PowerPoint Presentation
|
|
- 원재 형
- 5 years ago
- Views:
Transcription
1 데이터전처리 Data Preprocessing
2 02 데이터전처리개요
3 목차 1. 데이터전처리 2. 데이터품질 3. 데이터전처리단계 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 3
4 1. 데이터전처리
5 데이터분석단계 해석과평가 데이터마이닝 변환 지식 전처리 패턴 선택 목표데이터 전처리된데이터 변환된데이터 데이터 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 5
6 데이터과학자들이가장많은시간을소요하는일 CrowdFlower 2016 Data Science Report 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 6
7 데이터과학에서가장즐겁지않은부분 CrowdFlower 2016 Data Science Report 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 7
8 데이터전처리 데이터를분석및처리에적합한형태로만드는과정을총칭하는개념 데이터전처리는데이터분석및처리과정에서중요한단계 데이터분석, 데이터마이닝, 머신러닝프로젝트에적용 일반적으로데이터는비어있는부분이많거나정합성이맞지않는경우가많음 아무리좋은도구나분석기법도품질이낮은데이터로는좋은결과를얻을수없음 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 8
9 2. 데이터품질
10 데이터품질Data Quality Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 완벽한데이터를얻는다는것은실제에서는불가능한일 데이터품질을저해하는주요요인으로는크게측정오류와수집과정에서발생하는오류로나눌수있음 측정오류 : 사람의실수로잘못된단위로기록을하거나측정장비자체의한계등측정과정에서발생하는오류 수집과정오류 : 데이터의손실, 중복등의문제로발생하는오류 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 10
11 데이터품질Data Quality GIGO Garbage In Garbage Out 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 11
12 잡음 Noise Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 측정과정에서무작위로발생하여측정값의에러를발생시키는것 실제데이터는매끈한곡선형태의시계열데이터였지만측정과정에서잡음이포함됨으로인해실제값과다른데이터를얻게되어실제데이터의형태를읽어버릴수도있음 Two Sine Waves Two Sine Waves + Noise 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 12
13 아티펙트 Artifact Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 어떠한요인으로인해반복적으로발생하는왜곡이나에러를의미 일례로카메라를이용한영상데이터획득에있어카메라렌즈에얼룩이묻어있다면이에해당하는부분에서는이얼룩으로인한왜곡이지속적으로발생 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 13
14 정밀도 Precision Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 동일한대상을반복적으로측정하였을때의각결과의친밀성을나타내는것 측정결과의표준편차 standard deviation 로나타낼수도있음 예를들어동일한 1g 을측정하는데있어각각의측정결과가 {1.015, 0.990, 1.013, 1.001, 0.986} 인경우이들의표준편차는 이므로이때의정밀도는 이라말할수있음 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 14
15 바이어스 Bias Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 측정장비에포함된시스템적인변동으로앞서영점조절되지않은체중계가좋은예 정밀도에서언급된예제의경우 1g 에대한측정평균은 이며이측정장비에는 만큼의바이어스가포함되어있음을알수있음 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 15
16 정확도 Accuracy Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 정확도는정확도와바이어스에기인하는것이지만이를이용하여명시적으로나타낼수있는수식은없음 다만정확도는유효숫자 Significant digit 의사용에있어중요한측면을가지고있음 이는공학이나과학에서기본적으로다루는개념으로수의정확도에영향을주는숫자를의미 예를들어, 측정에있어이는측정장비의한계로인해정확하지않은자리의수를측정함에따라발생할수있는문제로자를이용한길이측정을가정 자의최소눈금이 1 mm라면, 1 mm단위로길이를측정하게될것이며이경우항상 ±0.5 mm만큼의오차를가지게됨 이자를이용하여측정한길이가 10.3 mm였다면 1 mm미만의값인 0.3 mm라는수치는의미가없음을알수있음 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 16
17 이상치 Outlier Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 대부분의데이터와다른특성을보이거나특정속성의값이다른개체들과달리유별난값을가지는데이터를의미 이상치의중요한점은잡음과는다르다는것 잡음이임의로발생하는예측하기어려운요인임에반해이상치는적법한하나의데이터로서그자체가중요한분석의목적이될수도있음 예를들어네트워크의침입자감시와같은응용에있어서는대다수의일반접속중예외적으로발생하는불법적인접속시도와같은이상치를찾는것이주된목표 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 17
