23_Time-Series-Prediction

Size: px
Start display at page:

Download "23_Time-Series-Prediction"

Transcription

1 TensorFlow #23 (Time-Series Prediction) Magnus Erik Hvass Pedersen ( / GitHub ( Labs/TensorFlow-Tutorials) / Videos on YouTube ( list=pl9hr9snujfsmeu1zniy0xphszl5uihcxz) /. RNN (Recurrent Neural Network). TensorFlow Keras, #01 #03-C, #20 RNN ~2018 Denmark ( : Aalborg ( The Hunter Corps (Jægerkorps) ( Aarhus ( C++ - ( Google V8 JavaScript Engine ( Esbjerg ( Odense ( _H. C. Andersen ( Roskilde (

2 :

3 : 5 24 "Odense" ( 2 ). RNN (Recurrent Neural Network). 5, (8 = 24 x 7 X 8)., 3.

4 Imports In [2]: %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import pandas as pd import os from sklearn.preprocessing import MinMaxScaler Keras Import. In [3]: # from tf.keras.models import Sequential # This does not work! from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Input, Dense, GRU, Embeddin g from tensorflow.python.keras.optimizers import RMSprop from tensorflow.python.keras.callbacks import EarlyStopping, ModelChec kpoint, TensorBoard, ReduceLROnPlateau

5 Python 3.6 (Anaconda) : In [4]: Out[4]: tf. version '1.4.0' In [5]: Out[5]: tf.keras. version '2.0.8-tf' In [6]: Out[6]: pd. version '0.20.3'. [National Climatic Data Center (NCDC), USA] ( ( )..... In [9]: import weather.. 35MB. In [10]: weather.maybe_download_and_extract() - Download progress: 100.0% Download finished. Extracting files. Done.. In [11]: Out[11]: cities = weather.cities cities ['Aalborg', 'Aarhus', 'Esbjerg', 'Odense', 'Roskilde']

6 , In [13]: %%time df = weather.load_resampled_data() CPU times: user 16.3 ms, sys: 24.2 ms, total: 40.5 ms Wall time: 39.1 ms. In [14]: df.head() Out[14]: Aalborg Aarhus Temp Pressure WindSpeed WindDir Temp Pressure WindSp DateTime :00: :00: :00: :00: :00:

7 Esbjerg Roskilde.,...,.,,.. In [15]: Out[15]: df['esbjerg']['pressure'].plot() <matplotlib.axes._subplots.axessubplot at 0x1a37a60080>

8 In [16]: Out[16]: df['roskilde']['pressure'].plot() <matplotlib.axes._subplots.axessubplot at 0x1a406b2240> 20. In [17]: df.values.shape Out[17]: (333109, 20). In [18]: df.drop(('esbjerg', 'Pressure'), axis=1, inplace=true) df.drop(('roskilde', 'Pressure'), axis=1, inplace=true) 18. In [19]: df.values.shape Out[19]: (333109, 18).

9 In [20]: Out[20]: df.head(1) Aalborg Temp Pressure DateTime Aarhus WindSpeed WindDir Temp Pressure WindSpeed Wind :00: Odense 50., ,. In [21]: Out[21]: df['odense']['temp'][' ':' '].plot() <matplotlib.axes._subplots.axessubplot at 0x1a47c09438> , 50.

10 In [22]: Out[22]: df['aarhus']['temp'][' ':' '].plot() <matplotlib.axes._subplots.axessubplot at 0x1a44e41240> In [23]: Out[23]: df['roskilde']['temp'][' ':' '].plot() <matplotlib.axes._subplots.axessubplot at 0x1a44e31b38>

11 . 10.,,... (1 ~ 366) (0 ~ 23). In [23]: df['various', 'Day'] = df.index.dayofyear df['various', 'Hour'] = df.index.hour. In [24]: target_city = 'Odense'. In [26]: target_names = ['Temp', 'WindSpeed', 'Pressure'] * 24. In [27]: shift_days = 1 shift_steps = shift_days * 24 # Number of hours..! In [28]: df_targets = df[target_city][target_names].shift(-shift_steps)

