untitled
|
|
- 샤오 서
- 6 years ago
- Views:
Transcription
1 통계청 통계분석연구 제 2 권제 1 호 ( 97. 봄 )23-56 벡터자기회귀 (VAR) 모형의이해 (Vector Autoregressive Model: VAR) 문권순 * 본논문은예측뿐만아니라어떠한변수의일시적인충격에대한효과분석을위하여연립방정식체계로구성된벡터자기회귀 (VAR) 모형을소개한글이다. VAR모형의가장큰특징은첫째, 충격반응분석 (impulse response analysis) 을통하여어떠한한변수의변화가내생변수에미치는동태적반응을파악할수있다. 둘째, 분산분해 (variance decomposition) 를통하여각내생변수의변동이전체변동에기여한부분의상대적크기를분석할수있다. 셋째, 경제이론보다는실제자료에서도출된결과를분석한다. 그러나 VAR모형은사용되는변수및표본기간, 시차길이를따라서결과가달라질수있다는약점이있다. VAR 모형의예로환율과수출물가에의한상품수출모형을설정하여모형설정과정과해석방법등을설명하였다. < 차례 > 1. 서론 5. 충격반응함수와분산분해 2. 벡터자기회귀 (VAR) 모형의형태 6. 상품수출에관한 VAR 모형의예 3. 시계열의안정성과공적분 7. 맺는말 4. 시차길이 (p) 의결정 * 통계청통계연수원교육연구과사무관
2 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 서론 벡터자기회귀모형은일변량자기회귀모형을다변량자기회귀모형으로확정시킨모형으로예측및내생변수의변화에따른효과분석등과관련하여자주활용되고있다. 전통적인회귀모형에의한구조방정식모형은변수간의인과관계를통하여종속변수 Y를몇개의설명변수 {X 1, X 2, } 에의해서설명하고있다. 그러나회귀모형에서는설명변수의영향이시간 t가변하더라도항상일정하다는가정을하고있어구조적변화가급속히진행되어설명변수의영향이변한경우이를적절히반영하지못한다는약점이있다. 또한구조모형 (structure model) 은경제이론에의해서모형을구축하고잇어변수선택및모형의내 외생변수의선정이모형설계자의주관에의해서결정된다는단점이있다. 따라서이러한시간에대한경직성과주관성을극복할수있는방법이 Box and Jenkins(1976) 의 ARIMA 모형이라고할수있다. ARIMA모형은현재의관측치 Z t 는과거의어떠한규칙성에의해서재현되며, 이러한규칙성은미래에도유지된다고가정하고미래를예측하고자했다. 이러한방법은모형설정이용이한반면변수들사이의상호작용을무시하고있어일변량분석이라는한계에부딪치게된다. 이들회귀모형과시계열분석의한계를보완한모형이 Sims(1980) 의 VAR모형이라할수있다. VAR모형은연립방정식체계와비슷하나모형의오차항을구조적으로해석하며식별제약의일부가오차항의공분산행렬에가해진다는특징을가지고있어연립방정식에비해다음과같은분석상의특징을갖고있다. 첫째, 충격반응분석 (impulse response analysis) 을통하여어떠한한변수의변화가내생변수에미치는동태적효과를파악할수있다. 둘째, 분산분해 (variance decomposition) 를통하여각각의내생변수의변동중에서이들변수들이전체변동에기여한부분의상대적크기를분석할수있다. VAR모형은어떠한경제이론을기최로가설을설정하지않고실제관찰되는경제시계열들이주는정보를최대로이용하여현실경제를분석하게된다. 즉, VAR모형은모형내의모든변수들에대한시치변수들을동시에설명변수로이용하여결과를분석하고자한다.
3 벡터자기회귀 (VAR) 모형의이해 25 일반적으로 VAR모형은모형내에포함된변수가많지않은장점이있는반면, 추정이나분석결과가선정된적은수의변수에의해서좌우되므로변수선정에신중을기해야한다. 또한모형설정시사용되는변수들의배열순서및표본기간, 시차길이등에따라결과가달라질수있다는약점이있다. 2~5장까지 VAR모형의설정방법과충격반응함수및예측오차에대한분산분해등을통계학적측면에서살펴보았다. 6장에서는예로상품수출의 VAR 모형을설정하여모형의설정과정결과에대한해석등을설명하였다. 상품수출의 VAR모형은환율 ( 원달러, 엔달러 ) 과수출물가를설명변수로한 VAR(2) 모형을가정하였으며, 분석은예측보다는충격반응분석과분산분해에중점을두었다. 2. 벡터자기회귀 (VAR) 모형의형태 일변량안정시계열 Z t 의자기회귀이동평균모형 (autoregressive moving average: ARMA) 인 ARMA(p, q) 을다음과같이정의하자. Z t = θ 1 Z t θ p Z t - p +a t -φ 1 a t φ q a t - q,t =1,2,,Τ ARMA(p, q) 모형을후행연산자 B 를사용하여표현하면다음과같다. (1-θ 1 B-θ 2 B 2 - -θ p B p )Z t =(1-φ 1 B-φ 2 B 2 - -φ q B q )a 1 θ(b)z t = φ(b)a t 여기서 a t 는평균이 0, 분산이 σ 2 a 인백색잡음과정 (white noise process) 이다. 이때 q=0일때, ARMA(p, q) 모형은현재의시점 Z t 가과거의시점 Z t -1, Z t -2, 에의해서설명되어지는확률과정으로다음과같은자기회귀모형 AR(p) 가된다.
4 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 26 Z t = θ 1 Z t θ p Z t - p + ε t 여기서 ε t 는평균이 0, 분산이 σε 2 인백색잡음과정이다. N개의다변량정상시계열로구성된 X t = (X 1 t, X 2 t,,x Nt ) 가 p시차인자기회귀과정으로구성된벡터자기회귀모형 VAR(p) 라하며다음과같이정의하자. X t = C+ Θ 1 X t Θ p X t - p + ε t (1) 즉, = C + p i=1 Θ i X t - i + ε t x 1, t x 2, t x N, t = c 1 c 2 c N + p i =1 θ 11 θ 12 θ 1N θ 21 θ 22 θ 2N θ N1 θ N2 θ NN i x 1, t - i x 2, t - i x N, t - i + ε 1, t ε 2, t ε N, t 여기서 C는 (N 1) 상수벡터, Θ i 는현시점의변수와시차변수들간시차회귀계수인 (N N) 의행렬, ε t 는 (N 1) 의벡터백색잡음과정으로 E( ε t )=0이며, 다음의공분산행렬을갖는다. σ ε = (ε t ε' s )= { 2, t = s 인경우 0, t s 인경우 변수 n=1,2,,n 에대해서 i 시차의관측치를벡터로표현하면다음과같다. X n = X n1 X n2 X nt X i n = X 1 X 2 X T V n = V n1 V n2 V nt 이라면 n 번째시계열인 X n 의회귀방정식은다음과같이쓸쑤있다.
5 벡터자기회귀 (VAR) 모형의이해 27 X n = c n J +( θ 1 n1 X θ 1 2 X θ 1 nn X 1 N ) + +( θ p n1 N p 1 + θ p n2 X p θ p nn X p n + V n = Y θ n +V n (2) 여기서 J = (1,1,,1) 인 (T 1) 의단위벡터이며, Y =(J, X 1 1, X 1 2,, X 1 N,, X P 1, X P 2,, X P N ), θ n =(c n, θ 1n1, θ 1n2,,θ 1nN,,θ pn1,θ pn2,,θ pnn )' 이다. 한편 V n MN( θ, v ) 이며, n s일때 E[ V t V s ]=0 이다. X의벡터회귀방정식은 N개의개별회귀방정식을갖게되며, Kronecker product ( ) 와 vec을이용하여다음과같이쓸수있다. vec ( X )=( I N Y)vec ( θ )+ vec ( V ) 이때 V 의공분산행렬 E(V V') = V I T 이다. 개별회귀방정식의모수 θ n 은 (2) 식으로부터통상최소자승법 (Ordinary Least square method: OLS) 에의해서다음과같이추정할수있다. -1 ˆ θ n = ( Y Y' ) Y' X n 이때전체모수벡터 θˆ = [I N ( Y'Y) -1 ] Y'X 으로 VAR 모형의 n 번째회귀계수벡터인 θˆ n 은개별회귀방정식의회귀계수를 추정한것과같다.
