귀분석 : 반응변수가한개 다변량회귀분석 : 반응변수가두개이상 - 4 -
5 - 5 - 회귀분석의종류 y = α + β p p y β β β α = y δ δ γ β β α = ) ep( 1 ) ep( m y β α β α = = = = p p p p p p y y y β β β α β β β α β β β α 단순선형회귀분석 다중선형회귀분석 다항회귀분석 비선형회귀분석 다변량회귀분석
6 회귀 (Regression) Francis Galton(1822~1911) : 아버지의키와아들의키의관계를연구 - 6 -
7 4.1.1 단순회귀모형 (Simple Regression) 판매대수 y i = a + b i + e i 예약대수 i y ŷ i y = a + b = i - 7 -
8 - 8 - 회귀계수 ( 모수 ) 의추정 n i y i i i, 1,, = + + = ε β α 단순선형회귀모형 n i b a y i i i, 1,, ˆ ˆ ˆ = + = + = β α 추정된회귀직선 i i i y y e ˆ = 잔차 (residual) 최소제곱추정 (Least Square Estimation) = = = = = n i n i i i i i n i i b a y y y e Min ) ( ) ˆ (, ) ( ) )( ( = = = n i i n i i i y y b b y a =
9 회귀계수에대한해석과검정 H 0 : β=0 자유도 n-1 인 t- 분포를따른다. s.e.(b) 는 b 의표준오차 (standard error) 이다
10 다중회귀모형 (Multiple Regression) n i y i ip p i i i, 1,, = = ε β β β α + = n p np n p p n y y y ε ε ε β β α X y X X β ε Xβ y ' ) ' ( ˆ 1 = + =
11 사례 영업수익평가지수 Correlation Variable Label y 1 창의력 단순추론능력 복합추론능력 계량능력 y 영업수익평가지수 어떤회사에서는신입사원에대해 4과목 (1= 창의력, 2= 단순추론능력, 3= 복합추론능력, 4= 계량능력 ) 의적성검사를실시하여왔다. 이회사에서는이러한적성검사과목들이사원의업무능력을평가하는데타당하지를알아보기위하여입사후일년간의실적을평가하여 업무능력지수 (y) 를산출하였다
12 분산분석표및회귀계수추정치 Analysis of Variance Source DF Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Variable Label DF Parameter Estimate Standard Error t Value Pr > t Standardized Estimate Intercept Intercept < 창의력 단순추론능력 < 복합추론능력 계량능력 <
13 분산분석표 (ANOVA Table) 제곱합의분할 n i= 1 ( y i y) 2 = n n 2 ( yˆ i y) + i= 1 i= 1 ( y i yˆ i ) 2 TSS = SSR + SSE 전체제곱합회귀제곱합오차제곱합 R 2 = SSR TSS = 1 SSE TSS 분산분석표 (ANOVA table) 요인 제곱합 자유도 평균제곱 분산비 회귀 SSR p MSR=SSR/p F=MSR/MSE 오차 SSE n-p-1 MSE=SSE/(n-p-1) (p-value) 전체 TSS n-1 H 0 : β1 = β2 = = β p =
14 회귀계수에대한검정 회귀계수에대한검정 H : β 0 t = b / s.e.( b ) ~ t( n p 1) 0 j = j j 표준화회귀계수 α β + β + + β + ε y * * * * * = + z z z p p z j = ( j j ) / s j 편상관계수 (partial correlation coefficient) 혈압 0.7 월급 혈압 -0.1 월급 나이
15 예 다중회귀분석의결과
16 매개변수 (Lurking Variables) 소아마비발병률 8. 0 C C1 청량음료판매량
17 매개변수 (Lurking Variables) correlation = C C1-17 -
18 매개변수 (Lurking Variables) correlation = 여름 C correlation = correlation = 겨울 C1-18 -