12 !!!. Pandas.. shift_steps + 5. In [29]: df[target_city][target_names].head(shift_steps + 5) Out[29]: Temp WindSpeed Pressure DateTime :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00: :00:

13 :00: :00: :00: :00: :00: :00: :00: In [30]: Out[30]: df_targets.head(5) DateTime Temp WindSpeed Pressure :00: :00: :00: :00: :00: , NaN( ).. In [31]: df_targets.tail() Out[31]: Temp WindSpeed Pressure DateTime :00:00 NaN NaN NaN :00:00 NaN NaN NaN :00:00 NaN NaN NaN :00:00 NaN NaN NaN :00:00 NaN NaN NaN

14 NumPy Pandas NumPy. NaN numpy. : In [32]: x_data = df.values[0:-shift_steps] In [33]: print(type(x_data)) print("shape:", x_data.shape) <class 'numpy.ndarray'> Shape: (333085, 18) ( ) : In [34]: y_data = df_targets.values[:-shift_steps] In [35]: print(type(y_data)) print("shape:", y_data.shape) <class 'numpy.ndarray'> Shape: (333085, 3) ( ) : In [38]: num_data = len(x_data) num_data Out[38]: : In [39]: train_split = 0.9 :

15 In [40]: num_train = int(train_split * num_data) num_train Out[40]: : In [41]: num_test = num_data - num_train num_test Out[41]: : In [42]: x_train = x_data[0:num_train] x_test = x_data[num_train:] len(x_train) + len(x_test) Out[42]: : In [43]: y_train = y_data[0:num_train] y_test = y_data[num_train:] len(y_train) + len(y_test) Out[43]: : In [44]: num_x_signals = x_data.shape[1] num_x_signals Out[44]: 18 : In [45]: num_y_signals = y_data.shape[1] num_y_signals Out[45]: 3

16 : In [46]: print("min:", np.min(x_train)) print("max:", np.max(x_train)) Min: Max: scikit-learn.. In [47]: x_scaler = MinMaxScaler(). In [48]: x_train_scaled = x_scaler.fit_transform(x_train), 0 1. In [49]: print("min:", np.min(x_train_scaled)) print("max:", np.max(x_train_scaled)) Min: 0.0 Max: 1.0. In [50]: x_test_scaled = x_scaler.transform(x_test)..,. In [51]: y_scaler = MinMaxScaler() y_train_scaled = y_scaler.fit_transform(y_train) y_test_scaled = y_scaler.transform(y_test)

17 2 numpy ,000. : In [52]: print(x_train_scaled.shape) print(y_train_scaled.shape) (299776, 18) (299776, 3) 300k RNN. In [54]: def batch_generator(batch_size, sequence_length): """ Generator function for creating random batches of training-data. """ # Infinite loop. while True: # Allocate a new array for the batch of input-signals. x_shape = (batch_size, sequence_length, num_x_signals) x_batch = np.zeros(shape=x_shape, dtype=np.float16) # Allocate a new array for the batch of output-signals. y_shape = (batch_size, sequence_length, num_y_signals) y_batch = np.zeros(shape=y_shape, dtype=np.float16) # Fill the batch with random sequences of data. for i in range(batch_size): # Get a random start-index. # This points somewhere into the training-data. idx = np.random.randint(num_train - sequence_length) # Copy the sequences of data starting at this index. x_batch[i] = x_train_scaled[idx:idx+sequence_length] y_batch[i] = y_train_scaled[idx:idx+sequence_length] yield (x_batch, y_batch) GPU 100%. GPU, RAM 'sequence_length'.