6 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 시계열의정상성과공적분 시간 t=1,2,,t 에대해서, 다변량시계열 성 (stationarity) 조건은다음과같다. X t =(X 1t, X 2t,,X Nt ) 의정상 i) E( X t ) = μ < ii) Var( X t ) = E[(X t - μ)(x t - μ)'] = X < iii) Cov( X t, X t + k )=E[( X t - μ )( X t + k - μ )']= T X (k) 즉, 평군과분산 공분산이시간 t에따라불변이여야한다. 이는정상시계열은일시적인충격에의해서추세치를이탈하더라도결국은추세치에회귀하는경향을갖는다는것이다. 일변량시계열 y t 가다음과같이 AR(1) 모형을따른다고가정하자. y t = β 0 + β 1 t + ρy t -1 + ε t 여기서 t는추세를나타내며, ε t iid (0,σ 2 ) 이다. 이때시계열 y t 가정상계열 ( 또는안정계열 ) 인지는 H0: ρ =1 인지를검 정하는단위근검정 (unit root test) 을실시함으로써알수있다. Dickey and Fuller(1979) 는다음의모형을가정하고 H 0 : λ =0 ( 여기서 λ = p-1 이다 ) 을검정하고자했다. Δy t = β 0 + β 1 t + λy t -1 + e t 이후 Said and Fuller(1984) 에의해서오차항 ε t 가자기상관을갖는경우 다음식 (4) 에의하여체화된 DF(Augmented Dickey and Fuller: ADF) 검정법을제시하였다.
7 벡터자기회귀 (VAR) 모형의이해 29 Δy t = β 0 + β 1 t + λy t -1 + p i=1 λ i Δy t -1-i + e t Phillips and Perron(1988) 은 (4) 식의 ADF 모형에서차분된시차변수가없는 ADF 검정의모형을가정하고단위근검정을실시했으며, 이때임계치는 ADF의임계치와동일하다. 대부분의경제시계열은추세를갖고있어시계열을일차또는그이상의차분을통하여시계열을정상화한후분석하게된다. 그러나차분은원자료가갖고있는장기적특성을잃는단점이있다. Engle 과 Granger(1987) 는개별경제시계열이비정상계열 ( 또는불안정계열 ) 로추세변동이있더라도이들시계열간에장기적으로안정적인균형관계를갖도록하는선형결합 (linear combination) 이존재한다면이선형결합은정상계열이되며, 이들시계열은공적분 (cointegration) 관계에있다라고한다. 즉, 비정상시계열 X 1t 와 Y t =(X 2t,,X Nt ) 가있을때, Z t = X 1t - β' Y t 를만족하는 β가존재하고이때 Z t 가정상시계열이라면 ( X 1t,Y t ) 는공적분관계에있다라고하며 β를공적분벡터라고한다. Dickey and Fuller 방법에의한공적분검정방법은비정상시계열을아래와같은회귀식으로설정한후회귀방정식의잔차에대한단위근검정을실시함으로써공적분관계를검정할수있다. X 1t = β 0 + γt+ N Δε t = a 0 εˆ t -1 + p i=2 s =1 β i X +ε t Δ εˆ t - s +e t Said and Fuller 의 ADF 검정에의한공적분검정은 a 0 =0 인지에대한 t- 검정으로, ε t 에대한단위근검정이기각되면시계열 X t 는공적분관계를갖는다고할수있 다. ADF 검정은차분변수 (Δε t - s ) 의시차길이에따라검정결과가달라질수있으
8 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 30 나, Phillips and Perron 방법에서는 nusiance parameter인시차차분변수를이용하지않으므로시차의길이와는무관하게된다. 또한 ADF 검정에서는잔차 ε t 는독립이고동일한분포를갖는다.(independent and identically distributed: iid) 라는가정을하고있으나, PP검정에서는 iid일뿐만아니라약한종속관계와동일분포가아닐지라도적용가능하다. 그러나 Engle과 Granger 의공적분검정방법은추정오차를최소화하는최소자승법을사용하므로공적분벡터가여러개일때각각의공적분벡터를구분할수없다는단점이있다. Johansen(1991) 은시계열속에존재하는모든공적분관계를찾아내는방법을다음과같이제시하였다. (1) 식의 VAR 모형을 C=0인 (5) 식의오차수정모형 (Error Correction Model: ECM) 으로변형하자. Δ X t = Π 1 Δ X t Π p -1 Δ X t - p +1 + Θ X t - p + e t (5) 이때 X t - p 의계수인 Θ의계수 (rank) 를검토한다. 만일 (N N) 행렬인 Θ의계 수가 0이면 X t 의모든시계열은일차차분인자기상관으로이루어진모형이며, 계 수가 N과같으면 X t 는정상시계열이다. 그러나 r=rank( Θ )<N인경우, r개의공 적분벡터와 N-r개의공통확률추세가존재하며, Θ는다음과같이 (N r) 행렬로 표현할수있다. Θ = A B' 여기서 A는적재벡터 (loading vector) 또는오차수정계수이며, B는공적분벡터로 (6) 의특성식 (characteristic equation) 에의해서추정된다. λi - S p0 S S 0p S -1 pp = 0 (6) 여기서 S ij = 1 T R it R jt, (i,j=0,p), R 0t 와 R pt 는 ΔX t 와 X t - p 를각 { Δ X t -1, Δ X t -2,,Δ X t - p +1 } 에회귀한잔차항이다.
9 벡터자기회귀 (VAR) 모형의이해 31 이때특성식 (6) 에의해서고유근 (eigenvalue) ˆ λ 1 > ˆ λ 2 > ˆ > ˆ λ r > > ˆ λ N > 0이구해지면최대 r개의공적분벡터가존재한다는가설 ( H 0: Θ = A B') 을점근적으로 x 2 분포를따르는우도비검정 (likehood ratio) 1) 또는 Trace 에의해서다음과같이검정할수있다. -2ln(Q)=-T N ln(1- ˆ) λ i i= r 시차길이 (p) 의결정 일변량시계열의 AR모형에대한시차길이 p는편자기상관함수 (partial autocorrelation function: ACF) 에의해결정한다. 벡터과정의경우는편자기상관이행렬형태이며이때편자기상관행렬을시각적으로검토하여모형의시차를결정할수있다. 그러나이러한방법은많은경험을필요로한다. 그러므로일반적으로 VAR모형의추정오차에대한공분산행렬인 Σ p 를이용하여다음의통계치가최소화되는아카이케 (Akaike: AIC) 또는슈바르츠 (Schwartz: SIC) 통계량에의해서시차길이를결정할수있다 (Judge, Hill 등, 1988). AIC(p)= ln ˆ p + 2(N 2 p+1) T-p SIC(p)= ln ˆ p + (N2 p+1)ln(t-p) T-p Hurvich 와 Tsai(1993) 는수정된 AIC c 통계량을제시했다. AIC c =ln ˆ p + 2(N 2 P+1) T-(Np+N+1)-p 1) Johansen 은이외에도고유근의최대값을이용하는방법인 λmax = - Tln(1-^λ _r+1 ) 을제안하고있다.