19 입력변수의선택 전진선택법 (Forward Selection) 입력변수를각변수의기여도에따라서하나씩추가하면서선택하는방법이다. 이방법은계산시간이빠르다는장점이있지만, 한번선택된변수는절대로제거되지않는다는단점이있다. 후진소거법 (Backward Elimination) 모든변수를포함하는완전모형으로부터시작하여불필요한변수를하나씩제거해나가는방법이다. 이방법은중요한변수가모형에서제외될가능성이적으므로비교적안전한방법이라할수있다. 그러나한번제외된변수는다시선택되지못한다는단점이있다. 단계적방법 (Stepwise Method) 전진선택법에후진소거법을결합한것으로서, 매단계마다선택과제거를반복하면서중요한변수를찾아내는방법이다. 이방법은중요한변수를하나씩추가로선택하면서이미선택된변수들이제거될수있는지를매단계마다검토하는방법이다. 그러나이방법에의해서찾아진모형도모든가능한회귀를통해서얻어진모형들보다못할수있다. 모든가능한회귀 가능한모든축소모형을고려하여가장좋은모형을찾아내는방법이다. 이방법은가장안전한방법이라고할수있지만, 입력변수가많은경우에는탐색시간이매우많이걸리며현실적으로사용하기어려운경우가종종있다
20 변수선택요약 Stepwise Selection: Step 1 Variable 4 Entered: R-Square = and C(p) = Analysis of Variance Source DF Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Summary of Stepwise Selection Step Variable Entered Variable Removed Label Number Vars In Partial R-Square Model R-Square C(p) F Value Pr > F 1 4 계량능력 < 단순추론능력 < 복합추론능력 창의력 창의력
21 분산분석표및회귀계수추정치 Analysis of Variance Source DF Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Variable Label DF Parameter Estimate Standard Error t Value Pr > t Standardized Estimate Intercept Intercept < 단순추론능력 < 복합추론능력 계량능력 <
22 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
23 4.2.1 로지스틱단순회귀모형 목표변수가이항형또는다항형으로나타나는경우가있다. 예를들어, 소비자가어떤상품을구입할것인지아닌지 ( 구입 =1, 구입하지않음 =0) 를나타내는변수는이항형이고, 고객의신용등급 (A= 매우좋음, B= 좋음, C= 좋지않음, D= 매우좋지않음 ) 을나타내는변수는다항형이다. y ŷ y = 로지스틱회귀분석 P ( y = 1 ) log 1 P ( y = 1 ) = α + β + ε
24 사례 독성실험자료 번호 용량 (g) 사망유무 1 0 무 2 0 무 3 0 무 4 0 무 5 1 유 6 1 무 7 1 무 8 1 무 9 2 무 10 2 유 11 2 유 12 2 유 13 3 유 14 3 유 15 3 유 16 3 유 분석목적약의성분 사망유무 Y
25 잘못된분포가정 사망유무 추측된선 : E(Y ) 1 사망 = 1 생존 = 투약용량 (g)
26 P(Y =1) 용량 () 실험대상수사망수 (Y ) 사망비율 / / /4 = P(Y =1) P(Y =1) 를 에의해쉽게설명한다면
27 로짓모형 logit P 1 P ( ) P = log odds = ln Probability 0 ½ 1 Odds Logit
28 ^ P(Y =1) 1 실제사망확률 예측사망확률
29 4.2.2 로지스틱회귀분석 오즈비 (Odds Ratio) 오즈비가 1보다작다 ( 계수가음의값을갖는다 ) 는것은입력변수 가감소방향으로영향을미침을의미하고, 반대로오즈비가 1보다크다 ( 계수가양의값을갖는다 ) 는것은증가방향으로영향을미침을의미한다. 예를들어, 월수입 ( 단위 100만원 ) 를입력변수로하고어떤상품에대한구입여부 (1= 구입, 0= 구입하지않음 ) y를목표변수로하여분석하는경우에 b=3.73 이라고해보자. 이는 가 1단위 ( 백만원 ) 증가하면구매하지않을확률에대한구매할확률의상대비가 ep(3.73)=42배증가한다는것을의미한다