18 In [55]: batch_size = sequence-length x 7 24 x 7 x 8 8. In [56]: sequence_length = 24 * 7 * 8 sequence_length Out[56]: In [57]: generator = batch_generator(batch_size=batch_size, sequence_length=sequence_length). In [58]: x_batch, y_batch = next(generator) In [52]: print(x_batch.shape) print(y_batch.shape) (256, 1344, 20) (256, 1344, 3) 20.

19 In [59]: batch = 0 # First sequence in the batch. signal = 0 # First signal from the 20 input-signals. seq = x_batch[batch, :, signal] plt.plot(seq) Out[59]: [<matplotlib.lines.line2d at 0x1a3b942470>]. 20. In [60]: Out[60]: seq = y_batch[batch, :, signal] plt.plot(seq) [<matplotlib.lines.line2d at 0x1a3c2f9978>]

20 .,.... In [61]: validation_data = (np.expand_dims(x_test_scaled, axis=0), np.expand_dims(y_test_scaled, axis=0)) (RNN) RNN (Recurrent Neural Network). Keras API Keras. Keras #03-C #20. In [62]: model = Sequential() Gated Recurrent Unit (GRU) Keras (None ).(num_x_signals). In [63]: model.add(gru(units=512, return_sequences=true, input_shape=(none, num_x_signals,))) GRU ( dense) Sigmoid In [64]: model.add(dense(num_y_signals, activation='sigmoid'))

21 ., , NaN.. In [65]: if False: from tensorflow.python.keras.initializers import RandomUniform # Maybe use lower init-ranges. init = RandomUniform(minval=-0.05, maxval=0.05) model.add(dense(num_y_signals, activation='linear', kernel_initializer=init)) (Loss Function) (MSE) " ",. In [66]: warmup_steps = 50

22 In [67]: def loss_mse_warmup(y_true, y_pred): """ Calculate the Mean Squared Error between y_true and y_pred, but ignore the beginning "warmup" part of the sequences. y_true is the desired output. y_pred is the model's output. """ # The shape of both input tensors are: # [batch_size, sequence_length, num_y_signals]. # Ignore the "warmup" parts of the sequences # by taking slices of the tensors. y_true_slice = y_true[:, warmup_steps:, :] y_pred_slice = y_pred[:, warmup_steps:, :] # These sliced tensors both have this shape: # [batch_size, sequence_length - warmup_steps, num_y_signals] # Calculate the MSE loss for each value in these tensors. # This outputs a 3-rank tensor of the same shape. loss = tf.losses.mean_squared_error(labels=y_true_slice, predictions=y_pred_slice) # Keras may reduce this across the first axis (the batch) # but the semantics are unclear, so to be sure we use # the loss across the entire tensor, we reduce it to a # single scalar with the mean function. loss_mean = tf.reduce_mean(loss) return loss_mean. In [68]: optimizer = RMSprop(lr=1e-3) Keras. In [69]: model.compile(loss=loss_mse_warmup, optimizer=optimizer). (None, None, 3), 3. 3.

23 In [70]: model.summary() Layer (type) Output Shape Param # ================================================================= gru_1 (GRU) (None, None, 512) dense_1 (Dense) (None, None, 3) 1539 ================================================================= Total params: 817,155 Trainable params: 817,155 Non-trainable params: 0 Callback Functions TensorBoard Keras.. In [71]: path_checkpoint = '23_checkpoint.keras' callback_checkpoint = ModelCheckpoint(filepath=path_checkpoint, monitor='val_loss', verbose=1, save_weights_only=true, save_best_only=true). In [72]: callback_early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1) TensorBoard. In [73]: callback_tensorboard = TensorBoard(log_dir='./23_logs/', histogram_freq=0, write_graph=false) (patience = 0 ). facgtor. 1e e-4..

