PowerPoint 프레젠테이션

Size: px
Start display at page:

Download "PowerPoint 프레젠테이션"

Transcription

1 빅데이터분석의현재와미래 2018 동국대학교통계학과이영섭

2 데이터마이닝 (Data Mining)

3 데이터마이닝과 KDD KDD (Knowledge Discovery in Data) 란? - 데이터에서숨겨져있는유용한패턴들을알아나가는전체적인과정 KDD 학회의변천사 - Knowledge Discovery in Databases(1989) - Knowledge Discovery and Data Mining (1995) - Knowledge Discovery in Data (1999) 학회발표위한심사통과가어려울정도로큰학회로발전 KDD2018 ( ~ 8. 23) 런던 3/49

4 그러면데이터마이닝이란? 데이터마이닝에대해서구체적이고정량적인정의가합의된바는없다. 많이통용되는정의 : 복잡한통계적인분석이나모형구축기법을사용하여대용량의데이터내에이전에는알려지지않았던패턴이나규칙등을탐색하고모형화함으로써유용한지식을추출하는일련의과정. 통계적인관점에서는 대용량데이터에대한탐색적데이터 분석 (Exploratory Data Analysis) 4/49

5 데이터마이닝 : 다학제간개념 Statistics Pattern Recognition Neurocomputing Data Mining Machine Learning AI Databases KDD 5/49

6 데이터마이닝 - 데이터로부터지식을찾아가는 KDD 과정중의하나임. 결과평가 / 해석 데이터마이닝 데이터마트 데이터선택데이터웨어하우스데이터정제데이터통합 데이터베이스 6/49

7 성공적인데이터마이닝프로젝트를위해서필요한사람들 1 현업담당자 ( 비즈니스매니저, 사용자 ) 2 데이터분석가 ( 일반적으로통계학자, 데이터분석전문가 ) 3 데이터처리전문가 (IT 담당자, DBA) - 아무리좋은데이터마이닝도구도현업의경험을대체할수는없다.. - 데이터마이닝의현업의숙련된비즈니스분석가나매니저를대신할수는없고, 단지그들의업무를좀더유용하게변화시켜줄뿐이다. 모든것을다바꾸어줄수는없다. - 데이터를잘이해하고성공적인데이터마이닝을위해서는위의세부류의협업과소통이무엇보다중요하다. 7/49

8 현실적인데이터마이닝프로젝트기간 프로젝트마감일 계획 : 실제프로젝트기간 : 최악의시나리오 : ( 데이터획득 ) 이상적인시나리오 : 데이터준비 데이터분석 8/49

9 빅데이터분석 (Big Data Analytics)

10 Modern Life In February 2017, Clustre conducted a short but revealing survey on the broad topic of innovation. More than 200 senior executives were invited to participate. In total we had 40 respondees having sent the survey questions to 201 people. What emerging technologies are you trialing or at least seriously considering right now? Source: 10/49

11 관련단어출현빈도 : Naver 출처 : 11/49

12 관련단어출현빈도 : Naver 12/49

13 관련단어출현빈도 : Google 출처 : 13/49

14 빅데이터정의 - 빅데이터에대해서구체적이고정량적인정의가합의된바는없다. - 데이터수집, 저장, 관리, 분석하는역량을넘어서는 Dataset 규모로, 그정의는주관적이며앞으로도계속변화될것이다 (McKinsey, 2011) - 가장많이쓰이는정의 (Gartner) : 3V (Volume, Variety, Velocity) + Value 14/49

15 Definition of Big Data There is no real finite definition 1. Definition 1: Anything that Won t Fit in Excel! 2. Most common definition is 3 V;s by Gartner Group (Doug Laney) 15/49

16 빅데이터분류 빅데이터 기술구성 빅데이터의정의 (3V + V) 빅데이터 처리과정 인프라기술 ( 수집, 처리, 관리 ) Volume Velocity IT 단계 ( 데이터수집, 관리 ) 분석기법 (Data Mining) 표현기법 ( 시각화 ) Variety Value Value 지식발견단계 (Data Mining) 의사결정 ( 마케팅 ) Value 의사결정 ( 마케팅 ) 16/49