30 사례 신용평가문제 대출금 대출금잔액 담보금 대출사유 직업 근무년수신용거래수 신용상태 최초신용 P( 나쁨 ) P( 좋음 ) HomeImp Office HomeImp Mgr HomeImp Office HomeImp Office HomeImp Office HomeImp Other DebtCon Mgr HomeImp Other HomeImp Other HomeImp ProfEe HomeImp Mgr DebtCon Other HomeImp Office HomeImp Other ^ P( 신용상태 = ep ( ) ) = X X 1 + ep ( X X + ) HomeImp Office 좋음 HomeImp Other HomeImp Office HomeImp Office HomeImp Office DebtCon ProfEe HomeImp Office
31 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
32 회귀분석의특징 장점 친밀성 (familiarity) 실제성 (feasibility) 해석상의편리 (interpretability) 단점과대안 부적절하거나불필요한입력변수 : 변수선택방법사용 선형성 : 다항회귀모형, 의사결정나무분석, 신경망분석등사용 교호작용의결여 : 다항회귀모형, 의사결정나무분석등사용 명목형변수 : 가변수 (dummy variable) 사용 결측값 : 대체 (imputation)
33 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
34 4.4.1 분석흐름도작성 데이터소스 : HOUSING 변수 MEDV의역할칼럼을 Target으로지정한다. 변수 CHAS의레벨칼럼을 Binary로지정하고, 나머지변수들의레벨칼럼은 Interval 로지정한다. 데이터분할 (Data Partition) 노드 데이터분할 (Data Partition) 노드의속성패널에서데이터셋할당영역을분석용 70%, 평가용 30%, 검증용 0% 로설정한다
35 4.4.2 변수들의분포에대한탐색 변수편집메뉴이용
36 통계량탐색 (StatEplore) 노드 - 결과
37 멀티플롯 (Multi Plot) 노드 - 결과
38 4.4.3 회귀 (Regression) 노드의실행과결과보기
39 회귀 (Regression) 노드 - 결과 : 출력윈도우
40 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
41 분석사례 - 2 를위한다이어그램 회귀노드의속성패널
42 4.5.1 변수선택방법의적용 회귀노드의속성패널 1 다이어그램에서회귀 - 변수선택노드를클릭하여이노드의속성패널이나타나게한다. 2 모델옵션 (Model Options) 영역의입력코딩 (Input Coding) 필드를 GLM 으로설정한다. 또한출력옵션영역의계획행렬 (Design Matri) 필드를 ` 예 ' 로설정한다. 3 모델선택영역의모델선택 (Selection Model) 필드를단계별선택으로설정한다. 선택옵션기본값사용 (Use Selection Defaults) 필드를 ` 아니요 ' 로설정한후, 선택옵션 (Selection Options) 필드의... 버튼을클릭한다. 그러면선택옵션 (Selection Options) 대화상자가나타난다. 4 선택옵션 (Selection Options) 대화상자에서변수추가기준유의수준 (Entry Significance Level) 필드에 0.2, 변수제거기준유의수준 (Stay Significance Level) 필드에 0.1 을입력한다. 5 최대단계수 (Maimum Number of Steps) 필드에 100 을입력한다 ( 이필드의값은반드시분석에사용될변수의수보다많거나같아야한다 ). 확인버튼을클릭하여다이어그램으로돌아간다
43 변수선택과정의요약
44 회귀계수추정치
45 범주형변수에대한코딩 : 가변수 (Dummy Variable)
46 4.5.2 교호작용과이차항의추가 1 다이어그램에서회귀 - 다항노드를클릭하여속성패널이나타나게한다. 2 속성패널의방정식 (Equation) 영역에서 2 요인교호작용 (Two-Factor Interactions) 필드와다항식항 (Polynomial Terms) 필드를 ` 예 ' 로설정한다. 이는모든 2 요인교호작용과모든 2 차항들을모형에포함시키도록설정하는것이다
47 4.5.3 모형평가
48 4.5.4 예측확률계산 1 다이어그램에서모델비교 (Model Comparison) 노드를클릭하여이노드의속성패널이나타나게한다. 2 속성패널에서선택편집기필드의... 버튼을클릭한후, 회귀 - 변수선택의칼럼을 ` 예 ' 로설정하고다른두칼럼을 ` 아니오 ' 로설정하여라. 3 선택편집기를닫고, 다이어그램에서스코어 (Score) 노드를실행한다. 결과윈도우의내용을살펴보고결과윈도우를닫는다. 모델비교노드의속성패널
