슬라이드 1
|
|
- 재황 점
- 5 years ago
- Views:
Transcription
1 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
2 구조방정식 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
3 구조방정식모형 (/) 구조방정식모형이란? SEM(Structure Equation Model) 공분산구조분석 (Covariance Structure Analysis) 특정현상을파악하기위해구조모형이론의분석방법을이용하여확증적인 (Confirmatory) 형태의 모형에서상호변수들간의인과관계와그유의성을검정하는모형 요인분석 (Factor Analysis) + 경로분석 (Path Analysis) 왜사용하는가? 사회현상이나각종경제현상등의연구에서각변수들간의복잡한인과관계를파악하기위해 연구자가원하는형태의다양한인과관계를생성하여검증하기위해인과관계분석회귀분석 상관분석 구조방정식모델 요인분석 3 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
4 구조방정식모형 (/) 구성 측정모형 : 결과가생기도록원인역할을해주는모형 구조모형 : 측정모형사이의인과관계를파악할수있는모형 (= 인과모형 ) 측정모형 측정모형 ζ 구조모형 δ X λ κ 4 Y ε δ X λ λ 3 요인 ξ 요인 η κ 5 κ 6 Y ε X 3 δ 3 Y 3 ε 3 λ xx, κ xx : 경로계수 ξ : 외생변수 η : 내생변수 4 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
5 적용분야 일반사회과학연구분야 각종사회현상 ( 청소년, 의류구매, 소비자심리, 각종증후군 ) 에대한인과관계분석 기존회귀및요인분석을이용한분석결과의고도화 사회현상의경로및과정을통한연구분석분야 각종사회과학연구소, 학교, 선거분석기관등 마케팅 / 리서치분야 소비자만족도 / 충성도조사분석 소비자행동파악인과관계분석 제품구매경로및구매인과관계분석 마케팅설문분석의고도화 일반제조기업의마케팅팀및리서치회사 경제모델및기타분야 경제지표의인과관계성모델 의료분야질병원인모델 ( 특히신경정신과 ) 공공정책입안관련모델 종합병원, 의학연구소, 국가공공기관 5 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
6 주성분분석 6 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
7 다변량분석 다변량분석 (Multivariate Analysis) 많은변수를가진데이터에대한분석방법 Multivariate Analysis in B-Box TM 7 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
8 타분석과의비교 개체분류 군집분석 : 측정변수들을이용하여개체간거리를구하여개체를분류 판별분석 : 판별식을구하고이를이용하여새로운개체를분류 변수축약 주성분분석 : 측정변수를축약하여개체들간의관계를그리거나이상치를발견, 다른분석에이용한다. 요인분석 : 변수들을몇개의그룹으로분류한다. 8 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
9 주성분분석의이해 (/) 정의 변수를축소하여자료를설명하는기법 변수들의선형결합을통하여변수들이가지고있는전체정보를최대한설명할수있는서로독립적인새로운인공변수 (artificial variable) 들을유도하여해석하는분석방법 주성분 (Princial Comonent) 목적 정보의손실을최소화하면서서로상관관계가있는변수들사이의복잡한구조를단순하고이해하기쉽게설명하고자함. 요인분석에서요인공간의차원을결정하는데이용 설명변수 설명변수 설명변수 P 목적변수 9 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
10 주성분분석의이해 (/) 구조 C C C e ' e ' e ' x e x e x e X X X e e e X X X e e e X X X X X X C C C i 번째주성분 C i 계수 : i 번째고유값 λ i 에대응되는고유벡터 e i (, e ),(, e ),,(, 0 e ) 주성분의분산 = 변수변동설명력 주성분계수 = 변수의중요도 첫주성분은데이터의변동 ( 분산, 정보 ) 을가장많이설명하고계속구해지는, 3, 번째주성분은 자료의나머지정보들을설명하고그크기는점점줄어듦. var( C ) var( C) var( C ) 0 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
11 주성분분석예시 (/3) 종합점수의 TOP 선출을위한분석방법 예 ) 영화관객수와 DVD 판매수 영화 05: 종합인기도 TOP 축 : 주성분, 좌표 : 주성분점수 종합인기도 TOP 인영화 D V D 판매수 영화 9 영화 5 영화 05 주성분점수 영화 3 관객수 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