18 결측치Missing values Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 데이터의결측은일반적인경우는아니지만드물게발생하는문제 설문조사의경우몇몇사람들은자신의나이나몸무게와같은사적인정보를공개하는것을꺼리는경우가발생하며이러한값들은조사에있어결측값으로남게됨 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 18
19 모순, 불일치Inconsistent values Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 때에따라서는동일한개체에대한측정데이터가다르게나타나는경우가발생할수있는데이러한경우를모순또는불일치값이라표현 예를들어, 고객의주소와우편번호를저장해놓은데이터를생각해보면, 주소가동일한지역임에도불구하고어떠한이유로우편번호가상이한경우가발생할수있음 이런경우에는주소를확인해서우편번호를정정하는작업이필요 nsistent-values-for-getnumberfound-in-search-api 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 19
20 중복Duplicate data 데이터의중복은언제든지발생가능 문제는중복된데이터사이에속성의차이나값의불일치가발생할수있다는것 기본적으로모든속성및값이동일하다면하나의데이터는삭제할수있지만, 그렇지않은경우에는두개체를합쳐서하나의개체를만들거나, 응용에적합한속성을가진데이터를선택하는등의추가적인작업을필요로하게됨 Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 20
21 3. 데이터전처리기법
22 데이터전처리단계 데이터수집Data Collection 분석이나학습에필요한데이터를부분혹은전체를수집하는작업 데이터변환 Data Transformation 데이터수집 Data Collection 데이터정제Data Cleansing 비어있는데이터나잡음, 모순된데이터등을정합성이맞도록교정하는작업 데이터축소 데이터정제 데이터통합Data Integration 여러개의데이터베이스, 데이터집합또는파일을통합하는작업 Data Reduction 데이터통합 Data Cleaning 데이터축소Data Reduction 샘플링, 차원축소, 특징선택및추출을통해데이터크기를줄이는작업 Data Integration 데이터변환 Data Transformation 데이터를정규화, 이산화또는집계를통해변환하는작업 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 22
23 데이터수집Data Collection 데이터수집이데이터처리분석및모델생성의첫과정 목적과목표가되는정보를수집하고측정하기위해정의가필요 문제의정의와문제해결을위한데이터분석기획과시나리오가중요 문제를식별하고탐색함으로써정보수집시기및방법을결정 데이터종류에따라서내부또는외부, 질적또는양적데이터수집 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 23
24 데이터정제Data Cleansing 데이터를활용할수있도록만드는과정 데이터의누락값, 불일치, 오류의수정 컴퓨터가읽을수없는요소의제거 숫자나날짜등의형식에대해일관성유지 적합한파일포맷으로변환 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 24
25 데이터통합Data Integration 서로다른출처의여러데이터를결합 서로다른데이터세트가호환이가능하도록통합 같은객체, 같은단위나좌표로데이터를통합 링크드데이터의핵심목표중하나는데이터통합을완전히또는거의완전히자동화하는것 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 25
26 데이터축소Data Reduction 일반적으로데이터는매우크기때문에대용량데이터에대한복잡한데이터분석은실행하기어렵거나불가능한경우가많음 데이터축소는원래용량기준보다작은양의데이터표현결과를얻게되더라도원데이터의완결성을유지하기위해사용 데이터를축소하면데이터분석시좀더효과적이고원래데이터와거의동일한분석결과를얻어낼수있는장점 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 26
27 데이터변환Data Transformation 데이터를한형식이나구조에서다른형식이나구조로변환 원본데이터와대상데이터간에필요한데이터변경내용을기반으로데이터변환이간단하거나복잡할수있음 데이터변환은일반적으로수동및자동단계가혼합되어수행 데이터변환에사용되는도구및기술은변환되는데이터의형식, 구조, 복잡성및볼륨에따라크게다를수있음 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 27
28 그림으로보는데이터전처리기법 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 28
29 데이터전처리기법 Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesley, 2005 집계 Aggregation 샘플링 Sampling 차원축소Dimensionality Reduction 특징선택Feature subset selection 특징생성Feature creation 이산화와이진화Discretization and Binarization 속성변환Attribute Transformation 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 29
30 데이터전처리 (Data Preprocessing) - 02 데이터전처리개요 30
8.2. 측정시스템 측정시스템의기본개념 통계적품질관리는모든것을품질데이터에근거하고있으므로정확한데이터의수집이중요 측정시스템이제품이나공정을정확히측정하여올바른데이터를산출할수있는것인지반드시평가 측정오차의성질 정확성, 정밀도, 안정성, 재현성
8.2. 측정시스템 8.2.1 측정시스템의기본개념 통계적품질관리는모든것을품질데이터에근거하고있으므로정확한데이터의수집이중요 측정시스템이제품이나공정을정확히측정하여올바른데이터를산출할수있는것인지반드시평가 8.2.2 측정오차의성질 정확성, 정밀도, 안정성, 재현성 2 2 측정오차 (1) 정확성 (accuracy) 측정의정확성은어떤계측기로동일의제품을측정할때에얻어지는측정치의평균과이특성의참값과의차를말한다.