49 스코어 (Score) 노드 - 속성패널 스코어노드의속성패널 4 다이어그램에서스코어 (Score) 노드를클릭하여이노드의속성패널이나타나게한다. 5 속성패널의내보낸데이터필드의... 버튼을클릭한다. 그러면내보낸데이터대화상자가나타난다. 6 내보낸데이터대화상자에서포트칼럼이 SCORE 인열을선택하고탐색 (X) 버튼을클릭한다
50 스코어 (Score) 노드 - 탐색
51 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
52 분석사례 -3 을위한분석흐름도
53 4.6.1 대화식구간화 : Interactive Binning 노드
54 대화식구간생성 (Interactive Binning) 노드 - 속성패널 대화식구간생성노드의속성패널 1 다이어그램의대화식구간생성 (Interactive Binning) 노드를클릭하여이노드의속성패널이나타나게한다. 2 속성패널의스코어영역에서그룹레벨 (Group Level) 필드를 Nominal로변경한다 ( 초기값 =Ordinal). 또한 Gini 임계치 (Gini Cutoff) 필드를 `0' 으로변경한다 ( 초기값 =20). 모든변수들에대하여범주화를수행 3 속성패널에서대화식범주화 (Interactive Binning) 필드의... 버튼을클릭한다 ( 대화식범주화대화상자가나타난다 ). 이대화상자에서그룹화탭을클릭한다. 4 대화식범주화대화상자에서범주 5를선택한후, 마우스오른쪽버튼을클릭하고팝업메뉴에서범주분할메뉴를선택한다. 그러면범주분할대화상자가나타난다
55 대화식범주화 : DEBTINC( 구간형변수 ) 의경우 5 범주분할대화상자에새로운임계치 `44' 를입력한다 ( 새로운범주가나타난다 ). 새로운범주를선택한후, 마우스오른쪽버튼을클릭하고팝업메뉴에서그룹 =6 메뉴를선택한다
56 대화식범주화 - 범주병합 6 그림에서와같이 2 번째범주에서 5 번째범주를동시에선택한다 ( 이들범주들은이벤트비율에큰차이가없다 ). 선택영역을마우스오른쪽버튼으로클릭한후, 팝업메뉴에서범주병합메뉴를선택한다
57 변수 DEBTINC 에대한범주화 그러면그림과같이 4 개의범주가하나로병합되게된다. 결과적으로 3 개의그룹으로범주화가수행되는데, 이를변수 DEBTINC 에대한최종범주화로사용하기로하자 (Gini 값에큰차이가없음을확인하여라 )
58 대화식범주화 : DELINQ( 범주형변수 ) 의경우 1 대화식범주화대화상자에서다음화살표를클릭한다 ( 또는선택한변수목록에서변수 DELINQ 를선택한다 ). 2 값이결측값 (missing) 과 0 인범주들을동시에선택한다. 선택영역을마우스오른쪽버튼으로클릭하고팝업메뉴에서할당메뉴를선택한다. 그룹선택대화상자에서 `1' 을선택한다. 3 값이 2 부터 15 인범주들을동시에선택한다. 선택영역을마우스오른쪽버튼으로클릭하고팝업메뉴에서할당메뉴를선택한다. 그룹선택대화상자에서 `3' 을선택한다
59 대화식범주화 : 변수 CLAGE 의경우 1 대화식범주화대화상자의선택한변수목록에서변수 CLAGE 를선택한다. 2 앞에서와유사하게분할과병합을진행하여 4 개의범주 `MISSING, CLAGE<150, 150<=CLAGE<240, 240<=CLAGE' 를구성한다. 3 `CLAGE<150' 범주를선택한후, 마우스오른쪽버튼으로클릭하고팝업메뉴에서그룹 =1 메뉴를선택한다. 이러한방식으로 MISSING 과 `CLAGE<150' 범주에그룹 1, `150<=CLAGE<240' 범주에그룹 2, `240<=CLAGE' 범주에그룹 3 을할당한다
60 4.6.2 변수들의설정변경 : Metadata 노드 메타데이터노드의속성패널 1 메타데이터 (Metadata) 노드를실행하고결과윈도우를닫는다. 2 다이어그램에서메타데이터 (Metadata) 노드를클릭하여이노드의속성패널이나타나게한다. 3 변수설정대화상자에서그림과같이각변수들에대한설정을지정한다. 목표변수 BAD의새로운역할칼럼을 Target으로설정한다. 또한새로운순서칼럼을오름차순으로설정한다. 이는목표범주를 0( 신용상태 : 좋음 ) 으로바꾸기위한것이다. 5개의구간화변수 GRP_CLAGE, GRP_DEBTINC, GRP_DELINQ, GRP_ VALUE, GRP_DEROG의새로운역할칼럼을 Input으로설정한다. 나머지 - 모든 60 변수들의 - 새로운역할칼럼을 Rejected로설정한다.