12 주성분분석예시 (/3) 종합점수의 TOP 선출을위한분석방법 예 ) 클레임건수와판매액조사 종합실적 TOP 인가게와 판매액 본점 지점 3 꼴찌인가게는? 지점 지점 5 지점 6 지점 지점 7 지점 4 클레임건수 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
13 주성분분석예시 (3/3) 종합점수의 TOP 선출을위한분석방법 예 ) 클레임건수와판매액조사 TOP 판매액 본점 지점 3 지점 5 지점 6 지점 지점 꼴찌 지점 7 지점 4 클레임건수 3 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
14 주성분분석절차 (/) 주성분개수선정 주성분개수 = 설명변수개수 총변동설명비율 k i i / 일반적으로주성분 ~3 개로 8~90% 설명가능 상관행렬사용시, 고유값 이상인주성분까지선택 고유값이작다고무시하면안됨. SCREE lot 이용 갑자기떨어지거나 0 에가까워지는것이전까지의주성분선택 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
15 주성분분석절차 (/) 주성분점수 개체 ( 데이터 ) 이상치발견가능및주성분변수간관계파악 주성분점수 = 실제자료 * 주성분계수 ( 회귀식과유사 ) Bilot 고유벡터가주성분에미치는영향을의미 제 주성분과제 주성분만을구해 차원의점그래프로표현하는것이일반적 주성분에대한고유벡터와자료별주성분점수를좌표로나타내면주성분과자료간의관계를파악할수있음. C C 5 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
16 주성분분석예제 (/) 라면종류별평가 면 / 그릇 / 국물 5 단계로평가 라면종류 면 그릇 국물 쇠고기 4 5 해물 5 얼큰 떡 3 짬뽕 만두 4 3 치즈 된장 볶음 3 3 김치 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
17 주성분분석예제 (/) 라면종류별평가 Bilot 첫번째주성분» 라면의종합평가 ( 첫번째주성분 ) 위 : 짬뽕라면, 위 : 김치라면» 라면의종합평가에가장영향을끼치는변수 : 국물 얼큰 국물 면 치즈 만두 볶음 떡 된장 김치 짬뽕 쇠고기 그릇 해물 7 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
18 요인분석 8 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
19 요인분석의이해 (/) 요인분석 (Factor Analysis) 데이터의배후에있는설명변수를찾아내는분석방법 일반적으로변수들이상관구조에의하여몇개그룹으로분류될수있을때사용 Searman(904) 학생들의 6 과목성적에대한상관계수로두그룹으로 ( 언어, 수리 ) 나눌수있을거라생각 한계 변수간에내재된공통개념 (f) 부분과랜덤 (e) 부분으로나눌수있을거라생각 (f 와 e 는독립가정 ) 고전 불어 음악 6 f f f 6 f f f e e e 6 공통개념이무엇인지는모르겠지만공통개념이영향을주는정도가같은과목끼리 ( 변수끼리 ) 그룹형성 grou : 고전, 불어, 영어, grou: 수학, 과학, 음악 f f 고전 불어영어수학과학음악 9 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
20 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved. 0 요인분석의이해 (/) 구조 인자모형에서개별변수 X i 는 common factor F j 들과 secific factor ε i 와의선형결합으로표시 common factor: 모든변수에공통적으로영향을미치는잠재적인공통인자 secific factor: 개별변수에만영향을미치는특정인자 각요인에서인자적재값의절대값이큰것들만선택하여변수그룹화 l ij : 변수 X i 에대한 j 번째공통인자 F j 의중요성을나타내는가중치 LF X m m m m m m F l F l F l X F l F l F l X F l F l F l X 특정인자공통인자인자적재값
21 주성분분석과의비교 주성분분석설명변수 설명변수 설명변수 3 설명변수 4 목적변수 목적변수 요인분석 설명변수 설명변수 목적변수 목적변수 목적변수 3 목적변수 4 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
22 요인분석절차 (/3) 가정 표준화변수 Z i =(X i -μ i )/σ i 사용 분석 前 공통인자개수가정 인자적재값의추정 주성분방법 (Princial Comonent Method) 공통인자개수 m 선택 : 고유값이 보다큰개수 L [ e, e,, e m m m 개공통인자에의하여설명되는누적설명비율 ] m j ˆ / j Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