10 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 32 Hamilton(1994) 의우도비검정법 (likelihood ratio test: LR) 은먼저임의의최대시차를정해두고시차를줄여가면서추정한 VAR모형의추정오차 를이용하고있다. 이때귀무가설 H 0 : 시차의길이는 po(<p 1 ) 대립가설 H 1 : 시차의길이는 를따른다. p 1 이며 LR 2) 통계량에대한분포는점근적으로분포 LR =(T-p 1 )( ln ˆ p 0 - ln ˆ p1 ) 여기서 ˆ p1 는비제약모형인 VAR(p 1 ) 에의한잔차공분산행렬, ˆ p0 는제약모형의잔차공분산행렬에대한추정량으로각원소 σ ij 는다음 과같다. (x i -Xθ ˆ)'(x j σ i -Xθ ˆ) j ij = T 시차의길이 p를선택할때, 가능한모혀에동적체계를충분히반영할수있도록길게잡는다. 그러나시차를길게하면 VAR모혀에서추정하여야할모수개수는 N(1+Np) 이므로시차 p가증가하면할수록?? 만큼씩증가하게되어자유도가급격히줄어든다. 이에따라다중공선성의문제로추정된회귀계수가불안정하게된다. 이논문을위해서사용한프로그램인 Eviews Ver 2.0의 AIC, SIC, LR검정통계량은다음식과같다. AIC = 2(Np+1) T-p +ln ˆ p 2) Sims(1980) 의 LR 통계량은다음과같으며점근적분포는 Hamilton 과같다. LR =(T-k)( ln ˆ p 0 - ln ˆ p1 ), 여기서 k=np 1 + 1
11 벡터자기회귀 (VAR) 모형의이해 33 SIC = (Np+1) ln(t-p) T-P +ln ˆ p LR =- T-p 2 [1+1n2π+ln ˆ ] p 5. 충격반응함수와분산분해 Box and Jenkins(1976), Hamilton(1994) 등은식 (1) 의 AR(p) 모형이가역성 (invertibility) 조건을만족하면 MA( ) 모형으로변환할수있음을보여주고있다. 즉, Θ의고유근이모두단위원내에존재하는시계열이라면 x t 는 ε t 에의한벡터이동평균모형 (Vector Moving Average: VMA( )) 으로표현할수있다. X t = μ + ε t + Ψ 1 ε t -1 + = μ + s =0 Ψ s ε t - s = μ 1 μ 2 μ N + s =0 φ 11 φ 12 φ 1N φ 21 φ 22 φ 2N φ N1 φ N2 φ NN s ε 1t - s ε 2t - s ε Nt - s 이를후행연산자를이용하여표현하면다음과같이된다. X t = μ+ψ(b) ε t 여기서 Ψ(B) 계수는시간 s 의함수로 ε t 의충격 (shock) 에대한 X 1 의효 과를나타내며, 이를충격반응함수 (impulse response function) 라고한다. Ψ(B) 의개별원소인 φ ij( s) 는 ε j 가 1 단위변화되었을때 i 번째변수 X i 에
12 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 34 s 시점 1 기간동안미치는충격계수 (impact multiplier) 또는 innovation 계 수이다. ε t 의한단위충격 ( 또는 innovation) 의누적효과는충격반응계수의 누적합 Ψ ijs 에의해서구할수있다. s =0 그러나 (1) 식에의해서추정된 ε t 가서로독립이아니기때문에 (8) 식의 Ψ(B) 를충격과반응으로해석하기에는무리가따른다. 즉, 한변수에충격이발생하면이로인해다른변수가변하고이것이다시처음충격이시작된원래의변수에영향을미치는순환작용 (feedback) 에의해서서로영향을미치기때문이다. 예를들어다음과같은 N=2 VAR모형을가정하자. y 1t θ 111 θ 112 y 1t -1 θ 211 θ 212 y 1t -2 ε 1t = y 2t θ 121 θ y 2t -1 θ 221 θ 222 y 2t -2 ε 2t 충격효과인 ε 1t 의변화는직접적으로 y 1t 를변화시킨다. 이에따라모 형체계내에서 y 2 는 y 1 의함수이므로 y 2 도역시변하게되므로결국은 y 1 과 y 2 를변화시키게된다. 즉, 선형모형에있어서잔차항 ( ε 1t, ε 2t ) 들이서로상관되어있다면, 잔차항들에의해서생성되는공통요인 (common component) 이내생변수들에영향을주게된다. 따라서어떠한잔차항의충격효과는잔차항들에의해서만들어진공통요인의충격효과가되므로특별한변수가갖는충격에대한효과로보기는어렵다. 이러한공통요인이갖는충격효과는모형체계내에서먼저나타나는변수에의해서영향을받게된다. 즉, ε 1, ε 2 가높은상관관계를갖고있다면, 충격의거의모든 효과는 y 1 에나타나게되면 y 2 에는나타나지않을수있다. 이러한과정 의문제는충격반응이모형체계내에서방정식의순서에의존한다는것이다. 따라서이러한순환작용을제거하기위해서 (1) 식에서추정된잔차항인 ε t 를계열상관이없고충격들간에독립이되도록다음조건 (9) 를만족하 는 Cholesky 요인분해 (decompostion) 에의해서잔차항 ( ε t ) 를분해하게 된다.
13 벡터자기회귀 (VAR) 모형의이해 35 U t = S -1 ε t SS' = (9) E( U t U' t )=E( S -1 ε t ε' t S' -1=1 )=1 이때대각행렬이 1 인하삼각행렬 (lower triangular matrix) S 를구하게 되면, (8) 식은다음과같이잔차항 환할수있다. X t = μ+ψ(b)s S -1 ε 1 U t 가독립인벡터이동평균모형으로변 =μ+h(b) U t (10) 여기서 H(B) 행렬은직교화된충격반응함수로어떠한변수에충격 주어졌을때 s 시점인 U i 가 X t + s 대한반응결과를나타낸다. 즉 H(B) 의계수는 에대한새로운정보가개별변수에서로다르게영향을미치더라도 s 시점 인 X t + s 에어떠한영향을미치는가를나타낸다. 한편 S 행렬의대각원소 는각충격들의표준편차를나타내므로특정변수에대한단위당충격에대한반응효과는다음과같이 H(B) 각원소의크기를해당변수의표준편차로나누면된다. H S i var(u i ), 여기서는 h s i 는 s 시점에있어서 H 의 i 번째열벡터이다. 또한 Cholesky 의방법에의해서 ε 1 의공분산을분해함으로써예측오차 의분산을분해할수있다. 이때분산분해시모형내의변수순서에달라지면 ε 1 의배열순서가달라지므로분산분해의결과가달라지는결점 3) 이있다. 그러나잔차에대한공분산들이작다면순서에영향을받지않는다. 분산분해의의미는모형에대한예측오차의분산을각변수의변동에의해발생하는예측오차의비율로분해하는것으로어느한변수의변화를설명하는데있어서 VAR모형내에포함된각변수의상대적인중요성의정도를파악하는데이용된다. 3) 이점은충격반응함수에서도마찬가지이다.
14 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 36 (8) 식의모형을전개의편리상 μ =0 이라가정하자. 이때, X t + k 와이에 대한예측값 X ˆ t + k 은다음과같다.(Hamilton, 1994). X t + k = Ψ 0 ε t + k + Ψ 1 ε t + k Ψ k ε t + Ψ k +1 ε t +1 + E(X t + k X t,x t -1, )=Ψ k ε t + Ψ k +1 ε t -1 + 이때 =E(ε t,ε' t ) 이며 ε t 는식 (9) 에의해서 ε t = S U t 이다. s i 를 S 행렬의 I번째열이라며 U i 는서로상관관계를갖고있지않으므로 =E[S U t U' t S'] = N i =1 s i Var(U i )s' t 이다. (11) 따라서 X t + k 의예측오차 MSE(X t + k ˆ) 는다음과같다. ˆ ˆ ˆ MSE(X t + k )=E[(X t + k - X t + k )(X t + k - X t + k )'] = +Ψ 1 Ψ' s = Ψ 2 Ψ Ψ k -1 s i s' i Ψ k -1 ] = N Var(U i)[s i s' i + Ψ 1 s i s' i Ψ' Ψ k -1 s i s' i Ψ' k -1 ] i =1 (10),(11) 식에의해서 H = Ψ S 이고 =E(S U t U t' S') 이므로 Ψ s Ψ' s = N ˆ MSE( X t + k )= i =0 h i k -1 s Var(U i )h' s i s =0 N i =1 h i 이다. 따라서 s Var(U i ) h' i s 위식에의해서 k기간예측오차에대한 j번째잔차항의충격 ( 또는 innovation) 은다음과같다.
15 벡터자기회귀 (VAR) 모형의이해 37 Var( U j )[s j, s' j + Ψ 1 s j s' j Ψ' Ψ k -1 s j s' j Ψ k -1 ] k = -1 Var(U s j) h j s =0 h' j s a 번째변수의예측오차분산중에서 b 번째변수가차지하는비율, 즉 b 번 째변수의기여도 C ab 는다음과같다. C ab = k -1 s =0 (h sab) 2 Var(U b ) k -1 s =0 i N =1 (h sai ) 2 Var(U i ) 100 (12) 6. 상품수출에관한 VAR 모형의예 상품수출이란국내에서생산된재화에대한해외에서의수요이므로해외의소득수준, 수출품의해외가격그리고경쟁재인해외제품의해외가격에의해결정된다. 따라서상품수출함수는교역상대국의소득과교역상대국과우리나라수출품의상대가격의함수로설정하는것이전통적이방법이다. 그러나본고의예에서는이러한전통적인방법에서벗어나환율의수출물가가상품의상품수출은해외시장에서품질경쟁보다는가격경쟁을하고있다는점에서환율변동은중요한역할을해왔다. 따라서환율변동을원달러환율 (ER) 과엔달러환율 (USYE) 을사용했다. 또한수출단가변동에따른상품수출의변동을살펴볼수있겠으나, 수출단가통계가갖는문제점 ( 유윤하, 1995) 과시계열의연장에서생길수있는편의 (bias) 4) 를고려하여원환기준수출물가 (PXIW) 를사용했다. 상품수출을금액및물량으로나누어분석하기위하여한국은행 국민계 4) 수출단가통계는 70 년부터 90 년까지는 KCTC 분류방식에의하여 1985 년기준으로작성되었으니 88 년이후에는 HS 분류방식에의하여 1990 년기준으로작성되고있다. 따라서시계열을연장하기위하여 88 년 ~ 90 년의시계열을살표보면 90 년이전까지자겅된지수는추세성이있는지수로 88 년이후작성된지수추세성이없는패턴을보여전혀다른형태를보이고있다.