61 4.6.3 로지스틱회귀분석을이용한계수추정
62 4.6.4 평점표작성 사후확률추정 회귀계수추정치의보정 보정된추정치 = ( 회귀계수추정치 ) ( 가장작은회귀계수추정치 ) POD 를이용한변환 평점 = 보정된추정치 X [POD/log(2)]
63 평점표작성의예 (POD=50)
64 4.6.4 평점표의타당성평가
65 K-S(Kolmogrov-Smirnov) 통계량 20 이하 : 이용가치가희박한 40: 적당한 ( 이용할만한 ) 40 ~ 50: 좋은 50 ~ 60: 매우좋은 60 ~ 75: 경이로운 75 이상 : 지나치게좋은 ( 잘못된것이있는지의심할만한 )
66 민감도와특이도
67 민감도와특이도
68 ROC(Receiver Operation Characteristic) 곡선
69 모델비교 (Model Comparison) 노드 - 결과
70 모델비교 (Model Comparison) 노드 - 결과 : 테이블보기
71 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 - 1: 선형회귀분석 4.5 분석사례 - 2: 로지스틱회귀분석 4.6 분석사례 - 3: 신용평점표작성 4.7 연습문제
72 회귀 (Regression) 노드 - 속성패널과항편집기 회귀노드의속성패널
슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 7 주차 회귀분석 Regression Analysis 최종후, 강현철 차례 4.1 선형회귀분석 (Linear Regression Analysis) 4.2 로지스틱회귀분석 (Logistic Regression Analysis) 4.3 회귀분석의특징과제약 4.4 분석사례 -
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information슬라이드 1
회귀분석 (Regression Analysis) 회귀분석은종속변수와독립변수들갂의관련성, 또는독립변수를 이용하여종속변수를예측하는데사용하며, 종속변수와독립변수 들의함수적관련성을이용하여분석한다. 회귀분석의목적 (1) 예측을목적 주어진독립변수를이용하여종속변수의평균값을추정할목적으로 기존의자료를이용하여회귀모형을세움 (2) 각독립변수가종속변수에미치는영향을평가 종속변수에어떤독립변수들이유의한영향을미치는지를알아보고
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More informationabstract.dvi
통계자료분석 강희모 2014년 5월 14일 목차 제 1장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석(ANalysis Of VAriance)
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED28313531323231292D2DB1E8C7F5C1D62E687770>
통계연구(2015), 제20권 제3호, 71-92 변수선택 기법을 이용한 한국 프로야구의 득점과 실점 설명 1) 김혁주 2) 김예형 3) 요약 한국 프로야구에서 팀들의 득점과 실점에 영향을 미치는 요인들을 규명하기 위한 연구를 하였 다. 2007년부터 2014년까지의 정규리그 전 경기 자료를 대상으로 분석하였다. 전방선택법, 후방 소거법, 단계별 회귀법, 선택법,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More informationeda_ch7.doc
( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug
More informationMATLAB for C/C++ Programmers
오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..
More information비선형으로의 확장
비선형으로의확장 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 비선형으로의확장 1 / 30 개요 선형모형은해석과추론에장점이있는반면예측력은제한됨능형회귀, lasso, PCR 등의방법은선형모형을이용하는방법으로모형의복잡도를감소시켜추정치의분산을줄이는효과가있음해석력을유지하면서비선형으로확장다항회귀 (polynomial regression): ( 예 )
More informationChapter 8 단순선형회귀분석과 상관분석
Chapter 9 회귀모형 regression analysis 9.1 머리말 (Intro) Sir Francis Galton (18-1911) s studies on genetics Heights of parents and children: 부모의신장에비해 세의신장이일반평균치에복귀 (revert to the pop mean) 하는특성을발견하였다. 복귀 (revert)
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationMicrosoft Word - multiple
Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj
More information제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라
제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information슬라이드 1
Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값
More information슬라이드 1
Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i
More information1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ
More information슬라이드 1
대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기
More information01-07-0.hwp
선거와 시장경제Ⅱ - 2000 국회의원 선거시장을 중심으로 - 발간사 차 례 표 차례 그림 차례 제1부 시장 메커니즘과 선거시장 Ⅰ. 서 론 Ⅱ. 선거시장의 원리와 운영방식 정당시장 지역구시장 문의사항은 Q&A를 참고하세요 정당시장 한나라당 사기 종목주가그래프 c 2000 중앙일보 Cyber중앙 All rights reserved. Terms
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft Word - LectureNote.doc
5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd
More information선형모형_LM.pdf
변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를
More information제 1 부 연구 개요
2 출 문 차 1 부 과업의 개요 25 귀하 1 장 과업의 목적 27 1. 과업의 목적 및 목표 27 보고서를 2012년도 한돈자조금 성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2013년 2월 제 2 장 주요 과업 내용 29 1. 과업 진행 과정 29 2. 과정별 수행 방법 30 가. 한돈자조금사업의 경제적 성과분석 30 나.