23 요인분석절차 (/3) 요인회전 해석하기어려운경우발생 인자의축회전 (rotation) 단순구조변경가능 베리멕스회전 (Varimax Rotation) 요인행렬의각열내의적재제곱의분산의합을제안하고이분산을최대화하는회전방법 분산합이크면회전된인자적재행렬의각열의인자적재값을큰값과아주작은값으로구분하기때문에각인자적재값이높은변수의수를최소화시키는효과 추정된인자적재행렬 Lˆ xm 직교변환행렬 ( 시계바늘방향회전 ) 회전후인자적재 L ˆ* LT ˆ T cos sin sin cos T 구하는방법 : Varimax 기준 V * j i (ˆ l * ij ) ( i lˆ * ij ) V * m j V * j 3 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
24 요인분석절차 (3/3) 각공통인자의의미해석 인자적재값의절대값이클수록 이공통인자는그목적변수에영향을미치고있다. 라고해석?????? 요인점수 (factor score) 계산 각개체에서공통인자의구체적인값 인자공간에서개별관측치의위치검토 후속통계분석 ( 회귀분석, 판별분석등 ) 에서새로운변수값으로이용가능 비가중최소제곱법 (Unweighted Least Squares method) f ˆ j Lˆ Z ' Lˆ ( Z ) Lˆ Z ' Z j f f XX XX XX XX 3 XX XX : : : 4 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
25 요인분석예제 (/4) 병원평가설문조사 다음은귀하의일반적인사항에대한내용입니다. 해당되는곳에 O 표를해주시기를바랍니다.. 귀하의성별은? 남자 여자. 귀하의연령은? 0-9 세 0-9 세 세 세 550 세이상 : 다음은귀하의ㅇㅇ병원에대한생각을묻는내용입니다. 해당되는곳에 O 표를해주시기를바랍니다. 구분 매우나쁘다 나쁘다 보통이다 좋다 매우좋다 접근의용이성 편리한시설 고급스러운분위기 전문적인력 친절도 적극적처리 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
26 요인분석예제 (/4) 병원평가설문조사 공통인자개수 개가정 고유값과고유벡터 고유값.74.3 고유벡터 e e e e e e 설명비율.74/6 =45.7%.3/6 =38.7% 누적비율 45.7% 84.4% 6 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
27 요인분석예제 (3/4) 병원평가설문조사 추정된인자적재값 L 요인회전 [ e, e ] 40 회전시, 분산최대값 f 전문적인력친절도적극적처리 접근용이성 편리한시설고급분위기 f L ˆ* LT ˆ ( ) Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
28 요인분석예제 (4/4) 병원평가설문조사 각공통인자의의미해석 시설만족도 진료만족도 접근의용이성 편리한시설 고급스러운분위기 전문적인력 친절도 적극적처리 8 Coyright c 0 CalebABC Co., Ltd. All Rights Reserved.
29 Caleb
Microsoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
More information4 장주성분분석 ( PCA: Principal Component Analysis) 예 1 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변
4 장주성분분석 ( PCA: Prnca Comonnt Anayss) 예 ) 바지구입 - 우리몸의치수모두를알아야하는가? - 변수 : 허리둘레, 기장, 엉덩이둘레, 허벅지둘레, 무릎높이 - 허리둘레, 기장두변수면충분 ( 이것이주성분분석의개념 ) 즉, 원변수에의해주성분변수를구하고일부주성분에의해원변수의변동을충분히설명되는지알아보는것을주성분분석이라한다. 예 ) 주성분개념
More informationMicrosoft PowerPoint - MDA DA pptx
판별분석개념 Indvdual Drected Technque 측정변수 ( 항목 ) 에의한개체분류 분류되어있는집단간의차이를의미있게설명해줄수있는독립변수들을찾아내어 변수의선형결합으로판별식 (Dscrmnant functon) 을만들어낸다. 이판별식을이용하여분류하고자하는개체의집단을판별 데이터유형 집단변수 : 범주형혹은이진형 판별변수 : 측정형 ( 등간척도포함 ) 사례
More informationMicrosoft Word - Chapter7.doc
CHAPTER 7 요인분석과신뢰도계수 7.. 요인분석개념 요인분석 (FA: Factor Analysis 혹은인자분석이라고도함 ) 은사람의지적능력을측정하고이에연관된변수들을이해하려는노력의일환으로 Galton( 회귀분석창시자 ) 에 (888) 의해제안되었고수학적인모형은 Spearman(904 상관계수제안자 ) 에의해발전되었다. 요인분석은변수들의내재된상관관계를이용하여요인을구하고이를이용하여