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로
Lab. 1. I-V Characteristics of a Diode Lab. 6. 연산증폭기가산기, 미분기, 적분기회로 1. 실험목표 연산증폭기를이용한가산기, 미분기및적분기회로를구성, 측정및 평가해서연산증폭기연산응용회로를이해 2. 실험회로 A. 연산증폭기연산응용회로 (a) 가산기 (b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로 3. 실험장비및부품리스트
More information실험 5
실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information슬라이드 제목 없음
계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.
More informationPoison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3
Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Example 3.1 Files 3.2 Source code 3.3 Exploit flow
More informationPowerPoint Presentation
데이터전처리 Data Preprocessing 01 데이터구조와종류 목차 1. 데이터개념 2. 데이터구조 3. 데이터종류 데이터전처리 (Data Preprocessing) - 01 데이터구조와종류 3 1. 데이터개념 데이터단어유래 https://en.wikipedia.org/wiki/data https://namu.wiki/w/ 데이터 데이터 data 는라틴어단어
More informationWINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역
WINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역시쉽게해결할수있다. 이번화이트페이퍼에서는 Window Function 중순위 RANK, ROW_NUMBER,
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More informationMicrosoft PowerPoint - chap01-C언어개요.pptx
#include int main(void) { int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 프로그래밍의 기본 개념을
More informationPowerPoint 프레젠테이션
빅데이터분석의현재와미래 2018 동국대학교통계학과이영섭 yung@dongguk.edu 데이터마이닝 (Data Mining) 데이터마이닝과 KDD KDD (Knowledge Discovery in Data) 란? - 데이터에서숨겨져있는유용한패턴들을알아나가는전체적인과정 KDD 학회의변천사 - Knowledge Discovery in Databases(1989)
More information전자회로 실험
전자회로실험 2 조 고주현허영민 BJT의고정바이어스및 부품 * 실험목적 1) 고정바이어스와 회로의직류동작점을결정한다. 다이오드의특성 * 실험장비 계측장비 - Digital Multi Meter 부품 -저항 다이오드의특성 부품 - 트랜지스터
More informationintro
Contents Introduction Contents Contents / Contents / Contents / Contents / 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
More informationMicrosoft PowerPoint - chap06-2pointer.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.
More informationMicrosoft PowerPoint Predicates and Quantifiers.ppt
이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)
More informationChapter 5 비즈니스인텔리젼스의기초 : 데이터베이스와정보관리
Chapter 5 비즈니스인텔리젼스의기초 : 데이터베이스와정보관리 Essentials of Management Information Systems Chapter. 5 비즈니스인텔리젼스의기초 : 데이터베이스와정보관리 학습목표 관계형데이터베이스가데이터를어떻게구성하고, 객체지향데이터베이스와어떠한차이가존재하는가? 데이테베이스관리시스템의원리는무엇인가? 기업의성과와의사결정력을향상시키기위한데이터베이스의정보에접근하기위한주요도구와기술들은무엇인가?
More information금오공대 컴퓨터공학전공 강의자료
데이터베이스및설계 Chap 1. 데이터베이스환경 (#2/2) 2013.03.04. 오병우 컴퓨터공학과 Database 용어 " 데이타베이스 용어의기원 1963.6 제 1 차 SDC 심포지움 컴퓨터중심의데이타베이스개발과관리 Development and Management of a Computer-centered Data Base 자기테이프장치에저장된데이터파일을의미
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information(b) 연산증폭기슬루율측정회로 (c) 연산증폭기공통모드제거비측정회로 그림 1.1. 연산증폭기성능파라미터측정회로
Lab. 1. I-V Characteristics of a Diode Lab. 1. 연산증폭기특성실험 1. 실험목표 연산증폭기의전압이득 (Gain), 입력저항, 출력저항, 대역폭 (Bandwidth), 오프셋전압 (Offset Voltage), 공통모드제거비 (Common-mode Rejection Ratio; CMRR) 및슬루율 (Slew Rate) 등의기본적인성능파라미터에대해서실험을통해서이해
More information<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074>
SIMATIC S7 Siemens AG 2004. All rights reserved. Date: 22.03.2006 File: PRO1_17E.1 차례... 2 심벌리스트... 3 Ch3 Ex2: 프로젝트생성...... 4 Ch3 Ex3: S7 프로그램삽입... 5 Ch3 Ex4: 표준라이브러리에서블록복사... 6 Ch4 Ex1: 실제구성을 PG 로업로드하고이름변경......