More informationuntitled
통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More information슬라이드 1
Principles of Econometrics (3e) Ch. 6 다중회귀모형에관한 추가적인논의 013 년 1 학기 윤성민 6장의주요내용 다중회귀모형의모수에관한둘이상의가설로구성된귀무가설을동시에검정하는경우 ( 결합가설의검정 ) F-검정 표본의정보이외에비표본정보도함께이용하는경우 제한최소제곱법 모형설정의오류를찾는방법 RESET 검정 다중공선성문제의탐지와해결방법
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information<C8A3C5DABBEABEF720B0E6B1E2B5BFC7E220BFB9C3F820B8F0B5A8BFA120B4EBC7D120BFACB1B85FC3D6C1BE28C7D1C3A2BFB1292E687770>
碩 士 學 位 論 文 호텔산업 경기동향 예측 모델에 대한 연구 - 월별 계절성 더미변수를 활용한 다중회귀모형을 적용 - 2016 年 2 月 韓 南 大 學 校 社 會 文 化 行 政 福 祉 大 學 院 情 報 統 計 學 科 韓 昌 燁 호텔산업 경기동향 예측 모델에 대한 연구 - 월별 계절성 더미변수를 활용한 다중회귀모형을 적용 - 指 導 敎 授 김 명 준 이 論
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More informationMATLAB for C/C++ Programmers
회귀분석 (Regression Analysis) 1 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지.. 2 변수간의관계 확정적 (deterministic)
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information자료분석론 - 국민건강영양조사 분석
2014. 5. 10 ( 토 ) 자료분석론 국민건강영양조사자료 - 자료분석 (2) 서울대학교보건대학원 홍지민 강의순서 1) 국민건강영양조사이해 (4/19) - 자료의개요및원시자료 DB 2) 가중치및자료분석개요 (4/26) 3) 국민건강영양조사자료활용실습 (5/10) 2014-05-10 2 목차 자료분석개요 복합표본설계자료회귀분석 복합표본설계자료로지스틱회귀분석
More informationMicrosoft PowerPoint - MDA DA pptx
SPSS 2 집단 ( 데이터및준비 ) 데이터 TURKEY.SAV 미국 Kansas 주립대학 Dr. Michael Finnegan 교수는야생칠면조와사육칠면조를구별하기위하여수컷칠면조 82마리에대해 9개항목을조사하였다. ID: 칠면조 id HUM: 상완골길이 ULN: 척골길이 CAR: car metacarus 길이 COR: 오탁상길이 RAD: 요골길이 FEMUR:
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information고객관계를 리드하는 서비스 리더십 전략
제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0
More informationMicrosoft PowerPoint - LM 2014s_Ch4.pptx
1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality
More informationMicrosoft PowerPoint - Info R(3) pptx
Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More informationEndpoint Protector - Active Directory Deployment Guide
Version 1.0.0.1 Active Directory 배포가이드 I Endpoint Protector Active Directory Deployment Guide 목차 1. 소개...1 2. WMI 필터생성... 2 3. EPP 배포 GPO 생성... 9 4. 각각의 GPO 에해당하는 WMI 연결... 12 5.OU 에 GPO 연결... 14 6. 중요공지사항
More information<4D6963726F736F667420576F7264202D20B1E2BBF3C5EBB0E85F36C0E55FC7D0BBFD2E646F6378>
6. Relaton and Statstcal Weather Forecastng (관 계와 통계적인 일기예보) 6.1 Background 대기운동은 비선형이므로 결정론적인 의미에서 완벽하게 예측될 수 없다. 보완책으 로 통계적인 방법이 유용하고 예보의 일부로 사용된다. 1 수치예보모델 없이 순수하게 통계 모형만을 이용하는 경우 단시간 예보나 아주 긴 시간(수주이상)
More informationPowerPoint Template
JavaScript 회원정보 입력양식만들기 HTML & JavaScript Contents 1. Form 객체 2. 일반적인입력양식 3. 선택입력양식 4. 회원정보입력양식만들기 2 Form 객체 Form 객체 입력양식의틀이되는 태그에접근할수있도록지원 Document 객체의하위에위치 속성들은모두 태그의속성들의정보에관련된것