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More information< FB1B8C1B6B9E6C1A4BDC4B8F0B5A828C5E4C7C8B8AEBAE4292E687770>
구조방정식모델 - 경로분석을중심으로 - 2006.10.24. 박건희 1. 구조방정식모델의개요 구조방정식모델은사회학및심리학에서개발된측정이론에토대를둔확인적요인분석과계량경제학에서개발된연립방정식모델에토대를둔다중회귀분석및경로분석등이결합된성격을갖는방법론 측정모델 (measurement model, 확인적요인분석성격 ) 과구조모델 (structural model, 다중회귀분석및경로분석의성격
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationBlue Geometry
Structural Equation Modeling (SEM) 구조방정식모형의적용 2009 년 11 월 27 일 강태훈 ( 성신여대교육학과 ) 과학적탐구의목적 관심대상및현상에대한 설명기술 예측 통제 All models are wrong, but some are useful. (Box, 1979) 구조방정식모형 (SEM) 의개요 SEM 은실험연구나무선적표집 할당등이어려운경우변수간관계에대한추론을가능하게해준다.
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationMicrosoft PowerPoint - ANOVA pptx
분산분석개념및기초 인과관계 casual relationship X=>Y Y 종속변수, 반응변수, 내생변수 X 설명변수, 독립변수, 요인 ( 처리효과 ), 내생변수 X 측정형 Y 범주형 로지스틱회귀분석 측정형 회귀분석 범주형교차분석분산분석 DOE Design of Experiment ( 실험설계 ) 관심대상에대한정보를얻기위한계획된테스트나관측 절대실험 absolute
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More informationChapter 5. Factor Analysis ( 요인분석 ) 5.1 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 1) 변수들을분류 2) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48
Chater 5. Factor Anaysis ( 요인분석 ) 5. 개요 * 변수들의상관관계를이용하여요인 ( 공통개념 ) 을구하고이를이용하여 ) 변수들을분류 ) 그룹에적절한의미를부여 Ex) * 학생들의학교만족도 조교, 행정인력, 강의실, * A 기업지원자 48 명의능력측정 5 개항목점수분류 * 기업관련지표 0 개항목 ( 매출액, 종업원수, 부채비율 ) Cassic
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information클라우드사회과학연구자동화 사용자매뉴얼 http://ssra.or.kr 알림 목 차 1. 클라우드사회과학자동화란? 1. 1 목적및의의 1) 교육심리학용어사전 (2000) - 8 - 1. 2 주요기능및특징 설문지작성자동화 - 9 - 자료수집자동화 통계분석자동화 - 10 - - 11 - 2. 클라우드사회과학연구자동화시작하기 2.2 시작하기 2.2 절차및지원기능
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More informationCHU 통계교육 Workshop (DAY 7. MDA 군집분석 ) 1. 개념 Individual Directed Technique + 범주 ( 그룹 ) 에대한사전정보가없음 + 다변량측정치를동시에고려하여데이터개체분류 + 개체의유사성 (simila
1. 개념 Individual Directed Technique + 범주 ( 그룹 ) 에대한사전정보가없음 + 다변량측정치를동시에고려하여데이터개체분류 + 개체의유사성 (similarity, 거리의반대개념 ) 을측정변수들을이용하여계산 + 유사성이높은개체를군집으로묶어간다. + 개체를집단으로그룹화하여각집단의성격을파악함으로써데이터전체의구조에대한이해를얻는분석기법 군집원칙
More information제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라
제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을
More information4 꼬부랑 이라는 말이 재미있습니다. 5같은 말이 반복이 되어서 지루합니다. 4 꼬부랑 은 굽은 모양을 재미있게 흉내 낸 말입니다. 꼬부랑 을 빼고 읽는 것보다 넣어서 읽 으면 할머니와 엿가락, 강아지의 느낌이 좀 더 실감 나서 재미가 있습니다. 국어2(예습) / 1.