17 빅데이터분석기법 데이터마이닝기법 머신러닝기법 빅데이터분석기법

18 대표적인빅데이터분석모형 18/49

19 일반화선형모형 (Generalized Linear Models) 회귀 (Regression) 모형 로지스틱회귀 (Logistic Regression) 모형 19/49

20 신경망모형 (Neural network model) Input layer Input Hidden layer output layer Hidden Input Hidden Output Input Hidden Output Input 20/49

21 의사결정나무 (Decision trees) 신용도 root node 우수 나쁨 나이 성별 internal node 30 대 20 대남자여자 구매비구매비구매 나이 30 대 20 대 구매 비구매 terminal(leaf) node 21/49

22 앙상블기법 (Ensemble methods) Bagging, Boosting, Random forest, etc. Original Training data D Randomize Step 1: Create random vectors D 1 D 2 Dt 1 D t T1 2 Step 2: Use random vector to build multiple decision trees T T11 T 1 Step 3: Combine Decision trees * T 출처 : INTRODUCTION TO DATA MINING/ PANG-NING TAN, (2005) 22/49

23 군집분석 23/49

24 연관성규칙 24/49

25 이상치탐지 the beat of their own drum : 다른사람이뭐라해도자기가하고싶은데로하는것. 25/49

26 사회연결망분석 (Social Network Analytics) Source: 26/49

27 텍스트마이닝 (Text Mining) Text 전처리 의미정보변환 의미정보추출 패턴및경향분석 정보표현및평가 Text 문서 비정형데이터 정형데이터 데이터마이닝 Process Text Parse Weight Transform Classification Cluster Frequency weight Term weight SVD Roll up Hierarchical cluster EM cluster 27/49

28 Text Mining _ 군집분석 1990 년부터 2003 년까지의미국국가과학재단 (National Science Foundation, NSF) 으로부터상을받은연구요약 (abstract) 자료를사용. 41,717 개의연구제목을가지고비슷한연구끼리군집해보고자함. operator, representation, mathematical, topology, theory SVD1 improvement, biology, instruction, instrumentation, introductory information, distributed, dynamical, power, system organic, metal, surface, growth, phase electronic, seismic, structure, function, community mathematics, project, technology, student, enhancement gene, role, function, expression, characterization SVD3 28/49

29 인공지능, 머신러닝, 딥러닝 인간의지능을컴퓨터로구현하는것이인공지능이다. 이런인공지능을구현하기위한컴퓨터의학습방법이머신러닝이다. 딥러닝은바로머신러닝을실현하기위한기술인것이다. 출처 : 베타뉴스기사를인용하였음. 29/49

30 데이터과학 & 데이터과학자

31 데이터과학 (Data Science) 란? Data Mining is Multidisciplinary Statistics Pattern Neurocomputing Recognition Machine Learning Data Mining AI Databases KDD 출처 : What is the difference? 31/49

32 데이터과학자 (Data Scientist) 란? 데이터과학 (Data Science) 을하는사람. 빅데이터시대를이끌어갈전문가. 쏟아지는방대한데이터속에서데이터를수집, 정리, 조사, 분석, 시각 화를통해의미를발굴하고그것을비즈니스가치로연결하는전문가. 32/49

33 데이터과학자 (Data Scientist) 란? Source: Source: 33/49

34 Source: 34/49

35 데이터분석의중요성 MIT Sloan Management Review(2011 겨울호 ): 30 개이상의산업분야와 100 개국의거 의 3000 명임원, 매니저, 분석가들을대상으로설문조사한결과 성과가높은회사는 그렇지않는회사에비하여 5 배이상의데이터분석을사용하고있다 는것을발견함. 35/49

36 데이터분석의중요성 The sexy job in the next ten years will be statisticians, Hal Varian, Google's chief economist (2009) 기술분야에서앞으로중시될세가지영역 (1) 데이터마이닝, 기계학습, 인공지능, 자연어처리 (2) Business Intelligence, 경쟁정보전략 (3) 분석, 통계 출처 : 마이크로소프트커리어블로그 ( 빅데이터분석은기존의데이터에가치있는새로운생명을불러넣는것. 36/49