More informationDOE_3
SPC(2015) MSA ( 측정시스템분석 ) Prof. Kwang S. Lee kslee@osan.ac.kr TIPS 측정 (Measurements) : 어떤물질의특정한성질을나타내기위하여물질에수치를부여하는것 측정과정 (Measurement Process) : 수치를부여하는절차 측정치 (Measurement Value) : 부여된수치 계측치 ( 또는 Gage)
More informationMicrosoft Word - Lab.4
Lab. 1. I-V Lab. 4. 연산증폭기 Characterist 비 tics of a Dio 비교기 ode 응용 회로 1. 실험목표 연산증폭기를이용한비교기비교기응용회로를이해 응용회로를구성, 측정및평가해서연산증폭기 2. 실험회로 A. 연산증폭기비교기응용회로 (a) 기본비교기 (b) 출력제한 비교기 (c) 슈미트트리거 (d) 포화반파정류회로그림 4.1. 연산증폭기비교기응용회로
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More informationMicrosoft Word - Lab.7
Lab. 1. I-V C Lab. 7. Characterist tics of a Dio 능동필터 ode 1. 실험목표 연산증폭기를이용한저역통과필터 (low-pass filter), filter), 대역통과필터 (band-pass filter) 회로를구성, 연산증폭기능동필터회로를이해 고역통과필터 (high-pass 측정및평가해서 2. 실험회로 A. 연산증폭기능동필터
More information실험 5
실험. apacitor 및 Inductor 의특성 교류회로 apacitor 의 apacitance 측정 본실험에서는 capacitor를포함하는회로에교류 (A) 전원이연결되어있을때, 정상상태 (steady state) 에서 capacitor의전압과전류의관계를알아본다. apacitance의값이 인 capacitor의전류와전압의관계는다음식과같다. i dv = dt
More information강의 개요
DDL TABLE 을만들자 웹데이터베이스 TABLE 자료가저장되는공간 문자자료의경우 DB 생성시지정한 Character Set 대로저장 Table 생성시 Table 의구조를결정짓는열속성지정 열 (Clumn, Attribute) 은이름과자료형을갖는다. 자료형 : http://dev.mysql.cm/dc/refman/5.1/en/data-types.html TABLE
More informationMicrosoft PowerPoint - C++ 5 .pptx
C++ 언어프로그래밍 한밭대학교전자. 제어공학과이승호교수 연산자중복 (operator overloading) 이란? 2 1. 연산자중복이란? 1) 기존에미리정의되어있는연산자 (+, -, /, * 등 ) 들을프로그래머의의도에맞도록새롭게정의하여사용할수있도록지원하는기능 2) 연산자를특정한기능을수행하도록재정의하여사용하면여러가지이점을가질수있음 3) 하나의기능이프로그래머의의도에따라바뀌어동작하는다형성
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More information학습목표 함수프로시저, 서브프로시저의의미를안다. 매개변수전달방식을학습한다. 함수를이용한프로그래밍한다. 2
학습목표 함수프로시저, 서브프로시저의의미를안다. 매개변수전달방식을학습한다. 함수를이용한프로그래밍한다. 2 6.1 함수프로시저 6.2 서브프로시저 6.3 매개변수의전달방식 6.4 함수를이용한프로그래밍 3 프로시저 (Procedure) 프로시저 (Procedure) 란무엇인가? 논리적으로묶여있는하나의처리단위 내장프로시저 이벤트프로시저, 속성프로시저, 메서드, 비주얼베이직내장함수등
More information(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt
More information제49회 부산과학전람회
작품번호 1507 출품분야학생부출품부문지구과학 2012. 07. 10 구분성명 출품학생 지도교사 윤정관 이경훈 그림 1> 전세계광해분포지도 (Globe at Night 포스터 ) - 1 - 그림 2> 우리나라의광해분포지도 (Cinzano et al., 2001) - 2 - - 3 - 그림 3> 광해에의한하늘밝아짐이천체관측에미치는영향 (Stellarium
More information목차 포인터의개요 배열과포인터 포인터의구조 실무응용예제 C 2
제 8 장. 포인터 목차 포인터의개요 배열과포인터 포인터의구조 실무응용예제 C 2 포인터의개요 포인터란? 주소를변수로다루기위한주소변수 메모리의기억공간을변수로써사용하는것 포인터변수란데이터변수가저장되는주소의값을 변수로취급하기위한변수 C 3 포인터의개요 포인터변수및초기화 * 변수데이터의데이터형과같은데이터형을포인터 변수의데이터형으로선언 일반변수와포인터변수를구별하기위해
More information유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012
11-1480523-001163-01 유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012 목 차 ⅰ ⅲ ⅳ Abstract ⅵ Ⅰ Ⅱ Ⅲ i 목 차 Ⅳ ii 목 차 iii 목 차 iv 목 차 v Abstract vi Abstract σ ε vii Abstract viii Ⅰ. 서론 Ⅰ. 1 Ⅰ. 서론.