2016년 1월 2학년 시간표 < > 1주차_[국어] 국어1(예습) / 1. 아, 재미있구나! / 01월 04일 3. 다음은 꼬부랑 을 넣은 것과 뺀 것입니다. 그 느낌을 설명한 것으로 알맞지 않은 것은 무엇입 니까? 1에서 꼬부랑 할머니 는 허리가 굽은 할머니의 모습이 떠오릅니다. 2에서 꼬부랑 고갯길 은 그냥 고갯길 보다 더 많이 굽은 고갯길 같습니다.
More informationMATLAB for C/C++ Programmers
오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx
Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp
More information동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information1-1Çؼ³
14~15 1 2 3 4 5 6 8~9 1 2 3 4 5 1 2 3 4 5 1 3 5 6 16~17 1 2 3 11 1 2 3 1 2 3 1 2 18 1 2 3 4 5 12~13 1 2 3 4 5 6 1 2 3 4 5 6 19 1 2 3 4 5 6 1 2 3 4 5 19 1 19 1 2 3 4 20~21 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4
More information벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia
제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous
More informationi f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)
More information금안13(04)01-도비라및목차1~12
ISSN 1975-667 13. 13. 1 8 6 1 8 6 5 1.6 5 6.7 3.7 65.5 9. 1 5.5 5 16 1 13 136 16 1 8 8 35 3 95 9 5 85 6 5..5 5..5 1 8 1 8.. 6 6 6 3 3 7 7 5 3 1 1 1 18 18 7 1 9 6 1 9 6 15 1 15 1 3 3 5 5-3
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationMicrosoft Word - sbe_anova.docx
ANOVA 기본개요세집단이상인평균비교 => 일원분산분석집단을요인 (factor) 혹은처리효과 (treatment effect) 라하고집단의개별값을수준 (level) 이라한다. 요인이하나인경우 one-way ANOVA 분산분석 (ANOVA Analyss Of VArance) 은실험설계로부터유래, 분산 ( 변동 ) 에의해요인 ( 모형 ) 의유의성를검증한다. 실험관심대상에대한정보를얻기위한계획된테스트나관측절대실험
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More information<B0E6B7CEBAD0BCAE2E687770>
경로분석 아동의학업성취수준은어떠한변수들에의해서영향을받는가? 학업성취에영향을미칠수 있는변수로는지능이나동기, 가족의사회경제적지위, 학교및교사의특성등여러가지변인 들을생각해볼수있다. 앞장에서다룬중다회귀분석은하나의종속변수와다수의독립변수로 구성된회귀모형을통하여종속변수와독립변수간의관계를밝히고자하는통계적방법이었다. 따라서회귀분석에서관심의대상이되는것은종속변수에영향을미치는독립변수는무엇이며,
More informationPowerPoint 프레젠테이션
03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)
More information중소기업경기지수및경영환경지수 개발에관한연구 - 제조업중심으로 - A Study on Development of the Business Indicators in SMEs focused on manufacturing 요약 1) 125 IPISA 124 ISISA 120 120 115 110 105 100 95 116 112 108 104
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More information선형계수값이크거나선형계수값이작은것을기준으로취업현황, 직업만족도, 연령층 취업현황이라이름을지었습니다. 그이유로첫번째로주성분 1 인취업현황은취업률, 실업률, 여성취업률, 청년실업률을보았을때취업률이높을때와여성취업률이양의값 으로높을때취업현황은좋다고판단할수있고실업률과청년실업률이
3 주성분분석 3.1 주성분분석이란? 주성분분석이란서로연관이있는변수들이관측되었을때, 이변수들이가지고있는정보들을최대한확보하는적은수의새로운변수들을생성하는방법입니다. 즉, 서로연관이있는변수들에대하여주요한관심사중의하나는이변수들이가지고있는변이를측정하는것입니다. 변이란이변수들이가지고있는정보의양이라고할수있는데, 주성분분석에서는원래의변수들이가지고있는변이의양을가장많이확보하는순서대로변수들의성형결합을이용하여새로운변수를구하는과정입니다.
More information13. 다차원척도법 (MultiDimensional Scaling) 13.1 개념및목적 다차원척도법 (mds) 는다차원관측값또는개체들간의거리 (distance) 또는비유사성 (dissimilarity) 을이용하여개체들을원래의차원보다낮은차원 ( 보통 2차원 ) 의공간상에
13. 다차원척도법 (MultiDimensional Scaling) 13.1 개념및목적 다차원척도법 (mds) 는다차원관측값또는개체들간의거리 (distance) 또는비유사성 (dissimilarity) 을이용하여개체들을원래의차원보다낮은차원 ( 보통 2차원 ) 의공간상에위치시켜 (spatial configuration) 개체들사이의구조또는관계를쉽게파악하고자하는데목적이있다.