37 Top Analytics, Data Science, Machine Learning Tools Source: 37/49

38 Top 16 Data Science, Machine Learning Methods Used, 2017 vs 2016 Source: 38/49

39 현재빅데이터의상황

40 현재모습 1 출처 : 현재모습 2: 빅데이터분석으로나온결과를어디에어떻게써야할지를모름. 40/49

41 그러면앞으로빅데이터의미래는? 또다시데이터마이닝처럼거품인가? 다를것! => 왜??? 1) 정부중심의공공데이터활성화공공데이터포털 ( 2) IoT 41/49

42 미래빅데이터의고려사항

43 빅데이터관련고려사항 1. 개인정보 (privacy) 이슈 - 정부 3.0 공공데이터개방을통한빅데이터분석선도필요. - 개인정보의보호와활용에대한구분과논의가필요 - 마이크로데이터및매스킹기법활용 - 이기종데이터활용위해데이터매칭 ( 연계 ) 기법연구 (Multi sources data linkage) 43/49

44 빅데이터관련고려사항 2. 인력양성 3. 빅데이터의지도화 4. 자료의품질관리중요 5. 수학및통계, IT, 언어학, 비즈니스등다양한영역의융합분야교육이필요. 6. 현재빅데이터는데이터인프라기술또는 IT 기술에치중되어있음. 분석과시각화및해석의중요성부각이필요함. 7. 성공한프로젝트뿐만아니라실패한것에대한사례도필요함. 왜실패했는지를알아야더발전시킬수있음. 8. 데이터분석의중요성을깊이인식하고실행하는 CEO 의의지가중요함. 당장결과가눈으로보이지않더라도장기적인관점으로바라보는지혜가필요함. 44/49

45 바람직한데이터분석가의자세 1. 올바른모형기법보다올바른데이터가중요함. => 데이터품질이중요하다는인식필요 (GIGO) 2. 각분야의용어정의및통일필요예 ) IT 분야의분석과통계전문가, 언어학자의분석정의가다름 3. 단순한기술통계나단순한분석만으로는산업의발전을따라갈수없음 => 데이터에기반한고도화된통계적지식필요 4. 데이터를바라보는진지한능력필요. 즉, 범죄과학수사 ( 탐정, forensic) 같은자세필요. 어떠한도구를사용하는것이중요한것이아니라상대방이무엇을원하는지아는것이중요함 5. 데이터만이해하지말고설득시키는능력이중요. 인문학적인소양이필요하고소통이중요함. 45/49

46 데이터과학자 (Data Scientist) 46/49

47 데이터마이닝강의노트중일부 : 성공적인데이터마이닝프로젝트를위해서필요한사람들 1 현업담당자 ( 비즈니스매니저, 사용자 ) 2 데이터분석가 ( 일반적으로통계학자, 데이터분석전문가 ) 3 데이터처리전문가 (IT 담당자, DBA) 그러나, 데이터과학자의정의에의하면한사람이위의 1,2,3 의조건을모두갖추어야한다. 데이터과학자는빅브라더? 모든것을다할수있는사람. 가능한가? 얇고넓게아는것보다깊게아는것이중요. 현업의노하우와인문학적소양과통계적지식결합 => 시너지효과 각전문가끼리의협업과소통이중요 47/49

48 데이터가가장좋은선생이다. Learning From Data! 협업과소통!!! 48/49

49 감사합니다 동국대학교통계학과 이영섭

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

국민과학기술정서 분석을 통한 정책과제 발굴 연구 2015. 9 수 행 기 관 : 최 종 보 고 서 관리 번호 0000(연도)-00(번호) 기술 분류 과 제 명 (한글)국민과학기술정서 분석을 통한 정책과제 발굴 연구 (영문) 기 관 명 소재지 대 표 주관연구기관 (협동연구기관) 실전전략연구소 서울시 마포구 공덕동 윤한술 주관연구책임자 (협동연구책임자) 총연구기간

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

001지식백서_4도

001지식백서_4도 White Paper on Knowledge Service Industry Message Message Contents Contents Contents Contents Chapter 1 Part 1. Part 2. Part 3. Chapter

More information

<31372DB9CCB7A1C1F6C7E22E687770>

<31372DB9CCB7A1C1F6C7E22E687770> 미래지향 고령친화 주거디자인을 위한 예비노인층의 라이프스타일 특성 Characteristics of Lifestyle of the Pre-Elderly for Future Elderly-friendly Housing Design 류 혜 지 청운대학교 인테리어디자인학과 교수 Ryu hye-ji Dept. of Interior Design, Chungwoon University

More information

http://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

SECTION TITLE A PURE PRIMER (AI), // 1

SECTION TITLE A PURE PRIMER (AI), // 1 SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.