More informationPowerPoint 프레젠테이션
CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationH3250_Wi-Fi_E.book
무선 LAN 기능으로 할 수 있는 것 2 무선 LAN 기능으로 할 수 있는 것 z q l D w 3 Wi-Fi 기능 플로우차트 z q l D 4 Wi-Fi 기능 플로우차트 w 5 본 사용 설명서의 기호 설명 6 각 장별 목차 1 2 3 4 5 6 7 8 9 10 11 12 13 14 7 목차 1 2 3 4 8 목차 5 6 7 8 9 9 목차 10 11 12
More informationChapter ...
Chapter 4 프로세서 (4.9절, 4.12절, 4.13절) Contents 4.1 소개 4.2 논리 설계 기초 4.3 데이터패스 설계 4.4 단순한 구현 방법 4.5 파이프라이닝 개요*** 4.6 파이프라이닝 데이터패스 및 제어*** 4.7 데이터 해저드: 포워딩 vs. 스톨링*** 4.8 제어 해저드*** 4.9 예외 처리*** 4.10 명령어 수준
More information쉽게 풀어쓴 C 프로그래밊
Power Java 제 27 장데이터베이스 프로그래밍 이번장에서학습할내용 자바와데이터베이스 데이터베이스의기초 SQL JDBC 를이용한프로그래밍 변경가능한결과집합 자바를통하여데이터베이스를사용하는방법을학습합니다. 자바와데이터베이스 JDBC(Java Database Connectivity) 는자바 API 의하나로서데이터베이스에연결하여서데이터베이스안의데이터에대하여검색하고데이터를변경할수있게한다.
More informationLaTeX. [width=1em]Rlogo.jpg Sublime Text. ..
L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime
More information*) α ρ : 0.7 0.5 0.5 0.7 0.5 0.5-1 - 1 - - 0.7 (**) 0.5 0.5-1 - (**) Max i e i Max 1 =150 kg e 1 = 50 g xxx.050 kg xxx.050 kg xxx.05 kg xxx.05 kg Max 2=300 kg
More informationPowerPoint 프레젠테이션
06 Texture Mapping 01 Texture Mapping 의종류 02 Texture Mapping 이가능한객체생성 03 고급 Texture Mapping 01 Texture Mapping 의종류 1. 수동 Texture Mapping 2. 자동 Texture Mapping 2 01 Texture Mapping 의종류 좌표변환 Pipeline 에서
More informationchap 5: Trees
5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경
More informationKMC.xlsm
제 7 장. /S 에필요한내용 1] IGBT 취급시주의사항 ) IGBT 취급시주의 1) 운반도중에는 Carbon Cross로 G-E를단락시킵니다. 2) 정전기가발생할수있으므로손으로 G-E 및주단자를만지지마십시요. 3) G-E 단자를개방시킨상태에서직류전원을인가하지마십시요. (IGBT 파손됨 ) 4) IGBT 조립시에는사용기기나인체를접지시키십시요. G2 E2 E1
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationWindows 8에서 BioStar 1 설치하기
/ 콘텐츠 테이블... PC에 BioStar 1 설치 방법... Microsoft SQL Server 2012 Express 설치하기... Running SQL 2012 Express Studio... DBSetup.exe 설정하기... BioStar 서버와 클라이언트 시작하기... 1 1 2 2 6 7 1/11 BioStar 1, Windows 8 BioStar
More information<B3EDB4DC28B1E8BCAEC7F6292E687770>
1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)
More information<4F E20C7C1B7CEB1D7B7A5C0BB20C0CCBFEBC7D120B5A5C0CCC5CD20BAD0BCAE20B9D720B1D7B7A1C7C120B1D7B8AEB1E F416E616C F616E645F47726
Origin 프로그램을이용한데이터분석및그래프그리기 "2-4 단일코일에의해형성되는자기장의특성측정 " 실험을예로하여 Origin 프로그램을이용한데이터분석및그래프그리기에대해설명드리겠습니다. 먼저 www.originlab.com 사이트를방문하여회원가입후 Origin 프로그램데모버전을다운로드받아서설치합니다. 설치에필요한액세스코드는회원가입시입력한 e-mail로발송됩니다.