24 In [74]: callback_reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, min_lr=1e-4, patience=0, verbose=1) In [75]: callbacks = [callback_early_stopping, callback_checkpoint, callback_tensorboard, callback_reduce_lr]. " ". steps_per_epoch "epoch". GTX 1070 " " NaN..,,,.. In [ ]: %%time model.fit_generator(generator=generator, epochs=20, steps_per_epoch=100, validation_data=validation_data, callbacks=callbacks) Epoch 1/20 22/100 [=====>...] - ETA: 2722s - loss: (early-stopping)...

25 In [70]: try: model.load_weights(path_checkpoint) except Exception as error: print("error trying to load checkpoint.") print(error). (batch),. In [71]: result = model.evaluate(x=np.expand_dims(x_test_scaled, axis=0), y=np.expand_dims(y_test_scaled, axis=0)) 1/1 [==============================]1/1 [=========================== ===] - 4s 4s/step In [72]: print("loss (test-set):", result) loss (test-set): In [1]: #. if False: for res, metric in zip(result, model.metrics_names): print("{0}: {1:.3e}".format(metric, res)). In [74]: def plot_comparison(start_idx, length=100, train=true): """ Plot the predicted and true output-signals. :param start_idx: Start-index for the time-series. :param length: Sequence-length to process and plot. :param train: Boolean whether to use training- or test-set. """ if train: # Use training-data. x = x_train_scaled y_true = y_train else: # Use test-data. x = x_test_scaled

26 y_true = y_test # End-index for the sequences. end_idx = start_idx + length # Select the sequences from the given start-index and # of the given length. x = x[start_idx:end_idx] y_true = y_true[start_idx:end_idx] # Input-signals for the model. x = np.expand_dims(x, axis=0) # Use the model to predict the output-signals. y_pred = model.predict(x) # The output of the model is between 0 and 1. # Do an inverse map to get it back to the scale # of the original data-set. y_pred_rescaled = y_scaler.inverse_transform(y_pred[0]) # For each output-signal. for signal in range(len(target_names)): # Get the output-signal predicted by the model. signal_pred = y_pred_rescaled[:, signal] # Get the true output-signal from the data-set. signal_true = y_true[:, signal] # Make the plotting-canvas bigger. plt.figure(figsize=(15,5)) # Plot and compare the two signals. plt.plot(signal_true, label='true') plt.plot(signal_pred, label='pred') ) # Plot grey box for warmup-period. p = plt.axvspan(0, warmup_steps, facecolor='black', alpha=0.15 # Plot labels etc. plt.ylabel(target_names[signal]) plt.legend() plt.show()

27 , shift_steps. x , " ". 50 " ". " "... In [75]: plot_comparison(start_idx=100000, length=1000, train=true)

28 ..... ( 42 )....

29 In [76]: plot_comparison(start_idx=200000, length=1000, train=true).

30 In [77]: Out[77]: df['odense']['temp'][200000: ].plot() <matplotlib.axes._subplots.axessubplot at 0x7f69f54d37f0>... In [78]: Out[78]: df_org = weather.load_original_data() df_org.xs('odense')['temp'][' ':' '].plot() <matplotlib.axes._subplots.axessubplot at 0x7f69db165860>

31 ..,..... In [79]: plot_comparison(start_idx=200, length=1000, train=false)

32 RNN(Recurrent Neural Network) ,.... TensorFlow. TensorFlow...?.?., GRU,,. #19.. "Odense".. 3 7??, 1, 3?.

33 (MIT) (c) 2018 [Magnus Erik Hvass Pedersen] ( ( ( " ").,,.., (, ) " ".,.

Algorithm_Trading_Simple

Algorithm_Trading_Simple Algorithm Trading Introduction DeepNumbers, 안명호 james@deepnumbers.com 1 3 4 5 적절한종목을선택하고매도와매수시기를알아내수익을실현하는것!!! 6 미국은 2012 년알고리즘트레이딩거래량이 85% 에달할만큼알고리즘트레이딩은가파르게증가 7 Goove WM, Zald DH등이작성한 Clinical versus

More information

Modern Javascript

Modern Javascript ES6 - Arrow Function Class Template String Destructuring Default, Rest, Spread let, const for..of Promises Module System Map, Set * Generator * Symbol * * https://babeljs.io/ Babel is a JavaScript compiler.