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More information1 1 Department of Statistics University of Seoul August 29, 2017 T-test T 검정은스튜던트 t 통계량의분포를귀무가설하에서살펴봄으러써가설의기각여부를결정하는의사결정모형임 검정 : X i iid N(µ, σ 2 ) 이라고가정하고, 귀무가설과대립가설을아래와같이놓자. 귀무가설즉, µ = µ 0 하에서 H : µ
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More information외국인투자유치성과평가기준개발
2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.
More informationR
R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.
More informationMicrosoft PowerPoint - MDA DA pptx
SPSS 2 집단 ( 데이터및준비 ) 데이터 TURKEY.SAV 미국 Kansas 주립대학 Dr. Michael Finnegan 교수는야생칠면조와사육칠면조를구별하기위하여수컷칠면조 82마리에대해 9개항목을조사하였다. ID: 칠면조 id HUM: 상완골길이 ULN: 척골길이 CAR: car metacarus 길이 COR: 오탁상길이 RAD: 요골길이 FEMUR:
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More informationMicrosoft Word - ch2_smoothing.doc
FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.
More information제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More informationMicrosoft PowerPoint - statics_vector_and_matrix(노트).ppt
벡터의정의 Metl Forming CAE Lb. Deprtment of Mechnicl Engineering Gyeongsng Ntionl University, Kore Metl Forming CAE Lb., Gyeongsng Ntionl University 벡터의정의 벡터량과벡터 : 물리량 (physicl quntity) 으로서크기와방향성을갖는양 (quntity)
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More information日 本 におけるカバードボンド 法 導 入 に 向 けた 検 討 状 況 足 踏 み 状 態 韓 国 とシンガポールのみならず ブラジルやモロッコ 等 欧 州 からは 遠 く 離 れた 地 域 でカバード ボンド 法 制 整 備 に 向 けた 動 きが 続 く 中 日 本 での 検 討 状 況 につ
第 144 号 2014 年 1 月 20 日 調 査 部 長 江 川 由 紀 雄 yukio.egawa@shinsei-sec.co.jp (03) 6880-6035 2014 年 はアジアのカバードボンド 市 場 始 動 の 年 になる 見 通 し 韓 国 とシンガポールでカバードボンド 発 行 に 関 する 制 度 整 備 が 完 了 大 韓 民 国 国 会 は 2013 年 12 月 19
More informationhwp
2005. 12 80.0 70.0 60.0 농림어업 광공업 사회간접자본및서비스업 50.0 40.0 30.0 20.0 10.0 0.0 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 9.0 8.0 실업률 7.0 6.0 5.0 4.0 전체남자여자
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationPowerPoint 프레젠테이션
제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원
More informationPython과 함께 배우는 신호 해석 제 5 강. 복소수 연산 및 Python을 이용한 복소수 연산 (제 2 장. 복소수 기초)
제 5 강. 복소수연산및 을이용한복소수연산 ( 제 2 장. 복소수기초 ) 한림대학교전자공학과 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 1 배울내용 복소수의기본개념복소수의표현오일러 (Euler) 공식복소수의대수연산 1의 N 승근 한림대학교 제 5 강. 복소수연산및 을이용한복소수연산 2 복소수의 4 칙연산 복소수의덧셈과뺄셈에는직각좌표계표현을사용하고,
More information농림수산식품 연구개발사업 운영규정
- 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - 1. - 29 - - 30 - - 31 - -
More information- 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - 제 1 장연구개발과제의개요 - 17 - - 18 - - 19 - - 20 - - 21 - 제 2 장재료및방법 - 22 - - 23 - - 24 - - 25 - 시료번호 596 항목에따라해당점수위에표기해주십시오.