More information

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5. 1 (, ), ( ) 2 1. 2. (, sta*s*cal disclosure control) - (Risk) and (U*lity) - - 3. (Synthe*c Data) 4. 5. 3 1. + 4 1. 2.,. 3. K + [ ] 5 ' ', " ", " ". (SNS), '. K KT,, KG (PG), 'CSS'(Credit Scoring System)....,,,.

More information

시안

시안 ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE SCHOOL OF TECHNOLOGY & INNOVATION MANAGEMENT 울산과학기술원 기술경영전문대학원 http://mot.unist.ac.kr 02 03 Global Study Mission CURRICULUM 2 Practicality Global

More information

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 2 3 4 5 6 ln ln 7 8 9 [ 그림 1] 해상풍력단지건설로드맵 10 11 12 13 < 표 1> 회귀분석결과 14 < 표 2> 미래현금흐름추정결과

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5, * 4.,, 3,,, 3,, -., 3, 12, 27, 20. 9,,,,,,,,. 6,,,,,. 5,,,,.. * (2016),. (Corresponding Author): / / 303 Tel: 063-225-4496 / E-mail: jnj1015@jj.ac.kr ., (, 2000;, 1993;,,, 1994), 2000. 2015 () 65, 4 51,

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

006_026_특집_정일권.indd

006_026_특집_정일권.indd 언론현장 초연결사회 부작용 치유 모색 기술 전도사 에서 문화 전도사 로 서울디지털포럼(SDF) 2011 김용철 지난 5월 25일 새벽 3시 30분 미국 CNN 방송의 전 앵커 래리 킹은 78 세의 노구를 이끌고 난생 처음 한국 땅을 밟았다. 뉴욕을 출발한 킹은 편서풍의 도움으로 예정 시간보다 조금 일찍 인천국제공항에 도착했 다. 킹은 일등석 안까지 영접을 나온

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201 4 21.,,,.,,. 1, 2, 3, 4.,,,,,,.,,,,., ( ). 60-66,,,,,.. (Corresponding Author): / / 303 Tel: 063-220-2495/ E-mail: ikkim@jj.ac.kr .,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;,

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

<BAB9C0E2B0E820B3D7C6AEBFF6C5A9BFCD20B5A5C0CCC5CD20B0FAC7D0C0C720B1B8C1B6BFCD20C6AFC2A15FC1A4C7CFBFF528BCF6C1A4292E687770>

<BAB9C0E2B0E820B3D7C6AEBFF6C5A9BFCD20B5A5C0CCC5CD20B0FAC7D0C0C720B1B8C1B6BFCD20C6AFC2A15FC1A4C7CFBFF528BCF6C1A4292E687770> 복잡계 네트워크와 데이터 과학의 구조와 특징 정하웅(KAIST, 물리학과) 2015.12. 1 I. 서론 II. 본론 1. 세상은 복잡계로 이루어져 있다 가. 복잡계란 무엇인가? 나. 복잡계를 이해하기 위한 몇 가지 네트워크 사례들 2. 네트워크의 이해를 위한 전제들 가. 네트워크의 분류 나. 네트워크의 대부분을 차지하는 항공망 네트워크 다. 네트워크는 왜

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

03¼ºÅ°æ_2

03¼ºÅ°æ_2 102 103 R&D closed innovation strategy open innovation strategy spin-off Chesbrough technology marketing IBM Intel P&G IBM Dell Apple Nintendo Acer http //www ibm com/ibm/licensing MIT 1) 104 Bucher et

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 5 2004. 3. . 5.. Input. Output . 5 2004 7,, 1,000 5,. 40 2004.7 2005.7 2006.7 2007.7 2008.7 2011. 1,000 300 100 50 20 20 ( ) 0.01% 0.08% 0.36% 0.96% 3.07% 100% ( ) 5.3%(10.7%) 12.2%(17.3%) 21.9%(26.4%)