More information

Polly_with_Serverless_HOL_hyouk

Polly_with_Serverless_HOL_hyouk { } "Version":"2012-10-17", "Statement":[ { "Effect":"Allow", "Action":[ "polly:synthesizespeech", "dynamodb:query", "dynamodb:scan", "dynamodb:putitem", "dynamodb:updateitem", "sns:publish", "s3:putobject",

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) . ( 통계적이아니라시행착오적 ) 회귀분석 ( 지도학습 ) by Tensorflow - Tensorflow 를사용하는이유, 신경망구조 - youngdocseo@gmail.com 인공지능 데이터분석 When you re fundraising,

More information

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression Lab - Gradient descent Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression 모듈을구현하는것을목표로합니다. 앞서 우리가 Normal equation lab 을수행하였듯이,

More information

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드] 전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation

More information

데이터 시각화

데이터 시각화 데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조 Lab-Normalequation Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Normal equation을활용하여 LinearRegression 모듈을구현하는것을목표로한다. LinearRegression 모듈의구현을위해서는 numpy와 Python

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 파이썬을이용한빅데이터수집. 분석과시각화 Part 2. 데이터시각화 이원하 목 차 1 2 3 4 WordCloud 자연어처리 Matplotlib 그래프 Folium 지도시각화 Seabean - Heatmap 03 07 16 21 1 WORDCLOUD - 자연어처리 KoNLPy 형태소기반자연어처리 http://www.oracle.com/technetwork/java/javase/downloads/index.html

More information

..........(......).hwp

..........(......).hwp START START 질문을 통해 우선순위를 결정 의사결정자가 질문에 답함 모형데이터 입력 목표계획법 자료 목표계획법 모형에 의한 해의 도출과 득실/확률 분석 END 목표계획법 산출결과 결과를 의사 결정자에게 제공 의사결정자가 결과를 검토하여 만족여부를 대답 의사결정자에게 만족하는가? Yes END No 목표계획법 수정 자료 개선을 위한 선택의 여지가 있는지

More information

Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Cras

Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Cras Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Crash Unity SDK... Log & Crash Search. - Unity3D v4.0 ios

More information

<32B1B3BDC32E687770>

<32B1B3BDC32E687770> 008년도 상반기 제회 한 국 어 능 력 시 험 The th Test of Proficiency in Korean 일반 한국어(S-TOPIK 중급(Intermediate A 교시 이해 ( 듣기, 읽기 수험번호(Registration No. 이 름 (Name 한국어(Korean 영 어(English 유 의 사 항 Information. 시험 시작 지시가 있을

More information

untitled

untitled Step Motor Device Driver Embedded System Lab. II Step Motor Step Motor Step Motor source Embedded System Lab. II 2 open loop, : : Pulse, 1 Pulse,, -, 1 +5%, step Step Motor (2),, Embedded System Lab. II

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

PowerSHAPE 따라하기 Calculate 버튼을 클릭한다. Close 버튼을 눌러 미러 릴리프 페이지를 닫는다. D 화면을 보기 위하여 F 키를 누른다. - 모델이 다음과 같이 보이게 될 것이다. 열매 만들기 Shape Editor를 이용하여 열매를 만들어 보도록

PowerSHAPE 따라하기 Calculate 버튼을 클릭한다. Close 버튼을 눌러 미러 릴리프 페이지를 닫는다. D 화면을 보기 위하여 F 키를 누른다. - 모델이 다음과 같이 보이게 될 것이다. 열매 만들기 Shape Editor를 이용하여 열매를 만들어 보도록 PowerSHAPE 따라하기 가구 장식 만들기 이번 호에서는 ArtCAM V를 이용하여 가구 장식물에 대해서 D 조각 파트를 생성해 보도록 하겠다. 중심 잎 만들기 투 레일 스윕 기능을 이용하여 개의 잎을 만들어보도록 하겠다. 미리 준비된 Wood Decoration.art 파일을 불러온다. Main Leaves 벡터 레이어를 on 시킨다. 릴리프 탭에 있는