More information장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정
. 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More informationA Hierarchical Approach to Interactive Motion Editing for Human-like Figures
단일연결리스트 (Singly Linked List) 신찬수 연결리스트 (linked list)? tail 서울부산수원용인 null item next 구조체복습 struct name_card { char name[20]; int date; } struct name_card a; // 구조체변수 a 선언 a.name 또는 a.date // 구조체 a의멤버접근 struct
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More informationarcplan Enterprise 6 Charting Facelifts
SQL Server Analysis Services Tip 잘레시아 Copyright c 2010 Zalesia Co., Ltd. Agenda I II SSAS Non-Aggregatable 측정값처리 Copyright c 2010 Zalesia Co., Ltd. 2 Copyright c 2010 Zalesia Co., Ltd. 3 STEP1: Sales 큐브를위해데이터를미리준비한다.
More informationMicrosoft PowerPoint 웹 연동 기술.pptx
웹프로그래밍및실습 ( g & Practice) 문양세강원대학교 IT 대학컴퓨터과학전공 URL 분석 (1/2) URL (Uniform Resource Locator) 프로토콜, 호스트, 포트, 경로, 비밀번호, User 등의정보를포함 예. http://kim:3759@www.hostname.com:80/doc/index.html URL 을속성별로분리하고자할경우
More informationTurbine Digital Flowmeter SEMI U+ 특징 PVC, PTFE, P.P, PVDF 등 다양한 재질 Size, 유량, Connection별 주문제작 정밀성, 내화학성이 우수 4~20mA, Alarm, 통신(RS485) 등 출력 제품과 Controll
Turbine Digital Flowmeter SEMI U+ 특징 PVC, PTFE, P.P, PVDF 등 다양한 재질 Size, 유량, Connection별 주문제작 정밀성, 내화학성이 우수 4~20mA, Alarm, 통신(RS485) 등 출력 제품과 Controller의 장착 및 사용이 편리 Specification (사양) 적용유체 : 액체 (D.I or
More information금오공대 컴퓨터공학전공 강의자료
데이터베이스및설계 Chap 2. 데이터베이스관리시스템 2013.03.11. 오병우 컴퓨터공학과 Inconsistency of file system File System Each application has its own private files Widely dispersed and difficult to control File 중심자료처리시스템의한계 i. 응용프로그램의논리적파일구조는직접물리적파일구조로구현
More informationXSS Attack - Real-World XSS Attacks, Chaining XSS and Other Attacks, Payloads for XSS Attacks
XSS s XSS, s, May 25, 2010 XSS s 1 2 s 3 XSS s MySpace 사건. Samy (JS.Spacehero) 프로필 페이지에 자바스크립트 삽입. 스크립트 동작방식 방문자를 친구로 추가. 방문자의 프로필에 자바스크립트를 복사. 1시간 만에 백만 명이 친구등록. s XSS s 위험도가 낮은 xss 취약점을 다른 취약점과 연계하여
More informationResampling Methods
Resampling Methds 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) Resampling Methds 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과 )
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information2 장수의체계 1. 10진수 2. 2진수 3. 8진수와 16진수 4. 진법변환 5. 2진정수연산과보수 6. 2진부동소수점수의표현 한국기술교육대학교전기전자통신공학부전자전공 1
장수의체계. 진수. 진수 3. 8진수와 6진수 4. 진법변환 5. 진정수연산과보수 6. 진부동소수점수의표현 진수 진수표현법 v 기수가 인수 v,,, 3, 4, 5, 6, 7, 8, 9 사용 9345.35 = 9 3 4 5 3. 5. = 9 3 3 4 5 3-5 - v 고대로마의기수법에는 5 진법을사용 v 진법의아라비아숫자는인도에서기원전 세기에발명 진법을나타내는기본수를기수
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information(Microsoft PowerPoint - Ch17_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch7. Polyomial Iterpolatio 다항식보간법 T C ρ kg/m µ N s/m v m /s -40 0 0 50 00 50 00 50 00 400.5.9.0.09 0.946 0.85 0.746 0.675 0.66 0.55.5 0-5.7 0-5.80 0-5.95 0-5.7 0-5.8 0-5.57 0-5.75 0-5.9 0-5.5
More information목차 < 표목차 > < 그림목차 > < 부록목차 > 제 1 장서론., 25%..,. 20,,,,,,.,,,,,,,,,,,,, (, 2003)., (, 2011).,,..,,.. . (Alberto & Troutman, 1999)...,,,.,., 1.,,,,.,,,,. Baker(1989),,. (, 2006). (, 2006), (, 2009).,,,,,,,.,,,,,.,
More information분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템
분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은
More informationMotor Control Solution
Motor Control Solution 마이크로칩에서는 Stepper, Brushed-DC, AC Induction, Switched Reluctance Brushless-DC 등모터종류별특성및동작방식에맞는 MCU가준비되어있어, User가 Motor를이용한 Application을개발하려할때에가장적절한 Solution을제시해줄수있다. 이중 FFT나 PID연산등정밀한모터제어를실행하기위해꼭해주어야하는빠른
More informationJVM 메모리구조
조명이정도면괜찮조! 주제 JVM 메모리구조 설미라자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조장. 최지성자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조원 이용열자료조사, 자료작성, PPT 작성, 보고서작성. 이윤경 자료조사, 자료작성, PPT작성, 보고서작성. 이수은 자료조사, 자료작성, PPT작성, 보고서작성. 발표일 2013. 05.