16 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 38 정 의경상과불변수출금액을수출금액 (NEXCB) 및수출물량 (EXCB) 으로보았다. 원달러환율과엔달러환율은한국은행조사통계월보의월별환율을 3개월평균하여분기화하였으며, 수출물가는월간물가자료를 3개월평균하여사용하였다. 자료는 82년 1/4분기부터 95년 4/4분기의분기자료이며, 계절성을제거하기위하여 X11ARIMA방법에의해서계절조정을실시한후 log변환을하였다. 모형의추정과검정은 Eviews ver 2.0에의하여실시하였다. 본고에서는수출금액에관한 VAR모형의설정을위주로하였으며, 수출물량의 VAR모형설정절차와기타검정의기술은생략하였다. 6.1 단위근검정 사용될변수들의정상성여부를검토하기위하여다음과같이추세와상수항이있는모형 (t), 상수항만존재하는모형 (c), 추세와상수항이존재하지않는모형 (n) 을가정하여 ADF와 PP의단위근검정을실시하였다. t : c : y t = β 0 + β 1 t+ρy t -1 + ε t y t = β 0 + ρy t -1 + ε t n : y t = ρ y t -1 H 0 : 단위근을갖는다 라는귀무가설에대한 5% 와 10% 유의수준의 MacKinnon 임계치는다음과같으며, ADF검정과 PP검정에서동일하게적용된다. <MacKinnon 임계치 > t c n 50% %
17 벡터자기회귀 (VAR) 모형의이해 39 < 표 1>~< 표 4> 는단위근검정의결과이며변수들은다위근이존재하는비 정상시계열임을알수있다. 그러나 < 표 2> 원달러환율의경우오차항 가계열상관된것을가정하는 ADF검정에서는상수항이존재하는모형 (c) 에서는정상시계열인것으로나타났다. < 표 1> 수출금액 (LNEXCB) 에대한단위근검정의결과 ADF검정 PP검정 t c n t c n 시차 ε t < 표 2> 원달러환율 (LER) 에대한단위근검정의결과 ADF검정 PP검정 t c n t c n 시차 * * ** * ** < 표 3> 엔달러환율 (LUSYE) 에대한단위근검정의결과
18 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 40 ADF검정 PP검정 t c n t c n 시차 < 표 4> 수출물가 (LPXIW) 에대한단위근검정의결과 ADP검정 PP검정 t c n t c n 시차 * 주 ) *: 10% 유의수준에서귀무가설 H 0 가유의적임. 6.2 공적분검정 우리는앞에서개별변수들이단위근을갖는비정상계열임을보았다. 다음은수출금액과 ( 원달러환율 원달러환율 수출물가 ) 간에장기균형관계를갖는지공적분검정을하도록하겠다. 수출금액과엔달러환율, 수출금액과원달러환율, 수출금액과수출물가간의공적분관계를보는방법도있겠으나, 그러한경우두변수간의공적분관계를나타내므로하나의변수와 ( 원달러환율 엔달러환율 수출물가 ) 변수집단간의공적분관계를나타내지는못하게된다. 따라서수출금액과 ( 원달러환율 엔달러환율 수출물가 ) 변수집단간의 Engle 과 Granger의공적분관계를보기위하여다음의모형을가정한다. t :LNEXCB = β 0 +β 1 LUSYE+β 2 LER+β 3 LPXIW+β 4 t+ε 1
19 벡터자기회귀 (VAR) 모형의이해 41 c :LNEXCB = β 0 +β 1 LUSYE+β 2 LER+β 3 LPXIW+ε t n :LNEXCB = β 1 LUSYE+β 2 LER+β 1 LPXIW+ε t 이때 ADF 와 PP 방법을이용하여공적분검정을하기위해서는위의회 귀식을 OLS 에의해서해를구한후, 회귀식의잔차 ε t 에대한단위근검 정을실시하면된다. < 표 5> 는 Engle과 Granger의공적분검정결과이며, 1은공적분벡터이다. 다음은 Engle과 Granger방법에의한공적분검정을하기위한 ADF검정의임계치이며, PP검정시에는시차에상관없이 (5%), (105) 이다. <ADF검정에대한 MacKinnon의임계치 > t c n 5% 10% 5% 10% 5% 10% 시차 < 표 5> Engle 과 Granger 방법에의한 LNEXCB 와의공적분검정결과
20 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 42 t c n 계수 (p-값) 계수 (p-값) 계수 (p-값) 1 β (0.00) 4.27(0.01) - LER -0.95(0.00) -1.15(0.00) -0.22(0.00) LUSYE -0.46(0.00) -0.44(0.00) -1.09(0.00) LPXIW 1.55(0.00) 3.29(0.00) 3.90(0.00) TREND 0.1(0.00) - - ADF검정시차 * ** ** * P-P검정시차 * * ** * 주 ) **: 5% 유의수준에서 H 0: 단위근이존재함 이라는가설이유의적임 *: 10% 유의수준에서 H 0: 단위근이존재함 이라는가설이유의적임 < 표 5> 의공적분벡터를보면엔달러환율이상승하면우리나라의수출금액은감소한다. 또한원달러가상승하면수출금액이감소하는데이것은원화가평가절하되더라도단기에수출물량은크게증가하지않는반면달러표시수출금액은줄어들기때문이다. 모형에사용하는변수인 LNEXCB, LUSYE, LPXIW는추세가존재하는시계들이므로추세가존재하는모형인 t모형의결과를보면 10% 유의수준에서공적분이존재함을알수있다. < 표 6> 은시차를 p=2 5) 로하였을때 Johansen에의한공적분검정의결과이며, 이때검정시자료들이선형의확정적추세가있음을가정했다. LR 5) 시차를 2 로한이유는 VAR 모형의시차길이에따른것이다.
21 벡터자기회귀 (VAR) 모형의이해 43 값은 (6) 식에의한결과이며, 공적분벡터의개수를검정하기위하여먼저 r=1, 즉공적분벡터가 1개존재한다는가설을검정하면검정통계치는 64.99로 5% 의유의수준 (62.99) 에서기각되고있다. 따라서 r=2에대한검정을하면검정통계치 35.85보다 5% 유의수준의값 (42.44) 이크므로채택되고있다. 결국우리는적어도 1개의공적분벡터가존재함을알수있다. 이때공적분벡터에의해서만들어지는공적분회귀식은다음과같다. LNEXCB = *LER *LUSYE *LPXIW (0.21) (0.31) (0.62) *t (0.01) < 표 6> Johansen 의공적분결과 Likelihood Critical Value Hypothesized Engenvalue Ratio 5% 1% No. of CE(s) r= None * At most At most At most 3 주 ) * 는 5% 유의수준에서 H 0: p=r 라는가설을기각 6.3 VAR 모형 VAR모형의결과는변수의길이와순서에의해서영향을받는다. 특히변수의순서는예측오차의공분산행려에있어서행과열의순서를결정하여변수간에상관이높은경우 Cholesky 요인분해결과에크게영향을미쳐충격반응함수의결과가달라질수있다. 우리는변수의순서를회귀모형에서외생성여부즉독립성또는선행성을파악하기위하여사용하는 Granger의인과검정 (causality test) 을통 해서정하기로한다. Granger 인과검정에대한기술은생략하고그결과 만을살펴보면 LER LUSYE, LER LPXI, LUSYE LPXIW 를
22 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 44 Granger 인과하므로다음과같은 LER LUSYE LPXIW의인과관계를상정할수있다. 따라서우리는다으뫄같은순서로 VAR모형을설정하기로한다. LNEXCB = f(ler, LUSYE, LPXIW) < 표 7> 은 VAR모형의시차길이를결정하기위하여 Eviews Var 2.0에서제공하는 LR, AIC, SIC 등의결과이다. < 표 7> 시차길이를결정하기위한통계량 시차? LR(p) AIC(p) SIC AIC? LRI E E E E E E E E E E < 표 7> 에의하면시차의증가에따라단조함수의형태를보여소망스러운결과를얻지못하였다. 또한 Hamilton(1994) 의우도비검정역시같은결론을얻었다. 따라서우리는 4절의 Hurivich and Tsai의 AIC_c가최소화되거나, Hamilton 방법을변형한 LR1통계량 6) 이최대가되는 2분기시차를걱정시차로가정하였다. LR1이초대가되는시차는 10분기로이때추정하여야할모수는 164개로모수를추정하기위한자유도를충분히보장받지못하게된다. < 표 8> 은 2 분기시차를갖는경우의수출금액에대한 VAR 모형의추정 6) LR1= T 2 (1+ log2 π- 1 N log ˆ ) p
23 벡터자기회귀 (VAR) 모형의이해 45 결과이다. VAR모형의개별회귀식해는 LNEXCB, LER, LUSYE, LPXIW 에대한개별회귀식의해를구하는것과동일하다. 수출금액 (LNEXCB) 의함수를보면원달러환율과엔달러환율의회귀계수부호는반대로되어있어원달러환율과엔달러환율은우리나라수출금액에반대로영향을미치고있음을보여주고있다. 한편수출물가상승은일시적으로수출금액의증가를가져오나, 수출물가상승으로수출물량감소를초래하여수출금액도역시감소함을보여주고있다. VAR(2) 모형을가정하고어느한변수에충격이가해졌을때, VAR모형의연립방적식체계내에서각변수가어떻게반응하는지를보기로하자. 이를위해각변수에대한예측오차의공분산행렬을구하면다음과같다. < 예측오차의공분산행렬 > LNEXCB LER LUSYE LPXIW LNEXCB LER -7.94E E-05 LUSYE LPXIW 4.22E E E E-05 < 표 8> 수출금액 (LNEXCB) 에대한 VAR(2) 의추정결과