More information

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf("hihi\n"); } warning: conflicting types for functiona

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf(hihi\n); } warning: conflicting types for functiona 이름 : 학번 : A. True or False: 각각항목마다 True 인지 False 인지적으세요. 1. (Python:) randint 함수를사용하려면, random 모듈을 import 해야한다. 2. (Python:) '' (single quote) 는한글자를표현할때, (double quote) 는문자열을표현할때사용한다. B. 다음에러를수정하는방법을적으세요.

More information

OCaml

OCaml OCaml 2009.. (khheo@ropas.snu.ac.kr) 1 ML 2 ML OCaml INRIA, France SML Bell lab. & Princeton, USA nml SNU/KAIST, KOREA 3 4 (let) (* ex1.ml *) let a = 10 let add x y = x + y (* ex2.ml *) let sumofsquare

More information

12-file.key

12-file.key 11 (String).. java.lang.stringbuffer. s String s = "abcd"; s = s + "e"; a b c d e a b c d e ,., "910359,, " "910359" " " " " (token) (token),, (delimiter). java.util.stringtokenizer String s = "910359,,

More information

02 C h a p t e r Java

02 C h a p t e r Java 02 C h a p t e r Java Bioinformatics in J a va,, 2 1,,,, C++, Python, (Java),,, (http://wwwbiojavaorg),, 13, 3D GUI,,, (Java programming language) (Sun Microsystems) 1995 1990 (green project) TV 22 CHAPTER

More information

SRC PLUS 제어기 MANUAL

SRC PLUS 제어기 MANUAL ,,,, DE FIN E I N T R E A L L O C E N D SU B E N D S U B M O TIO

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770> 양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator

More information

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770> 논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 @ Lesson 3 if, if else, if else if, switch case for, while, do while break, continue : System.in, args, JOptionPane for (,, ) @ vs. logic data method variable Data Data Flow (Type), ( ) @ Member field

More information

SOSCON-MXNET_1014

SOSCON-MXNET_1014 딥러닝계의블루오션, Apache MXNet 공헌하기 윤석찬, Amazon Web Services 오규삼, 삼성 SDS SAMSUNG OPEN SOURCE CONFERENCE 018 목차 11 1 : 4 2 031 1 1 21 51: 1 L 1 S D A 1 S D N M Deep Learning 101 SAMSUNG OPEN SOURCE CONFERENCE

More information

012임수진

012임수진 Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

Javascript.pages

Javascript.pages JQuery jquery part1 JavaScript : e-mail:leseraphina@naver.com http://www.webhard.co.kr I.? 2 ......,,. : : html5 ; ; .

More information

T100MD+

T100MD+ User s Manual 100% ) ( x b a a + 1 RX+ TX+ DTR GND TX+ RX+ DTR GND RX+ TX+ DTR GND DSR RX+ TX+ DTR GND DSR [ DCE TYPE ] [ DCE TYPE ] RS232 Format Baud 1 T100MD+

More information

s SINUMERIK 840C Service and User Manual DATA SAVING & LOADING & & /

s SINUMERIK 840C Service and User Manual DATA SAVING & LOADING & & / SINUMERIK 840C Service and Uer Manual DATA SAVING & LOADING & & / / NC, RS232C /. NC NC / Computer link () Device ( )/PC / / Print erial Data input RS232C () Data output Data management FLOPPY DRIVE, FLOPPY

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 @ Lesson 2... ( ). ( ). @ vs. logic data method variable behavior attribute method field Flow (Type), ( ) member @ () : C program Method A ( ) Method B ( ) Method C () program : Java, C++, C# data @ Program