More informationMicrosoft PowerPoint - LM 2014s_Ch4.pptx
1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality
More informationMicrosoft Word - LectureNote.doc
5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의
제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배
More information<312E2032303133B3E2B5B520BBE7C8B8BAB9C1F6B0FC20BFEEBFB5B0FCB7C320BEF7B9ABC3B3B8AE20BEC8B3BB28B0E1C0E7BABB292DC6EDC1FD2E687770>
2013년도 운영관련 업무처리안내 개정사항(신구문 대조표) 분야 P 2012년 안내 2013년 안내 개정사유 Ⅱ. 의 운영 3. 의 연혁 Ⅲ. 사업 8 20 12년: 사회복지사업 개정 201 2년: 사회복지사업법 개정 -오타수정 13 사업의 대상 1) 국민기초생활보장 수급자, 차상위계층 등 저소득 주민 2) 장애인, 노인, 한부모가정 등 취약계층 주민
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information³»Áö_1È£_0107L
Copyright(c) KONIBP All Rights Reserved. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 49 50 51 52 53 54 55 56 57 58 59
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information<4D F736F F F696E74202D20BFE4C0CEBAD0BCAE5FC0CCB7D0B0ADC0C72E BC0D0B1E220C0FCBFEB5D>
요인분석 (Factor analysis) 목차 1. 요인분석은? 2. 요인분석수행과정 3. 요인분석의실제 4. 요인분석의해석 요인분석은? 질문문항들, 변수들혹은측정대상들간의상관관계를고려해서이들측정치사이에공유하는구조를파악해내는기법을말함 자료및변수의감축기법으로변수가독립변수 / 종속변수인가를구분하지않음 요인분석의구체적목적 자료요약 불필요한자료제거 변수의구조파악 측정도구의타당성평가
More information경견완증 인간공학적 분석
인체측정자료적용설계를위한대표인체모델 설정기법의평가 : 격자기법 정기효, 유희천 포항공과대학교산업경영공학과 인간공학설계기술연구실 목차 연구배경및목적 격자기법을이용한대표인체모델생성 평가및원인분석 토의 - 2/19 - 대표인체모델 (representative human model) 인체공학적설계및평가에방대한인체측정자료 (anthropometric data) 를소수의대표인체모델로축소시켜활용
More information1407인플레이션01-목차1~7
ISSN 2287-3821 214. 7 214. 7 213 214 1.3 1.4 1.2 1.2 1.7 1.7 1.5 1.6 1.2 1.4 2. 2.1 1.4 1.3.8.7.7.5 ( ).4.9 1.4 1.5 3.4 3.7 6.4 6.5 6.3 5.5 5.3 ( ) 2.6 2.8 2.9 2.3 1.8 2.5 i 5 5 4 4 6 5 4 6 5 4
More informationPowerPoint 프레젠테이션
Chapter Radar Cross Section ( R C S ) 엄효준교수 한국과학기술원 Contents.1. RCS Definition.. RCS Prediction Methods.3. RCS Dependency on Aspect Angle and Frequency.4. RCS Dependency on Polarization.5. RCS of Simple
More information<BAF9C7D8BFEEC7D7BCB1B9DA20C1F6C4A728B1B9B9AE292E687770>
2015 빙해운항선박지침 G C-14-K 한국선급 - i - - iii - (m ) cos sin sin 및 Nm N m s Nm Nm m s Nm Nm s Nm arctantan sin 및 Nm N m s Nm Nm m s Nm Nm s Nm Δ ton k UIWL LIWL 1.2 m 1.0 m 0.9 m 0.75 m 0.7 m 0.6 m 0.7 m
More information1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F
More information수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론
수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information메타분석: 통계적 방법의 기초
메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성
More information일반각과호도법 l 삼각함수와미분 1. 일반각 시초선 OX 로부터원점 O 를중심으로 만큼회전이동한위치에동경 OP 가있을때, XOP 의크기를나타내는각들을 ( 은정수 ) 로나타내고 OP 의일반각이라한다. 2. 라디안 rad 반지름과같은길이의호에대한중심각의 크기를 라디안이라한
일반각과호도법 l 1. 일반각 시초선 OX 로부터원점 O 를중심으로 만큼회전이동한위치에동경 OP 가있을때, XOP 의크기를나타내는각들을 ( 은정수 ) 로나타내고 OP 의일반각이라한다. 2. 라디안 rad 반지름과같은길이의호에대한중심각의 크기를 라디안이라한다. 3. 호도법과육십분법 라디안 라디안 4. 부채꼴의호의길이와넓이 반지를의길이가 인원에서중심각이 인 부채꼴의호의길이를
More information.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의
lrognis II 전자기학 제 장 : 전자파의전파 Prof. Young Cul L 초고주파시스템집적연구실 Advnd RF Ss Ingrion ARSI Lb p://s.u..kr/iuniv/usr/rfsil/ Advnd RF Ss Ingrion ARSI Lb. Young Cul L .4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄.