24 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 46 LNEXCB LER LUSYE LPXIW LNEXCB(-1) (0.15) (0.04) (0.15) (0.03) LNEXCB(-2) (0.18) (0.04) (0.18) (0.03) LER(-1) (0.47) (0.12) (0.48) (0.09) LER(-2) (0.46) (0.12) (0.47) (0.09) LUSYE(-1) (0.15) (0.04) (0.15) (0.03) LUSYE(-2) (0.15) (0.04) (0.16) (0.03) LPXIW(-1) (0.76) (0.19) (0.78) (0.14) LPXIW(-2) (0.78) (0.19) (0.79) (0.15) C adj-r² Akaike AIC 주 ) ( ) 은 p- 값임. 한편수출금액의충격반응이란 LNEXCB, LER, LUSYE, LPXIW의예측오차에대한 1 표준편차충격이주어졌을때수출금액이변하는동태적반응을나타낸다. 즉, 1 표준편차는위의예측오차공분산행렬의대각행렬을평방근을한값인 , , , 이며이는곧수출 3.88%, 원달러 0.96%, 수출물가 0.73% 증가하였을때수출의반응을말한다. < 그림 1> 은 4개의면으로구성되어있는데이는수출금액의충격반응으로부터수출물가의충격반응까지 1표준편차의충격에가해졌을때각각내생변수의동태적반응을나타낸다. 각변수마다 1 표준편차충격이주어졌을때수출금액의반응
25 벡터자기회귀 (VAR) 모형의이해 47 (Response of LNEXCB to One S.D. Innovation) 을보면, 원달러환율이 0.96% 상승하였을때약 16분기까지지속적으로수출금액은증가한다. 엔달러환율이 3.94% 상승하면 5분기까지는수출금액이감소하나이후 16 분기까지점진적으로수출경쟁력을회복하는것으로나타났다. 0.73% 의수출물가상승은 8분기까지는수출금액이증하가나이후수출금액이감소하는형태를보인다. 이러한관계는수출물량변동과연계시켜보면더욱명확하므로수출물량에대한 VAR(2) 모형을설정하여충격반응을보기로한다. < 표 9> 는수출물량 (LEXCB) 에대한 VAR(2) 모형의결과이며 < 그림 2> 는수출물량함수에대한충격반응함수의그림이다.
26 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 48 < 표 9> 수출물량 (LEXCB) 에대한 VAR(2) 의추정결과 LNEXCB LER LUSYE LPXIW LEXCB(-1) (0.14) (0.04) (0.15) (0.03) LEXCB(-2) (0.17) (0.04) (0.18) (0.03) LER(-1) (0.46) (0.12) (0.49) (0.09) LER(-2) (0.43) (0.11) (0.46) (0.08) LUSYE(-1) (0.15) (0.04) (0.16) (0.03) LUSYE(-2) (0.15) (0.04) (0.16) (0.03) LPXIW(-1) (0.71) (0.19) (0.76) (0.14) LPXIW(-2) (0.72) (0.19) (0.77) (0.14) C adj-r² Akaike AIC 주 ) () 은 P- 값임.
27 벡터자기회귀 (VAR) 모형의이해 49 다음은환율 (LER, LUSYE), 수출물가 (LPXIW) 가 1% 상승하였을때즉, 1% 의충격이가해졌을때수출물량과수출금액은어떻게변하는지보기로하자. 이를위해서는수출의충격반응계수인 H(B) 수출행렬에각충격요인에대한예측오차의표준편차 7) 를나누어주어야한다. H j( B) 수출 S.D j,j = 원달러, 엔달러, 수출물가 원달러가 1% 상승하였을때 < 그림 3>, 수출물량은수출금액보다는높은증가를보이나완만한증가추세를보인다. 한편수출금액은물량증가에 7) 수출물량에의한예측오차의표준편차는다음과같다. ( 원달러 :0.0098, 엔달러 :0.0400, 수출물가 :0.0074)
28 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 50 따라금액도 15 분기까지는급격히증가하나이후완만히증가하게된다. 엔달러가 1% 상승하였을때 < 그림 4>, 엔달러의미달러화에대한평가절하효과는수출물량에먼저영향을미치고이에따라수출금액에영향을미치게된다. 수출물량과수출금액은 5분기전후하여급격히감소하나이후증가하기시작하여 15분기까지증가하게된다. 수출감소는물량보다는금액면에서더크게이루어진다.
29 벡터자기회귀 (VAR) 모형의이해 51 수출물가의 1% 상승은 8분기이후에수출물양의급격한감소를야기한다 < 그림 5>. 수출금액은수출물가의상승으로단기적으로수출금액이증가하나 8분기이후에는수출물가상승에따른수출물량감소로수출금액도역시감소하게된다. 우리가추정한 VAR(2) 모형으로부터 (12) 식에의해서계산된예측오차의분산분해결과는 < 표 10> 과 < 표 11> 이다. 이표의숫자는특정반응변수에대한예측오차의분산중에서각충격변수들에의해서설명되어지는부분 (%) 을나타낸다. 수출금액함수의분산분해결광니 < 표 10> 에의하면앞으로 20분기후의수출금액은 VAR(2) 모형으로예측할때발생하는예측오차의총분산을 100% 이라하면예측오차의분산중수출금액자체에내재된변화 ( 충격 ) 에의해서 21.4% 발생하고원달러환율은 60.1%, 엔달러환율 9.4%, 수출물가 9.1% 가차지하고있어원달러환율의변동이예측오차의분산에크게기여하고있음을알수있다. 따라서수출금액은단기에는엔달러환율, 장기에는원달러환율의영향이크다고할수있겠다.
30 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 52 < 표 10> 수출금액에대한예측오차의분산분해 반응변수 시차 충격변수수출금액원달러엔달러수출물가 수출금액 원달러 엔달러 수출물가 수출물량의경우는 (< 표 11>) 원달러환율변동의기여도는 4분기이후 1.9% 에서 20분기후에는 55.8% 로증가하나엔달러환율은 13.9% 에서 2.6% 로감소하여수출금액의패턴과같은모습을보인다. 그러나수출금액에있어서 4분기후의기여도가원달러환율은 0.6%, 엔달러환율은 20.0% 로엔달러환율의영향이크고원달러환율은미미했으나, 수출물량은원달러 12.9%, 엔달러환율은 13.9% 로비슷한정도의기여를한다. 이는원달러변동은단기적으로수출금액보다는수출물량에크게기여하고있음을보여준다. 한편수출물가의변동은 8분기까지수출물량변동에크
31 벡터자기회귀 (VAR) 모형의이해 53 게기여하지않는것으로나타났다. < 표 11> 수출물량에대한예측오차의분산분해 충격변수 반응변수시차 수출금액 원달러 엔달러 수출물가 수출물량 원달러 엔달러 수출물가 맺는말 본고에서는 VAR모형의설정방법과충격반응함수및분산분해를중점적으로살펴보았다. VAR모형에의해서예측을할수있음은두말할나위없다. 그러나여기에서는예측모형으로서의역할을설명하지않았다. 그것은 2장에서설명된바와같이 VAR모형의해가개별회귀방정식의해와같으므로모든개별회귀방정식을시차가일정한 AR모형으로고정한
32 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 54 VAR모형보다는좀더여러가지형태의모형을사용할수있는연립방정식체계ㅡ이모형이모형적합도측면에서우수할수있으며, 이에따라예측력도높을수있다는생각때문이다. 이점은 Bayesian VAR모형의모수에제약을가함으로써어느정도는극복할수있다. 개별회귀방정식은모형적합도를높일수있으며예측을쉽게할수있는장점은있으나, 예측뿐만아니라어느한변수가변했을때시간에따라다른변수에어떻게영향을미치는가를파악하기위한연립방정식체계로변환하였을때는구조적불안정으로그해의의미가없을수있다. 또한연립방정식체계는경제이론을기초로모형을설정함으로써변수선정및개별방정식설정에신중을기해야한다. 그러나 VAR모형은어떠한경제이론을근거로변수를이용하므로연립방정식체계보다적은수의변수를이용하므로연립방정식체계보다는수월하게모형을설정할수있는장점이있다. 그러나 VAR모형의설정시표본기간, 사용될변수및변수의순서, 시차길이에의해서결과가달라질수있음은유의하여야한다. < 참고문헌 > (1) 김기화 (1990), 경기순환이론, 다산출판사. (2) 김인수 (1993), 환율의물가에대한영향력분석, 경제브리프스, 월, 1-28, 한국산업은행. (3) 박원암 (1996), 한국경제의모형과예측, 한국금융연구원. (4) 서승환 (1994), 한국부동산시장의거시계량분석, 홍문사. (5) 유병삼 (1995), 소규모개방경제로서의한국경제의경기변동, 경제분석, 제1권 1호, , 한국은행금융경제연구소. (6) 유윤하 (1994), 통화수요함수의장기적안정성검정 : Johansen공적분검정방법의원용, 한국개발연구, 제16권제3호, 45-68, 한국개발연구원. (7) 유윤하 (1995), 한국의수출함수 : 수출단가와수출물가의비교및효율적공적분추정법의이용, 한국개발연구, 제17권제2호, , 한국개발연구원.