More information임정연 이영민 1) 주저자, 숙명여자대학교인력개발정책학박사과정, 2) 교신저자, 숙명여자대학교여성 HRD 대학원부교수,
임정연 이영민 1) 주저자, 숙명여자대학교인력개발정책학박사과정, E-mail: jungyon82@naver.com 2) 교신저자, 숙명여자대학교여성 HRD 대학원부교수, E-mail: ymlee@sookmyung.ac.kr 규모 재직근로자대상교육훈련실시 ( 개소,%) 1 인당평균집체훈련시간 1 인당평균집체훈련비용 ( 천원 ) 전체수강료시설비기타비용 전체
More informationMicrosoft PowerPoint - SPSS14_모듈별 구성소개
SPSS 모듈별구성 SPSS Korea 데이타솔루션 1 SPSS 제품구성 C/S 기능별제품구성 SPSS Server SPSS Client 기능 대량의데이터를처리할수있는고성능 machine 에탑재 서버의강력한스칼라처리기능과향상된수행능력을전달 SPSS Client 의처리요구를받아서통계분석작업을수행하는 Multi-thread Backend Engine 통계분석자
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information자료의 이해 및 분석
7. 평균치비교 1 두집단간평균차이검정 2 연속형변수 Interval scale( 간격척도 ) : 20 C, 30 C,, 변수간의가감가능 Ratio scale( 비척도 ) : 12, 13세, 변수간의가감승제모두가능 범주형자료로변환하여다양한분석가능 ( 연령 10 대, 20 대, 30 대.) 3 범주형자료의기술 분할표 (Contingency table) : 범주형자료를각변수별값의
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More information슬라이드 1
Prncples of Econometrcs (3e) 013 년 1 학기 윤성민 8.1. 이분산의본질 ( 예 ) 식료품지출 / 식료품지출과소득에관한 40 개표본 8.1 이분산의본질 3 8.1 이분산의본질 4 8.1 이분산의본질 동분산가정 5 8.1 이분산의본질 이분산가정 6 8.1
More informationMicrosoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
More information¾DÁ ÖÖ„�Àº¨Ö´ä
비선형회귀모형들 이재용 서울대학교통계학과 2015 년 1 월 25 일 다항회귀 I d 차다항회귀모형 y i = β 0 + β 1 x i + β 2 x 2 i +... + β d x d i + ϵ i, ϵ i (0, σ 2 ), i = 1, 2,..., n 특성들 1. 가장간단하게 x 의비선형회귀함수를표현할수있는방법이다. 2. 4 차가넘어가면함수의모양이너무유연해져서,
More informationChapter 7 분산분석
Chapter 7 분산분석 (ANalysis Of VAariance, ANOVA) 2014/4/29 7.1 머리말 (Introduction) 분산분석 (analysis of variance) : 전체변동을몇개의성분으로분할하는기법 (Divide total variation into several components) 전체변동에대해각각의변동요인의기여규모를파악 (contribution
More informationMicrosoft Word - src.doc
IPTV 서비스탐색및콘텐츠가이드 RI 시스템운용매뉴얼 목차 1. 서버설정방법... 5 1.1. 서비스탐색서버설정... 5 1.2. 컨텐츠가이드서버설정... 6 2. 서버운용방법... 7 2.1. 서비스탐색서버운용... 7 2.1.1. 서비스가이드서버실행... 7 2.1.2. 서비스가이드정보확인... 8 2.1.3. 서비스가이드정보추가... 9 2.1.4. 서비스가이드정보삭제...
More informationnonpara6.PDF
6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,
More informationMicrosoft Word - 동태적 모형.doc
동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x
More information(000-000)실험계획법-머리말 ok
iii Design Analysis Optimization Design Expert Minitab Minitab Design Expert iv 2008 1 v 1 1. 1 2 1. 2 4 1. 3 6 1. 4 8 1. 5 12 2 2. 1 16 2. 2 17 2. 3 20 2. 4 27 2. 5 30 2. 6 33 2. 7 37 2. 8 42 46 3 3.
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행
Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID
More informationASETAOOOCRKG.hwp
청년층 희망 일자리와 실제 취업 일자리 격차 분석 - 고학력 청년 실업 원인에 대한 일고찰 - 홍 성 민 * ** 박 진 희 세계적인 경기침체가 본격화되는 2009년에는 실업문제가 가장 큰 사회경제적 이슈로 등장할 가 능성이 높으며, 특히 청년층의 고실업 문제와 더불어 일자리 기피 인해 나타날 가능성이 있는 NEET 화 현상에 대한 우려가 커질 것으로 예상된다.