More information

SLA QoS

SLA QoS SLA QoS 2002. 12. 13 Email: really97@postech.ac.kr QoS QoS SLA POS-SLMS (-Service Level Monitoring System) SLA (Service Level Agreement) SLA SLA TM Forum SLA QoS QoS SLA SLA QoS QoS SLA POS-SLMS ( Service

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

KT AI MAKERS KIT 사용설명서 (Node JS 편).indd

KT AI MAKERS KIT 사용설명서 (Node JS 편).indd KT AI MAKERS KIT 03 51 20 133 3 4 5 6 7 8 9 1 2 3 5 4 11 10 6 7 8 9 12 1 6 2 7 3 8 11 12 4 9 5 10 10 1 4 2 3 5 6 1 4 2 5 3 6 12 01 13 02 03 15 04 16 05 17 06 18 07 19 08 20 21 22 23 24 25 26 27 28 29

More information

No Slide Title

No Slide Title Copyright, 2001 Multimedia Lab., CH 3. COM object (In-process server) Eun-sung Lee twoss@mmlab.net Multimedia Lab. Dept. of Electrical and Computer Eng. University of Seoul Seoul, Korea 0. Contents 1.

More information

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me

dist=dat[:,2] # 기초통계량구하기 len(speed) # 데이터의개수 np.mean(speed) # 평균 np.var(speed) # 분산 np.std(speed) # 표준편차 np.max(speed) # 최대값 np.min(speed) # 최소값 np.me Python 을이용한기초통계분석 1. 통계학을위한 Python 모듈 1.1 numpy 패키지 - 고급데이터분석과수리계산을위한라이브러리를제공 - 아나콘다에기본적으로설치되어있음 (1) numpy가제공하는통계분석함수 import numpy as np print(dir(np)), 'max',, 'mean', 'median',, 'min',, 'percentile',,

More information

untitled

untitled 2005. 6. 11. *, **, ***, * * ** *** Acknowledgement 2005 BTP. 1. 1-1. 1. (Green Logistics) - 90 2 ( - ) EU - ISO 14001 ( ) -, - 3 1. Liberal Return Policy - (South Florida Stock 2000 1000 ) - (,TV, )

More information

MAX+plus II Getting Started - 무작정따라하기

MAX+plus II Getting Started - 무작정따라하기 무작정 따라하기 2001 10 4 / Version 20-2 0 MAX+plus II Digital, Schematic Capture MAX+plus II, IC, CPLD FPGA (Logic) ALTERA PLD FLEX10K Series EPF10K10QC208-4 MAX+plus II Project, Schematic, Design Compilation,

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

Solaris Express Developer Edition

Solaris Express Developer Edition Solaris Express Developer Edition : 2008 1 Solaris TM Express Developer Edition Solaris OS. Sun / Solaris, Java, Web 2.0,,. Developer Solaris Express Developer Edition System Requirements. 768MB. SPARC

More information

OP_Journalism

OP_Journalism 1 non-linear consumption 2 Whatever will change television will do so by re-defining the core product not just the tools we use to consume it. by Horace Dediu, Asymco 3 re-defining the core product not

More information

03장.스택.key

03장.스택.key ---------------- DATA STRUCTURES USING C ---------------- 03CHAPTER 1 ? (stack): (LIFO:Last-In First-Out) 2 : top : ( index -1 ),,, 3 : ( ) ( ) -> ->. ->.... 4 Stack ADT : (LIFO) : init():. is_empty():

More information

Mobile Service > IAP > Android SDK [ ] IAP SDK TOAST SDK. IAP SDK. Android Studio IDE Android SDK Version (API Level 10). Name Reference V