33 벡터자기회귀 (VAR) 모형의이해 55 (8) Box, G.E.P and G.M. Jenkins(1976), Time Series Analysis forecasting and control, lst, Holden-Day Inc. San Francisco. (9) Dickey, D.A. and W.A. Fuller(1979), "Distribution of the estimators for autoregressive time series with a unit root", Journal of the American Statistical Association, 74, (10) Engle, R.F. and C.W.J. Granger(1987), "Co-integration and error correction: representation, estimation and testing", Econometrica, 55, (11) Hamilton, J.D.(1994), Time Series Analysis, 1st, Princeton Univerisity Press, Princeton. (12) Johansen, S.(1991), "Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models", Econometrica, 59, (13) Judge, G.G. R.C. Hill, W.E. Griffiths, H. Lutkepohl and T.S. Lee(1985), The Theory and Practice of Econometrics, 2nd, John Wily & Sons, New York. (14) Judge, G.G., R.C. Hill, W.E. Griffiths, H. Lutkepohl and T.S. Lee(1988), Introduction to the Theory and Practice of Econometrics, 2nd, John Wily & Sons, New York. (15) Maddala, G.S.(1992), Introduction to Econometrics, 2nd, MacMillan, New York. (16) Phillips, P.C.B. and D. Dickey(1984), "Testing for unit roots inauto-regressive moving average models of unknown order", Biometrika, 71, (18) Tiao, G.C. and G.E.P. Box(1981), "Modeling Multiple Time Series with Applications", Journal of the American Statistical Association, 76, (19) Eviews User Guids(1994), Version 2.0, Econometric Views for Windows and the Macintosh. (20) Micro TSP Setup Guide(1990), Version 7.0, Quantitative Nicro Software.
34 통계분석연구 제 2 권제 1 호 ( 97 년봄 ) 56 ( 부록 ) Eviews 2.0 의명령문 (a) 단위근검정 : Phillips and Perron, ADF검정의실시일반형식 : UROOT(option, lag, method) variable ADF(optipn, lag, method) variable <option> C 단위근검정방정식에상수항포함 T 단위근검정방정식에시간추세와상수함포함 N 시간추세항과상수항을포함하지않음 <method> H Phillips and Perron의단위근검정 default 체화된 Dickey and Fuller(ADF) 단위근검정 ( 예 ) UROOT(T,2) LNEXCB UROOT(T,2,H) LNEXCB (b) 공적분 : Johansen의공적분검정실시일반형식 : COINT(option, lag) variables <option> A data속에확정적추세가없으며, 공적분회귀식에추세와상수항이없는모형. B data속에확정적추세가없으며, 공적분회귀식에상수항은있으나추세는없는모형. C data속에선형추세가있으며, 공적분회귀식에상수항은있으나추세는없는모형. D data속에선형추세가있으며, 공적분회귀식에추세와상수항이있는모형. E data속에 2차선형의추세가있으며, 공적분회귀식에추세와상수항이있는모형. S 5가지의 option의요약 ( 예 ) COINT(S,2) LNEXCB LER LUSYE LPXIW (c)var 모형일반형식 : VAR equation.ls lag variables equation: VAR모형의이름 l lag : 시차의길이 ( 예 ) VAR NEXCB.LS 1 4 LNEXCB LER LUSYE LPXI
35 벡터자기회귀 (VAR) 모형의이해 57 A understanding of Vector Autoregressive Model Kwon-Soon, Moon <abstract> This paper introduces not only the predictions but the VAR model which consists of the simultaneous equation system for analysizing the effects on temporarly shock(innovation) to some variables. The VAR model has three merits which are the as followings; First, through the impulse response function, it can be founded the response of endogenous variance decompostion, it can be analyzed the relative size of contributions of whole change by variabiliy of each endogenous variable. Finally, the most dynamic use of the VAR model is that it is better off the real data rater than the theorical econometrics approach. However the VAR process has the drawbacks that results of VAR can be changed by the order of variables, the periods of sample and the length of lag, etc. In this study, we show the export model based on the exchange rate and the index of export price with an example.
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP
More information동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
More information벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous varia
제 12 장 VAR 과 VECM 벡터자기회귀 (Vector Autoregression : VAR) 모형은경제이론없이모형만으로변수들간의관계를설명할수있다는점에서자주이용되는모형임. y t =α 1 y t-1 + +α p y t-p +βx t +ε t 여기서 y t 는내생변수 (endogenous variable) 의 k 벡터이고, x t 는외생변수 (exogenous
More information중소기업경기지수및경영환경지수 개발에관한연구 - 제조업중심으로 - A Study on Development of the Business Indicators in SMEs focused on manufacturing 요약 1) 125 IPISA 124 ISISA 120 120 115 110 105 100 95 116 112 108 104
More information시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자
시계열분석의개요 (the nature of time series analysis) 확률과정 (stochastic processes) 이란시간으로순서가매겨진확률변수들의집합임. 만일확률변수 y 가연속이라면 y(t) 라고표기하지만이산이라면 y t 라고표기함 ( 대부분의경제자료들은이산적임 ). 전통적계량접근법 (econometric approach) 종속변수와독립변수간의이론적관계를토대로모형을구성함.
More information에너지경제연구 제12권 제2호
에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33 ~ ~ ~ ~ ~ ~ ~ 34 ~ 35 ~ 36 ~ 37 < 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38 [ 그림 1] 로그변수들의시간에대한추세
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35 36 37 38 39 40 41 < 표 1> 표본자료의기초통계량 42 [ 그림 1] 표본시계열자료의추이 43 < 표 2> 수준및로그차분변수에대한단위근검정결과
More information164
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 163~190 학술 시변파라미터일반화해밀턴 -plucking 모형을이용한전력소비의선제적경기국면판단활용연구 * 163 164 165 166 ~ 167 ln 168 [ 그림 1] 제조업전력판매량 (a) 로그변환
More informationMicrosoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx
Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석
에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 33 ~ 67 부문별에너지원수요의변동특성및공통변동에 미치는거시적요인들의영향력분석 33 ~ < 표 1> 에너지소비량과주요변수들의연평균증가율 ~ ~ ~ ~ ~ 34 35 36 37 38 ~ 39 [ 그림 1] 부문별에너지원소비량의증가율
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information공휴일 전력 수요에 관한 산업별 분석
에너지경제연구 Korean Energy Economic Review Volume 15, Number 1, March 2016 : pp. 99 ~ 137 공휴일전력수요에관한산업별분석 1) 99 100 ~ 101 102 103 max m ax 104 [ 그림 1] 제조업및서비스업대표업종전력사용량추이 105 106 [ 그림 2] 2014 년일별전자및전자기기업종 AMR
More information노동경제논집 38권 3호 (전체).hwp
* ** ***. (18-24 ), (18-22 ), (60 ), (60 ) 4..,,, OLS VAR VEC., VEC (-)., : 2015 7 9, : 2015 9 1, : 2015 9 7 * 2.. ** () (kangsb7077@naver.com) *** (cheolsung@hanyang.ac.kr). 勞動經濟論集第 卷第 號.,. 1980 1990
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More informationCommunications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는
Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을
More information歯표지_최종H_.PDF
21 5 LG < > / 5 5 Chen, Roll, Ross,, (-) (+) (-), (-) (+) / (-), (+) J, /, (-) IMF, /,,, 5bp 5bp 1 1 3 ( )/ ( ) ( :p) 1 3 6 / 1-23 45 55 1% 2 33 42 1p 296 234 175 1%p -13 147 171 1%p 1 81 7 1% 48 57 54
More information<C7A5C1F620BEE7BDC4>
연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new
More informationMicrosoft Word - SPSS_MDA_Ch6.doc
Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (
More information에너지경제연구 제12권 제2호
에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 59~83 부문별에너지소비와경제성장의 인과관계분석 59 60 61 < 표 1> 주요경제및에너지지표변화, 1990 년 2011 년 ~ [ 그림 1] 우리나라의경제및에너지관련주요지표변화, 1990 년 ~2011 년 62
More informationuntitled
통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법
More information에너지경제연구 제13권 제1호
에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 23~56 거시계량모형을이용한전력요금 파급효과분석 * 23 24 25 26 < 표 1> OECD 전력요금수준 ( 단위 : $/MWh) 27 28 < 표 2> 모형의구성 29 30 31 [ 그림 1] 연립방정식모형의개요 32
More information- 1 -
- 1 - External Shocks and the Heterogeneous Autoregressive Model of Realized Volatility Abstract: We examine the information effect of external shocks on the realized volatility based on the HAR-RV (heterogeneous
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More informationR&D : Ⅰ. R&D OECD 3. Ⅱ. R&D
R&D : 2012. 6. Ⅰ. R&D 1. 2. OECD 3. Ⅱ. R&D 1. 2. - 1 - Ⅰ. R&D R&D. R&D (TFP). R&D R&D, GDP R&D (Ha and Howitt, 2007). : (1), R&D. 1. ( )(), 1 ( ), ( ). (2) -, (Penn World Table 7.0) (growth accounting)
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More information1. 서론 전기동가격, 원유가격및소비자물가지수 (CPI) 의장기관계는어떠할까? 과연장기관계가있기는할까? 왜냐하면분석대상인전기동가격, 원유가격및 CPI는불안정한시계열이기때문이다. 전기동가격, 원유가격및 CPI는 1960 년이후, 2000 년이후, 2010 년이후현재까지각
통계분석정보 전기동과유가, 그리고소비자물가지수의삼각관계 - 부제 : 소비자물가지수와함께알아본전기동과유가간의관계 2018.08.31 박소윤연구원 soyoon@koreapds.com 손양림책임연구원 frocsor@koreapds.com 문의 : 02-565-3492 SUMMARY 일반적으로원자재가격중유가의파급력이가장큰것은자명한사실이다. 때문에유가가다른원자재가격에영향을미치는경우는부지기수이다.