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More information슬라이드 제목 없음
MS SQL Server 마이크로소프트사가윈도우운영체제를기반으로개발한관계 DBMS 모바일장치에서엔터프라이즈데이터시스템에이르는다양한플랫폼에서운영되는통합데이터관리및분석솔루션 2 MS SQL Server 개요 3.1 MS SQL Server 개요 클라이언트-서버모델을기반으로하는관계 DBMS 로서윈도우계열의운영체제에서만동작함 오라클관계 DBMS 보다가격이매우저렴한편이고,
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More information- 1 -
- 1 - - 2 - - 3 - - 4 - - 5 - - 1 - - 2 - - 3 - - 4 - σ σ σ σ σ σ σ - 5 - - 6 - - 7 - - 8 - log - 9 - - 10 - - 11 - - 12 - m ax m ax - 13 - - 14 - - 15 - - 16 - - 17 - tan - 18 - - 19 - tan tan - 20 -
More information22-12324-4TEL:3668-3114 FAX:742-3387 TEL:3668-3120 FAX:745-9476 TEL:3668-3109, 2279-0867~8 TEL:3668-3127 TEL:3668-3123, 3128, 3162 www.saeki.co.kr, www.pentaximaging.co.kr Small 의 큰 스타일을 경험하다 당신의 카메라만으로도,
More informationPowerPoint 프레젠테이션
03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information- 2 -
터키 / 공통 가이드라인명 GMP Kılavuzu GMP 가이드라인 제정일 상위법 Ÿ Ÿ 제정배경 범위 주요내용 Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ 의약품제조시, 제조허가증, 의약품의용도및판매허가요구사항, 안정성, 품질및품질부적합으로인한피해로환자가발생하지않도록제조하기위함임. 화학합성의약품, 생물의약품, 방사성의약품, 임상시험용의약품, 무균의약품, 사람혈액및혈장의약품,
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationJUNIT 실습및발표
JUNIT 실습및발표 JUNIT 접속 www.junit.org DownLoad JUnit JavaDoc API Document 를참조 JUNIT 4.8.1 다운로드 설치파일 (jar 파일 ) 을다운로드 CLASSPATH 를설정 환경변수에서설정 실행할클래스에서 import JUnit 설치하기 테스트실행주석 @Test Test 를실행할 method 앞에붙임 expected
More informationPowerPoint Presentation
객체지향프로그래밍 클래스, 객체, 메소드 ( 실습 ) 손시운 ssw5176@kangwon.ac.kr 예제 1. 필드만있는클래스 텔레비젼 2 예제 1. 필드만있는클래스 3 예제 2. 여러개의객체생성하기 4 5 예제 3. 메소드가추가된클래스 public class Television { int channel; // 채널번호 int volume; // 볼륨 boolean
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More informationPowerPoint Presentation
1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION
More information해외과학기술동향
Overseas Science and Technology Trends CONTENTS 해외과학기술동향 Overseas Science and Technology Trends 지구과학 및 자원공학 해외과학기술동향 Overseas Science and Technology Trends 해외과학기술동향 해외과학기술동향 Overseas Science and Technology
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More information[ 마이크로프로세서 1] 2 주차 3 차시. 포인터와구조체 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Functi
2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Function) 1. 함수의개념 입력에대해적절한출력을발생시켜주는것 내가 ( 프로그래머 ) 작성한명령문을연산, 처리, 실행해주는부분 ( 모듈 ) 자체적으로실행되지않으며,
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationMicrosoft PowerPoint - 3장-MS SQL Server.ppt [호환 모드]