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM 中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability 27 2, 71-90. 2009. 3 * ** 3, 3,. B 2003 4 2004 2.,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability Development) ** ( : heyjun@gmail.com) 72 한국교육문제연구제

More information

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 첨부 168 첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 Ⅰ-1. 설문조사 개요 Ⅰ. 설문분석 결과 병무청 직원들이 생각하는 조직문화, 교육에 대한 인식, 역량 중요도/수행도 조사를 인터넷을 통해 실 시 총 1297명의 응답을 받았음 (95% 신뢰수준에 표본오차는 ±5%). 조사 방법 인터넷 조사 조사 기간 2005년 5월 4일 (목) ~ 5월

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 3~30 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 01. 08 2016. 01. 09 2016. 02. 25 ABSTRACT

More information

경제 이슈 유로존 실업률 사상 최고치 경신 최근 2분기 연속 유로존 경제성장률이 하락하고 기업들의 고용이 위축되면서 실업률 증가세 심화 - 실업률 추이 유로존 실업률이 10월 11.7% 에서 11월 11.8% 로 0.1%p 상 승했고, 실업자 수도 1,882만 명으로

경제 이슈 유로존 실업률 사상 최고치 경신 최근 2분기 연속 유로존 경제성장률이 하락하고 기업들의 고용이 위축되면서 실업률 증가세 심화 - 실업률 추이 유로존 실업률이 10월 11.7% 에서 11월 11.8% 로 0.1%p 상 승했고, 실업자 수도 1,882만 명으로 2013.01.14( 月 ) 사 내 한 2013-02(433) 경제 이슈 유로존 실업률 사상 최고치 기록 12월 취업자 20만 명대 하락 경영 노트 소셜미디어 마케팅을 위한 4단계 전략 사회 트렌드 숫자로 본 자살 저널 브리프 소셜미디어가 기업에 미친 6가지 영향 洗 心 錄 어느 17세기 수녀의 기도 경제 이슈 유로존 실업률 사상 최고치 경신 최근 2분기 연속

More information

歯1.PDF

歯1.PDF 200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)

More information

2

2 에너지경제연구 Korean Energy Economic Review Volume 10, Number 1, March 2011 : pp. 1~24 국내화력발전산업에대한연료와자본의대체성분석 1 2 3 ~ 4 5 F F P F P F ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 6 ln ln ln ln ln 7 ln

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI:   * Suggestions of Ways Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.65-89 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.65 * Suggestions of Ways to Improve Teaching Practicum Based on the Experiences

More information

Microsoft PowerPoint - AC3.pptx

Microsoft PowerPoint - AC3.pptx Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,

More information

PowerPoint Presentation

PowerPoint Presentation 데이터전처리 Data Preprocessing 02 데이터전처리개요 목차 1. 데이터전처리 2. 데이터품질 3. 데이터전처리단계 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 3 1. 데이터전처리 데이터분석단계 해석과평가 데이터마이닝 변환 지식 전처리 패턴 선택 목표데이터 전처리된데이터 변환된데이터 데이터 데이터전처리 (Data

More information

Week2.key

Week2.key 2015 week 02 ( ) 1 : 2 : 3 : 4 : 5 : 6 : 4 (Design Thinking HCI ) + + 6 ,, (McKinsey, 2011) 3 Volume, Velocity, Variety (Gartner, 2011), SNS 2011 1ZB( =1021 ), 2,, : 2013-11 ( 77 ) 7 ,,,,,,, McKinsey

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI:   * Strenghening the Cap Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.27-43 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.27 * Strenghening the Capacity of Cultural Arts Required in Special Education

More information

서론 34 2

서론 34 2 34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of

More information

27송현진,최보아,이재익.hwp

27송현진,최보아,이재익.hwp OSMU전략에 따른 산업 동향 및 발전방안 -영상콘텐츠를 중심으로- A current research & development study on the OSMU strategy in field of game industry -A special study on the popular visual contents- 주저자: 송현진 (Song Hyun Jin) 서울산업대학교