More informationuntitled
180-196 통계청 통계분석연구 2001 년가을 ( 제 6 권제 2 호 ) 비중심위사르트분포의왜도 ( 歪度 ) 에 관한연구 강철 * 박상돈 ** 비중심 (non-central) χ 2 -분포의다변량버전 (version) 인비중심위사르트 (non-central Wishart) 분포는다변량통계분포에서중요한역할은한다. 이논문에서는이러한비중심위사르트분포의중요한특성인왜도
More information< 목차 > Ⅰ. 연구동기 1 Ⅱ. 연구목적 1 Ⅲ. 연구내용 2 1. 이론적배경 2 (1) 직접제작한물질의기본구조 2 (2) 회절격자의이론적배경 3 (3) X-선회절법-XRD(X-Ray Diffraction) 3 (4) 브래그의법칙 (Bragg`s law) 4 (5)
[ 첨부 4] 작품설명서표지서식 작품번호 1143 LASER 의라우에패턴을통한입체모형의구조분석 출품분야물리출품부문학생 2011. 7. 7 구분성명 출품학생 지도교사 김성현 권채련 김서연 전종술 - 1 - < 목차 > Ⅰ. 연구동기 1 Ⅱ. 연구목적 1 Ⅲ. 연구내용 2 1. 이론적배경 2 (1) 직접제작한물질의기본구조 2 (2) 회절격자의이론적배경 3 (3)
More information*금안1512-01-도비라및목차1~9
ISSN 1975-667 215. 12 215. 12 6 5 4 3 2 1 6 5 4 3 2 1 3 145 14 135 13 13 143. 14.7 1.4 9.2 1 7 45 4 35 41.4 85 76.9 76.8 3 7 8 75 125 4 4 1 25 8 6 4 2 2 15 1 5 15 15 36 35.3 36 14 13 12 11 14
More information<4D6963726F736F667420506F776572506F696E74202D20283135313132372931312EBCADBAF1BDBABDC3BCB3C0C720C0D4C1F6BCB1C1A4205BC8A3C8AF20B8F0B5E55D>
서비스기업 운영관리론 Start Your Global Business With Asadal 1 서비스 시설의 입지선정 서강대학교 경영대학 경영전문대학원 교수 서창적 서비스 시설의 유형 Start Your Global Business With Asadal 2 준제조형 서비스 목표 : 네트워크의 물류비용의 최소화 예) 창고, 콜센터 배달 서비스 목표 : 지리적
More informationETOS Series 사용설명서
Programmable Gateway System ETOS - DPS (Profibus DP Slave To Serial) ETOS DPS AC&T System Co., Ltd. 2005-12-12 AC&T System Copyright 2000~2004. All rights reserved. AC&T System 1 1. 1.1. ETOS-DPS 1.1.1.
More informationMATLAB for C/C++ Programmers
회귀분석 (Regression Analysis) 1 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지.. 2 변수간의관계 확정적 (deterministic)
More information슬라이드 1
tress and train I Metal Forming CAE La. Department of Mechanical Engineering Geongsang National Universit, Korea Metal Forming CAE La., Geongsang National Universit tress Vector, tress (Tensor) tress vector:
More information펀드명 : 삼성 vul 혼합형 공시일 : 계약금액 ( 단위 : 백만원 ) 구분 거래대상 거래유형 매수 (1) 매도 (2) 순포지션 (1-2) 비고 신규 유가증권 선물 장내 누계 유가증권 선물 7,398 1,107 6,291 장내 합계
펀드명 : 삼성 vul 혼합형 신규 유가증권 선물 0 0 0 장내 누계 유가증권 선물 7,398 1,107 6,291 장내 합계 7,398 1,107 6,291 * 해당펀드내다수의상품이포함된경우기초자산의변동에따른손익의절대값이큰상품의손익구조가표기됩니다. 3. 시나리오법에의한손익변동 592 4. 최대손실금액 (VaR : 99%, 10 일 ) 119 펀드명 : 삼성
More information