More information에너지경제연구 제13권 제1호
에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 83~119 거시계량모형을이용한유가변동및 유류세변화의파급효과분석 * 83 84 85 86 [ 그림 1] 모형의해결정과정 87 [ 그림 2] 거시계량모형의흐름도 (flow chart) 88 89 < 표 1> 유류세현황 (2013
More informationuntitled
통계청 통계연구 제 10 권제 1 호, 2005, pp. 165-188 몬테카를로실험에의한 Augmented Dickey-Fuller 단위근검정법의검정력에관한연구 조성일 * 최종수 ** 1) < 요약 > 이연구에서는몬테카를로실험 (Monte Carlo Experiment) 을통하여 Augmented Dickey-Fuller 단위근검정법의검정력을측정하였다. 컴퓨터시뮬레이션을통한자료생성과정에있어서상수항과시간추세의포함여부에따라세가지형태를가정하였다.
More information8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모
8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모형의추정 (estimation) 모형의진단 (diagnostic checking) 예 아니오
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More informationMicrosoft Word - 동태적 모형.doc
동태적모형 - 시차분포모형 (lag disribued model) I. 개요 A. 경제적행위나결정들의효과는즉시적으로다나타나지않고미래의상당기간동안분포됨 i. 기의행위나결정들이 기뿐아니라 + 기, + 기등에도영향을미치는경우 ii. 경제적정책변수 x 의변화가경제적결과 y, y +, y +, y +3 등에영향을미침 iii. 이는다시말하면, y 가 x, x -, x
More informationKDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경
KDI정책포럼제221호 (2010-01) (2010. 2. 10) 내용문의 : 이재준 (02-958-4079) 구독문의 : 발간자료담당자 (02-958-4312) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. http://www.kdi.re.kr 우리나라경기변동성에대한요인분석및시사점 이재준 (KDI 부연구위원 ) * 요 약,,, 1970. * (,
More information슬라이드 1
Principles of Econometrics (3e) 013 년 1 학기 윤성민 10.0 서론 The assumptions of the simple linear regression are: SR1. SR. yi =β 1 +β xi + ei i= 1,, N Ee ( i ) = 0 SR3. var( e i ) = σ SR4. cov( e, e ) = 0 i
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information슬라이드 1
Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More information제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint
제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악
More information3.고봉현
Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets.. 1. 2.. 1. 2. 3. ARCH-LM.. 1. 2. Abstract.,,,. 2000,,.. 2008 1,382 3,363 41.1%, 1995 2009 7 17
More information< FB1B8C1B6B9E6C1A4BDC4B8F0B5A828C5E4C7C8B8AEBAE4292E687770>
구조방정식모델 - 경로분석을중심으로 - 2006.10.24. 박건희 1. 구조방정식모델의개요 구조방정식모델은사회학및심리학에서개발된측정이론에토대를둔확인적요인분석과계량경제학에서개발된연립방정식모델에토대를둔다중회귀분석및경로분석등이결합된성격을갖는방법론 측정모델 (measurement model, 확인적요인분석성격 ) 과구조모델 (structural model, 다중회귀분석및경로분석의성격
More informationuntitled
정책과제 2008-27 환율 및 국제유가 변화에 따른 관광부문 영향 분석 연구자: 이강욱 연구책임 : 이강욱 (한국문화관광연구원 연구위원) 공동연구자: 모수원 (목포대학교 교수) 연구조원 : 김민경 서 문 환율 및 국제 유가의 불안정 등 외부환경 변화에 따라 관광산업 에 대한 전망이 어려운 상황입니다. 미국에서 시작된 세계 경기의 침체는 관광부문에도 위축을
More information<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F62833322D32C8A3292E687770>
유자차 신제품에 대한 소비자 지불의사액 추정 강혜정 최지현 이기웅 유자차 신제품에 대한 소비자 지불의사액 추정 An Analysis on Estimation of Willingness to Pay for the New Products of Citrus Tea Assessed by Korean Consumers 강혜정* 최지현** 이기웅*** 1) Kang,
More informationBlue Geometry
Structural Equation Modeling (SEM) 구조방정식모형의적용 2009 년 11 월 27 일 강태훈 ( 성신여대교육학과 ) 과학적탐구의목적 관심대상및현상에대한 설명기술 예측 통제 All models are wrong, but some are useful. (Box, 1979) 구조방정식모형 (SEM) 의개요 SEM 은실험연구나무선적표집 할당등이어려운경우변수간관계에대한추론을가능하게해준다.
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95 Intended Nationally Determined Contributions 96 97 98 99 100 101
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina
More information에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1
에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1 2 3 4 5 6 ln ln 7 8 9 [ 그림 1] 해상풍력단지건설로드맵 10 11 12 13 < 표 1> 회귀분석결과 14 < 표 2> 미래현금흐름추정결과
More information( ) ( e- ) ( ) ( ) ( ) , IMF., 1000.,..,. SAS ARIMA OLS, SUR, 3SLS. 2004-2006 1999 1-2003 12 5. 2004-2006 9.31%, 5.37% 8.08% 40%.. < > 2004-2006 2004 2005 2006 131,752,662 138,832,342 150,060,656 65,500,904
More information수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론
수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37
에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37 38 39 40 41 ln ln ln ln ln ln ln 42 ln ln ln ln ln ln ln ln ln ln ln ln ln ln
More information2
에너지경제연구 Korean Energy Economic Review Volume 10, Number 1, March 2011 : pp. 1~24 국내화력발전산업에대한연료와자본의대체성분석 1 2 3 ~ 4 5 F F P F P F ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 6 ln ln ln ln ln 7 ln
More informationuntitled
요한젠검정을이용한고용활동과주택가격간의공적분관계분석 韓正熙 * 김주영 ** < 요약 > 부동산가격의예측과관련된기존의연구들은대부분 VAR, ARIMA 모형을이용하고있으며전국단위의예측치를제시하고있다. 그러나, 거시경제변수를활용한전국단위의기존예측모형은양극화 국지화되어가는부동산시장예측에한계를보이고있다. 지역부동산시장의예측에적합한변수의개발이시급한것으로보인다. 본연구에서는지역부동산시장으로서강남지역
More information예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A
예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf
More informationLM_matrix.pages
설명변수가 개이상인경우이를다중회귀라한다. 물론종속변수는하나이다. 종속변수가하나이상인회귀모형을 Simulteous Equtio( 연립방정식모형 ) 이라한다. 설명변수가 개존재하는경우선형다중회귀모형을다음과같다. Y i α + βx i + βxi +... + β Xi + ei i,,..., ( 모형 ), --- () α, β, β,..., β X 는회귀계수이고 i,
More informationMicrosoft PowerPoint - LM 2014s_Ch4.pptx
1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality
More information에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1
에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 2 3 < 표 1> ECM 을이용한선행연구 4 5 6 7 and 8 < 표 2> 오차수정모형 (ECM1~ECM4) 9 10 < 표 3> 민감도분석에쓰인더미변수 11 12 < 표
More information금융연구-21권-1호-2차수정.hwp
국제비교를통한한 미주식시장동조화의평가 * 윤종인 ** 국내주식가격을관찰하다보면, 미국주식시장의영향이지대함을실감하게된다. 하지만보다장기적으로보면, 미국주식가격과국내주식가격의추이는그렇게비슷하지않았다. 이와같은의문은장기적추세와단기적순환을구분하였을때자연스럽게해소될수있다. 단기적으로동조화되어있더라도장기적으로는동조화되지않을수있다. 본연구는주식시장의수익률동조화를장기동조화와단기동조화로구분한다.