More information

분석기법의기본개념부터활용까지사례중심의 A to Z 학습 데이터분석기본 교육기간 : 3 일 (24 시간 )/ 비합숙 교육비 : 회원 62 만원 / 비회원 69 만원 데이터분석핵심이론학습및현업에적용 현장에서발생하는변수를이해하고상황에따른최적화방안도출 품질향상을위한부적합원인도

분석기법의기본개념부터활용까지사례중심의 A to Z 학습 데이터분석기본 교육기간 : 3 일 (24 시간 )/ 비합숙 교육비 : 회원 62 만원 / 비회원 69 만원 데이터분석핵심이론학습및현업에적용 현장에서발생하는변수를이해하고상황에따른최적화방안도출 품질향상을위한부적합원인도 인간이사용하는언어를분석하는기법과다양한데이터를그래프로표현하는방법학습 텍스트데이터수집과감성분석 인터넷에있는다양한비정형데이터수집 고객이회사의어떤서비스에불만을갖는지를자동으로분석 분석된결과를데이터의특징에맞게다양한그래프로표현 데이터분석실무자, 마케팅기획실무담당자 비정형데이터분석 데이터시각화 사용자언어의분석과시각화 키워드 / 감성분석 형태소분석 분석결과시각화 비정형데이터의수집,

More information

OP_Journalism

OP_Journalism 1 non-linear consumption 2 Whatever will change television will do so by re-defining the core product not just the tools we use to consume it. by Horace Dediu, Asymco 3 re-defining the core product not

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 7 1 2 1 4 1 2009DATA.GOV ** 20174 DATA.GOV 192,322 14 * ** https www data.gov2017.04.11 298 2017 2015WWW 3 7 ODB Global Report Third Edition * Open Data Barometer922

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

레이아웃 1

레이아웃 1 Disability & Employment 11. 8. 제1권 제호(통권 7호) pp.97~118 중증장애인직업재활지원사업수행시설의 효율성비교* 양숙미 남서울대학교 사회복지학과 부교수 전동일 가톨릭대학교 박사과정 요 약 본 연구는 직업재활시설의 중증장애인 직업재활지원사업에 대한 효율성을 평가하여 효 율적인 운영방안을 제시하는데 목적이 있다. 본 연구를 위해

More information

Contents SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM FIP 13 FIP

Contents SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM FIP 13 FIP SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM 13 : (IoT), 4.0,,,,,, CEO. 13 : 2016 3 29 ( ) ~ 11 1 ( ) : 310 Contents SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM FIP

More information

SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM 13 : (IoT), 4.0,,,,,, CEO. 13 : ( ) ~ 11 1 ( ) : 310

SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM 13 : (IoT), 4.0,,,,,, CEO. 13 : ( ) ~ 11 1 ( ) : 310 SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM 13 : (IoT), 4.0,,,,,, CEO. 13 : 2016 3 29 ( ) ~ 11 1 ( ) : 310 Contents SEOUL NATIONAL UNIVERSITY FUTURE INTEGRATED-TECHNOLOGY PROGRAM FIP

More information

Data Scientist Shortage

Data Scientist Shortage Data Science: 4 차산업혁명의핵심역량 2018 년 1 월 31 일 김형주교수 서울대컴퓨터공학부 Table of Contents What is Data Science Data Scientist 부족현상관련자료 Data Science 응용분야 Data Science 교육현황 삼성전자 DS 2 과정 Big Data 가주는가치 데이터 : 의미를담고있는기록된사실

More information

*º¹ÁöÁöµµµµÅ¥-¸Ô2Ä)

*º¹ÁöÁöµµµµÅ¥-¸Ô2Ä) 01 103 109 112 117 119 123 142 146 183 103 Guide Book 104 105 Guide Book 106 107 Guide Book 108 02 109 Guide Book 110 111 Guide Book 112 03 113 Guide Book 114 115 Guide Book 116 04 117 Guide Book 118 05

More information

제 출 문 문화체육관광부장관 귀하 본 보고서를 문화예술분야 통계 생산 및 관리 방안 연구결과 최종 보고서로 제출합니다. 2010년 10월 숙명여자대학교 산학협력단 본 보고서는 문화체육관광부의 공식적인 견해와 다를 수 있습니다. - 2 -