MS SQL Server 마이크로소프트사가윈도우운영체제를기반으로개발한관계 DBMS 모바일장치에서엔터프라이즈데이터시스템에이르는다양한플랫폼에서운영되는통합데이터관리및분석솔루션 2 MS SQL Server 개요 3.1 MS SQL Server 개요 클라이언트-서버모델을기반으로하는관계 DBMS로서윈도우계열의운영체제에서만동작함 오라클관계 DBMS보다가격이매우저렴한편이고,
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More information다른 JSP 페이지호출 forward() 메서드 - 하나의 JSP 페이지실행이끝나고다른 JSP 페이지를호출할때사용한다. 예 ) <% RequestDispatcher dispatcher = request.getrequestdispatcher(" 실행할페이지.jsp");
다른 JSP 페이지호출 forward() 메서드 - 하나의 JSP 페이지실행이끝나고다른 JSP 페이지를호출할때사용한다. 예 ) RequestDispatcher dispatcher = request.getrequestdispatcher(" 실행할페이지.jsp"); dispatcher.forward(request, response); - 위의예에서와같이 RequestDispatcher
More information문서의 제목 나눔고딕B, 54pt
Gachon CS50 File Handling Character Separate Values 가천대학교 산업경영공학과 최성철교수 CSV CSV 파일이란 ㆍ필드를쉼표 (,) 로구분한텍스트파일 ㆍ엑셀양식의데이터를프로그램에상관없이쓰기위한데이터형식이라고생각하면쉬움 ㆍ콤마뿐만아니라탭 (TSV), 빈칸 (SSV) 등으로구분해서만들기도함, 이런것들을통칭하여 character-separated
More informationMicrosoft PowerPoint - ch10_회복과 병행 제어.pptx
13-01 트랜잭션 장애와회복 병행제어 병행수행과병행제어 병행수행 (concurrency) 여러사용자가데이터베이스를동시공유할수있도록여러개의트랜잭션을동시에수행하는것을의미 여러트랜잭션들이차례로번갈아수행되는인터리빙 (interleaving) 방식으로진행됨 병행제어 (concurrency control) 또는동시성제어 병행수행시같은데이터에접근하여연산을실행해도문제가발생하지않고정확한수행결과를얻을수있도록트랜잭션의수행을제어하는것을의미
More informationInsertColumnNonNullableError(#colName) 에해당하는메시지출력 존재하지않는컬럼에값을삽입하려고할경우, InsertColumnExistenceError(#colName) 에해당하는메시지출력 실행결과가 primary key 제약에위배된다면, Ins
Project 1-3: Implementing DML Due: 2015/11/11 (Wed), 11:59 PM 이번프로젝트의목표는프로젝트 1-1 및프로젝트 1-2에서구현한프로그램에기능을추가하여간단한 DML을처리할수있도록하는것이다. 구현한프로그램은 3개의 DML 구문 (insert, delete, select) 을처리할수있어야한다. 테이블데이터는파일에저장되어프로그램이종료되어도사라지지않아야한다.
More informationPowerPoint Presentation
Class - Property Jo, Heeseung 목차 section 1 클래스의일반구조 section 2 클래스선언 section 3 객체의생성 section 4 멤버변수 4-1 객체변수 4-2 클래스변수 4-3 종단 (final) 변수 4-4 멤버변수접근방법 section 5 멤버변수접근한정자 5-1 public 5-2 private 5-3 한정자없음
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information금오공대 컴퓨터공학전공 강의자료
C 프로그래밍프로젝트 Chap 14. 포인터와함수에대한이해 2013.10.09. 오병우 컴퓨터공학과 14-1 함수의인자로배열전달 기본적인인자의전달방식 값의복사에의한전달 val 10 a 10 11 Department of Computer Engineering 2 14-1 함수의인자로배열전달 배열의함수인자전달방식 배열이름 ( 배열주소, 포인터 ) 에의한전달 #include
More information제 4 장수요와공급의탄력성
제 4 장수요와공급의탄력성 탄력성 (elasticity) 의개념 u 탄력성 (elasticity) è 탄력성은소비자와생산자가시장환경의변화에어떻게 반응하는가를보여주는지표임. è 현실경제에는무수히많은현상들이원인과결과로 연결되어있음. è 즉, 탄력성은원인변수에대해결과변수가얼마나민감하게 반응하는가를나타내는지표임. è 원인변수 ( 독립변수 ) 와결과변수 ( 종속변수
More information