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More information<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationMicrosoft PowerPoint - ANOVA pptx
분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 - 1. 분산분석 2. 회귀분석 준비 R과 R studio 설치 https://cran.r-project.org/bin/windows/base/ R 다운로드후설치 https://www.rstudio.com/products/rstudio/download/#download
More information통계적 학습(statistical learning)
통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과
More information슬라이드 1
Principle of Econometric (3e) 03 년 학기 윤성민 .0 서론 연립방정식모형 - 둘이상의종속변수가있는일련의방정식들로구성 OLS로추정하면부적절함 새로운추정방법필요 - 연립방정식추정법은계량경제학이통계학의회귀분석기법을넘어서는학문이라는것을보여주는분야이기도함 . 공급및수요모형 Demand: Supply: Q=α P+α X + e Q=β P+ e
More information게임 기획서 표준양식 연구보고서
ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ ᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞᆞ
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>
제 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics) 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion) 고검정 (es) 하는학문 거시소비함수 (Keynse). C=f(Y), 0
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More information2011년 제 9회 최우수상.hwp
1) 고려대학교교육학과석사과정 (nayoung725@yahoo.co.kr) 2) 고려대학교교육학과박사과정 (seo2jin@hanmail.net) 3) 고려대학교교육학과석사과정 (premier110@hanmail.net) 성별지역계열학업진행여부 총사례수 일주일평균아르바이트시간 ( 시간 ) 남 1510 8.9 여 1457 8.4 동지역 2573 8.5
More informationMicrosoft Word - sbe_anova.docx
ANOVA 기본개요세집단이상인평균비교 => 일원분산분석집단을요인 (factor) 혹은처리효과 (treatment effect) 라하고집단의개별값을수준 (level) 이라한다. 요인이하나인경우 one-way ANOVA 분산분석 (ANOVA Analyss Of VArance) 은실험설계로부터유래, 분산 ( 변동 ) 에의해요인 ( 모형 ) 의유의성를검증한다. 실험관심대상에대한정보를얻기위한계획된테스트나관측절대실험
More information22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를
22 장정규성검정과정규화변환 22.1 시각적방법 22.1.1 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 판단하는시각적분석방법이다. Q-Q 플롯은자료의분위수와특정( 이론적) 분포의분위수를구하여산점도로나타내거나,
More information(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)
More informationMicrosoft PowerPoint - chap06-2pointer.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 자기상관 Auocorrelaion 111 유효성 (efficiency, accurae esimaion/predicion) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Auocorrelaion) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information표본재추출(resampling) 방법
표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과
More information한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과
한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과 - 1 - KP 11 CP 2015 Salvia miltiorrhizae Radix Salviae Miltiorrhizae Radix et Rhizoma Salvia miltiorrhiza Bunge Salvia miltiorrhiza Bunge salvianolic
More informationMicrosoft Word - ch8_influence.doc
REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More information<31372DB9DABAB4C8A32E687770>
김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May
More informationResampling Methods
Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )
More informationuntitled
통계청 통계분석연구 2001 년가을 ( 제 6 권제 2 호 ) 85-111 데이터마이닝기법을이용한도시가계소비성향분석 변루나 * 본논문에서는데이터마이닝과주요분석기법인로지스틱회귀분석, 신경망, 의사결정나무를소개하였다. 데이터마이닝적용사례로 2000년통계청에서실시한도시가계조사자료를데이터마이닝도구인 SAS Enterprise Miner를활용해분석하였다. 대량의통계조사결과자료에데이터마이닝기법을이용한분석을보임으로써지식기반사회에필요한새로운의미있는정보와지식을재생산할수있는가능성을제시하고검토하는데에본논문의의의가있다.
More information29-6(본문).pdf
The Korean Journal of Applied Statistics (2016) 29(6), 1095 1106 DOI: http://dx.doi.org/10.5351/kjas.2016.29.6.1095 Variable selection with quantile regression tree Youngjae Chang a,1 a Department of Information
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임
More informationChapter 7 분산분석
Chapter 8 실험계획및분산분석 (Experimental Design & ANalysis Of VAariance, ANOVA) 2017/5/01 8.1 선형모형과분산분석 (Linear Model & Analysis of Variance) 선형모형 (linear model): 설명변수들의선형의선형결합의형태로반응변수를설명하고자함. (to explain the
More information(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information