제 출 문 문화체육관광부장관 귀하 본 보고서를 문화예술분야 통계 생산 및 관리 방안 연구결과 최종 보고서로 제출합니다. 2010년 10월 숙명여자대학교 산학협력단 본 보고서는 문화체육관광부의 공식적인 견해와 다를 수 있습니다. - 2 - 문화예술분야 통계 생산 및 관리 방안 연구 2010. 10 문화체육관광부 제 출 문 문화체육관광부장관 귀하 본 보고서를 문화예술분야 통계 생산 및 관리 방안 연구결과 최종 보고서로 제출합니다. 2010년 10월 숙명여자대학교 산학협력단 본 보고서는 문화체육관광부의 공식적인 견해와 다를 수 있습니다. - 2 - 연 구 진 연구책임자 - 김소영 (숙명여자대학교

More information

Breathing problems Pa t i e n t: I have been having some breathing problems lately. I always seem to be out of breath no matter what I am d o i n g. ( Nurse : How long have you been experiencing this problem?

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

한국성인에서초기황반변성질환과 연관된위험요인연구

한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -

More information

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( : 27 2, 17-31, 2009. -, * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** (: dminkim@cau.ac.kr) 18 한국교육문제연구제 27 권 2 호, 2009. Ⅰ. (,,, 2004). (,, 2006).,,, (Myrick,

More information

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI:   * The Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp.243-268 DOI: http://dx.doi.org/10.21024/pnuedi.27.1.201703.243 * - 2001 2015 - The Research Trends on Peer Counseling in Elementary and

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

전국시대, 위나라최고의소잡이포정의소를잡는솜씨가신의경지에다다름,. " ()., 3... (),. 1.,. 19..,. 19. < > 2

전국시대, 위나라최고의소잡이포정의소를잡는솜씨가신의경지에다다름,.  ()., 3... (),. 1.,. 19..,. 19. < > 2 Understanding Society through Social Media Analysis () 2F Seokgwang Bldg., 168-21, Samseong-dong, Gangnam-gu, Seoul, 135-090, Korea / tel +82 2 565 0531 fax +82 2 5650532 No part of this publication may

More information

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정 유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정 이인범 *, 장우진 ** * 서울대학교 산업공학과 석사과정, 서울시 관악구 대학동 서울대학교 공과대학 39-315 **서울대학교 산업공학과 부교수, 서울시 관악구 대학동 서울대학교 공과대학 39-305 Abstract 주가연계증권은 국내에서 발행되는 대표적인 주식 연계 구조화 증권으로 2003 년부터 발행되기

More information

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770> 정보시스템연구 제23권 제1호 한국정보시스템학회 2014년 3월, pp. 161~184 http://dx.doi.org/10.5859/kais.2014.23.1.161 베이비붐세대의 디지털라이프 지수* 1) 권순재**, 김미령*** Ⅰ. 서론 Ⅱ. 기존문헌 연구 2.1 베이비붐세대의 현황과 특성 2.2 베이비붐의 세대이 정보화 연구 Ⅲ. 연구내용 및 방법 Ⅳ.

More information

- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α

More information

레이아웃 1

레이아웃 1 CAMPAIGN 길게 뻗은 도로와 넓은 터널이 있는 곳은 고라니, 너구리, 두루미가 사는 수많은 야생동물의 터전이었습니다. 사람의 욕심으로 KEFICO F U T U R E O F D R I V I N G 2 0 1 3 J A N + F E B V O L. 9 PLUS 02 점점 사라지고 있는 야생동물의 보금자리. 이제 우리가 지켜 줄 차례입니다. 갈 곳 잃은

More information

Contents 01 서울 과학교육 정책 [박문수] 1 02 외국의 과학교육 사례 비교 [정호근] 19 03 영재교육 10년, 현황과 과제 [홍덕표] 39 04 학교기획과 문서작성의 실제 [홍덕표] 51 05 교육법규의 이해 [김응길] 71 06 특수교육의 이해 [권택환] 139 07 영화를 이용한 과학수업 [한문정] 149 08 학교현장에서의 진로교육 [양운택]