More information<B1A4B0EDC8ABBAB8C7D0BAB85F31312D31C8A35F33C2F75F E687770>
기업의경영성과와광고비간의인과관계분석 1)2) 권오박 * 협성대학교광고홍보학과부교수 고재모 ** 협성대학교국제통상학과부교수 본연구는기업이기업수준에서의광고비를결정함에있어서어떤요인의영향을비교적많이받으며, 또광고비가매출액이나영업이익등에영향을미치는투자로서의성격을갖는지, 아니면기업이그러한경영성과의결과로서광고비를증감시키는지에대한판단준거를얻기위한분석이었다. 분석방법은크게두분야로나누어서진행되었다.
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More information2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사
회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,
More information21세기 미국의 패권과 유엔
126 김지열 국제 지역연구 14 권 2 호 2005 여름 pp. 125 141 I. 서론 중동권경제에서의장기기억에관한연구 : 주식수익률을중심으로 김지열 아시아대학교보건한방학부전임강사 τ τ τ 주제어 : 중동권국가, 주식시장, 수정 R/S분석, 허스트지수, V 통계량 중동권국가 (Middle East country) 는아직까지우리나라에서분쟁의지역이나관광지로만인식되어있을뿐,
More information자연채무에대한재검토 1. 서론 2. 선행연구 9 Journal of Digital Convergence 214 May; 12(5): 89-99
종합주가지수 서울지역아파트가격 전국주택매매가격지수 경기선행지수의상관관계와선행성분석 최정일 *, 이옥동 성결대학교경영대학 *, 성결대학교부동산학과 ** ** 요약주식시장에서종합주가지수를부동산시장에서서울지역아파트가격과전국주택매매가격지수를선정하여경기 선행지수와함께각지표들사이의상관관계를찾아보았다 또한각지표들사이의흐름을서로비교하여선행성이 성립되는지도살펴보았다본연구의목적은종합주가지수와서울지역아파트가격전국주택매매가격경기선행지수의
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임
More information<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>
부동산학연구 제16집 제1호, 2010. 3, pp. 117~130 Journal of the Korea Real Estate Analysts Association Vol.16, No.1, 2010. 3, pp. 117~130 비선형 Mankiw-Weil 주택수요 모형 - 수도권 지역을 대상으로 - Non-Linear Mankiw-Weil Model on Housing
More information슬라이드 1
Principle of Econometric (3e) 03 년 학기 윤성민 .0 서론 연립방정식모형 - 둘이상의종속변수가있는일련의방정식들로구성 OLS로추정하면부적절함 새로운추정방법필요 - 연립방정식추정법은계량경제학이통계학의회귀분석기법을넘어서는학문이라는것을보여주는분야이기도함 . 공급및수요모형 Demand: Supply: Q=α P+α X + e Q=β P+ e
More information<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>
한국 증권회사의 효율성 분석 이종원* 이상돈** 신기백*** Ⅰ. 서 론 1990년이후 증권시장의 개방화 및 자율화가 진전되어가고 있던 과정에서 1997년 12월 외환 위기사태가 발생하게 되었고, 이후 증권회사의 구조조정 가속화, 외국계 증권회사의 진입 확대 및 IT기술의 발전에 따른 증권 온라인거래의 확대, 외국인의 투자한도 완전철폐에 따른 외국인 거래비중의
More information슬라이드 1
계량경제학강의소개 2013 년 1 학기 윤성민 < 교재 > Principles of Econometrics / 계량경제학 (3판) 저자 : Hill, Griffiths and Lim / 이병락역 출판사 : Wiley / 시그마프레스 http://principlesofeconometrics.com/poe3/poe3.htm - 예제 program, data 등등
More information<2D3828C8AE29B9DAC3B5B1D42E687770>
부동산학연구 제16집 제1호, 2010. 3, pp. 131~146 Journal of the Korea Real Estate Analysts Association Vol.16, No.4, 2010. 3, pp. 131~146 주택시장 체감지표의 주택시장지표 예측력 분석 * 1) Analysis on the Predictive Power of the Housing
More informationDBPIA-NURIMEDIA
한국항만경제학회지제 23 권제 1 호 (2007. 3) Journal of Korea Port Economic Association, Vol.23(1), 2007, pp.1~18 www.portea.or.r 환율변동성과컨테이너물동량과의관계 최봉호 * 1) A Study on the Relation Exchange Rate Volatility to Trading
More information, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** ***
, 40 3 4 (2006 12 ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I. 1998. 2005 12 ( ) *. ** *** 2, 40 3 4 37.2%, 20 60%. 80%..,..,.,,, (SCB),,,.,..,, /,..
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라
제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을
More information<4D F736F F F696E74202D20332E20B0F8B0A3B0E8B7AEB0E6C1A6B8F0C7FCC0C720C3DFC1A428C3D6B8EDBCB72C20C0B1BCBAB5B52C20B1E8C0C7C1D8292E7
제3회지역분석여름학교 2008. 08. 26 서울대학교농경제사회학부지역정보전공 최명섭 / 윤성도 / 김의준 목 차 I. 공간계량경제모형의기본구조 II. 공간가중치행렬 III. 공간자기상관 IV. 추정사례및주요이슈 V. 기타공간계량경제모형 I. 공간계량경제모형의기본구조 공간계량경제학 (Spatial Econometrics) - 공간종속성 (Spatial Dependence)
More informationi f i f (disposition effect) 의확률 의확률 i f i f i f i f i f i f GARCH-in-Mean GARCH-in-Mean , ( ) ( ). ( ), / ( ), (1 ), S&P500,,. 상승반응계수 로 ~2008.12 15) ~ ~ m 10 20 (8) (10) (11) (8) (10) (11) 0.011 (0.23)
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More information선형모형_LM.pdf
변수선택 8 경제성의 원리로 불리우는 Occam s Razor는 어떤 현상을 설명할 때 불필요한 가정을 해서는 안 된다는 것이다. 같은 현상을 설 명하는 두 개의 주장이 있다면, 간 단한 쪽을 선택하라. 통계학의 유 의성 검정, 유의하지 않은 설명변 수 제거의 근거가 된다. 섹션 1 개요 개념 1) 경험이나 이론에 의해 종속변수에 영향을 미칠 것 같은 설명변수를
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More information<C1B6BBE7BFF9BAB E DC3D6C1BE2E687770>
외환유출입구성요소별변동과원 - 달러환율의관계분석 < 목차 > Ⅰ. 연구배경및목적 Ⅱ. 실증분석 Ⅲ. 결과요약및시사점 Ⅰ 연구배경및목적 1. 연구배경 외환유출입은다양한경로를통해발생외환유출입은국제수지 (balance of payment) 를구성하는경상수지와자본 - 금융계정항목의변동으로발생 -자본 금융계정중외환유출입을유발하는항목은직접투자, 증권투자, 기타투자중외환대출및차입
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More information외국인투자유치성과평가기준개발
2010 년도연구용역보고서 외국인투자유치의성과평가기준개발 - 2010. 10. - 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 책임연구원 국립부경대학교지역사회연구소권오혁 수신 : 대한민국국회예산정책처장귀하. 2010 10 : : : : 요약문 I. 서론 1.
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More information한국정책학회학회보
한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22
More informationMicrosoft Word - ch8_influence.doc
REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.
More information슬라이드 1
Principles of Econometrics (3e) Ch. 6 다중회귀모형에관한 추가적인논의 013 년 1 학기 윤성민 6장의주요내용 다중회귀모형의모수에관한둘이상의가설로구성된귀무가설을동시에검정하는경우 ( 결합가설의검정 ) F-검정 표본의정보이외에비표본정보도함께이용하는경우 제한최소제곱법 모형설정의오류를찾는방법 RESET 검정 다중공선성문제의탐지와해결방법
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More information농림수산식품 연구개발사업 운영규정
- 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - 1. - 29 - - 30 - - 31 - -
More information