More information

PBR PDF

PBR PDF EXECUTIV E SUMM ARY. - -, -. -, 4 - ( ) - ( ),, - ( ) P&G - ( ). 1. : - - P BR(20 03-3) 1 - Toyota Way' 2 : -, - (Our Credo) -,, -, 3. : P&G, CEO! - P&G CEO CEO - CEO, P&G CEO - P&G (learn by doing)' -

More information

슬라이드 1

슬라이드 1 * BCS : Business Consulting Service ( PwC) ** C&I : Consulting & Integration Organization *** TSG: Technology Solution Group 2/22 - - - * IDC, 2003 ** 2003,, 2004 3/22 * Blue Ocean Strategy: How to Create

More information

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의 RESEARCH ARTICLE Kor. J. Aesthet. Cosmetol., 한국 중년 여성의 라이프스타일이 메이크업 추구이미지와 화장품 구매행동에 미치는 영향 주영주 1 *, 이순희 2 1 서경대학교대학원미용예술학과, 2 신성대학교 미용예술계열 The Effects of The Life Style for Korean Middle Aged Women on

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

01.여경총(앞부분)

01.여경총(앞부분) KOREA BUSINESS WOMEN S FEDERATION 2 Middle & High School Job Training Program Korea Business Women s Federation 3 2 3 778 778 779 10 711 11 714 715 718 727 735 744 751 754 757 760 767 4 Middle & High School

More information

FSB-6¿ù-³»Áö

FSB-6¿ù-³»Áö Future Strategy & Business Development C O N T E N T S 2 8 12 20 24 28 36 40 44 48 52 2 Future Strategy & Business Development OPINION 3 4 Future Strategy & Business Development OPINION 5 6 Future Strategy

More information

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비 2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

untitled

untitled Logistics Strategic Planning pnjlee@cjcci.or.kr Difference between 3PL and SCM Factors Third-Party Logistics Supply Chain Management Goal Demand Management End User Satisfaction Just-in-case Lower

More information

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI:   A Study on the Opti Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp.127-148 DOI: http://dx.doi.org/11024/pnuedi.27.4.201712.127 A Study on the Optimization of Appropriate Hearing-impaired Curriculum Purpose:

More information

e- 11 (Source: IMT strategy 1999 'PERMISSION ' ) The World Best Knowledge Providers Network

e- 11 (Source: IMT strategy 1999 'PERMISSION  ' )  The World Best Knowledge Providers Network e 메일 /DB 마케팅 E? E e http://www.hunet.co.kr The World Best Knowledge Providers Network e- 11 (Source: IMT strategy 1999 'PERMISSION email' ) http://www.hunet.co.kr The World Best Knowledge Providers Network

More information

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770> 양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: : * Research Subject

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI:   : * Research Subject Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.91-116 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.91 : * Research Subject Trend Analysis on Educational Innovation with Network

More information

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770> 논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학

More information

06_ÀÌÀçÈÆ¿Ü0926

06_ÀÌÀçÈÆ¿Ü0926 182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %

More information

Effects of baseball expertise and stimulus speeds on coincidence-anticipation timing accuracy of batting Jong-Hwa Lee, Seok-Jin Kim, & Seon-Jin Kim* Seoul National University [Purpose] [Methods] [Results]

More information

강의지침서 작성 양식

강의지침서 작성 양식 정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,

More information

화판

화판 1 The Economist Intelligence Unit Limited 2009 2 The Economist Intelligence Unit Limited 2009 3 The Economist Intelligence Unit Limited 2009 4 The Economist Intelligence Unit Limited 2009 5 The Economist

More information

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006; ,,.. 400,,,,,,.,,, -, -, -., 3.. :, Tel : 010-9540-0640, E-mail : sunney05@hanmail.net ,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012).

More information

` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 시사만화의 텍스트성 연구* 이 성 연**1) Ⅰ. 머리말 Ⅱ. 시사만화의 텍스트 구조 Ⅲ. 시사만화의 텍스트성 Ⅳ. 맺는말 요 약 본고의 분석 대상 시사만화는 2004년 노무현 대통령 탄핵 관련 사건들 인데, 시사만화의 그림 텍스트와 언어 텍스트의 구조와 그 구조를 이루는 구성 요소들이 어떻게 의사소통의 기능을 수행하며 어떤 특징이 있는가 를 살펴본

More information