Mobile Service > IAP > Android SDK [ ] IAP SDK TOAST SDK. IAP SDK. Android Studio IDE Android SDK Version (API Level 10). Name Reference V Mobile Service > IAP > Android SDK IAP SDK TOAST SDK. IAP SDK. Android Studio IDE 2.3.3 Android SDK Version 2.3.3 (API Level 10). Name Reference Version License okhttp http://square.github.io/okhttp/ 1.5.4

More information

07 자바의 다양한 클래스.key

07 자바의 다양한 클래스.key [ 07 ] . java.lang Object, Math, String, StringBuffer Byte, Short, Integer, Long, Float, Double, Boolean, Character. java.util Random, StringTokenizer Calendar, GregorianCalendar, Date. Collection, List,

More information

( )부록

( )부록 A ppendix 1 2010 5 21 SDK 2.2. 2.1 SDK. DevGuide SDK. 2.2 Frozen Yoghurt Froyo. Donut, Cupcake, Eclair 1. Froyo (Ginger Bread) 2010. Froyo Eclair 0.1.. 2.2. UI,... 2.2. PC 850 CPU Froyo......... 2. 2.1.

More information

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이 1 2 On-air 3 1. 이베이코리아 G마켓 용평리조트 슈퍼브랜드딜 편 2. 아모레퍼시픽 헤라 루즈 홀릭 리퀴드 편 인쇄 광고 올해도 겨울이 왔어요. 당신에게 꼭 해주고 싶은 말이 있어요. G마켓에선 용평리조트 스페셜 패키지가 2만 6900원! 역시 G마켓이죠? G마켓과 함께하는 용평리조트 스페셜 패키지. G마켓의 슈퍼브랜드딜은 계속된다. 모바일 쇼핑 히어로

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

PJTROHMPCJPS.hwp

PJTROHMPCJPS.hwp 제 출 문 농림수산식품부장관 귀하 본 보고서를 트위스트 휠 방식 폐비닐 수거기 개발 과제의 최종보고서로 제출 합니다. 2008년 4월 24일 주관연구기관명: 경 북 대 학 교 총괄연구책임자: 김 태 욱 연 구 원: 조 창 래 연 구 원: 배 석 경 연 구 원: 김 승 현 연 구 원: 신 동 호 연 구 원: 유 기 형 위탁연구기관명: 삼 생 공 업 위탁연구책임자:

More information

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A 예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower.

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower. 스피킹 매트릭스 특별 체험판 정답 및 스크립트 30초 영어 말하기 INPUT DAY 01 p.10~12 3 min 집중 훈련 01 I * wake up * at 7. 02 I * eat * an apple. 03 I * go * to school. 04 I * put on * my shoes. 05 I * wash * my hands. 06 I * leave

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

歯표지_통합_.PDF

歯표지_통합_.PDF LG GLOFA MASTER-K PID G3F-PIDA G4F-PIDA G3F-PIDA/G4F-PIDA PLC GLOFA GM3/4 CPU MASTER-K 200S/300S/1000S CPU!!! 2 ! PLC,,,,,! PCB,,, Off! 1 1-1 ~ 1-1 11 1-1 2 2-1 ~ 2-13 21 2-1 22 2-2 23 2-3 24 PID 2-4 241

More information

15 홍보담당관 (언론홍보담당) 김병호 ( 金 秉 鎬 ) 16 (행정담당) 박찬해 ( 朴 鑽 海 ) 예산담당관 17 (복지행정담당) 이혁재 ( 李 赫 在 ) 18 (보육담당) 주사 이영임 ( 李 泳 任 ) 기동근무해제. 19 (장애인담당) 박노혁 ( 朴 魯 爀 ) 기동

15 홍보담당관 (언론홍보담당) 김병호 ( 金 秉 鎬 ) 16 (행정담당) 박찬해 ( 朴 鑽 海 ) 예산담당관 17 (복지행정담당) 이혁재 ( 李 赫 在 ) 18 (보육담당) 주사 이영임 ( 李 泳 任 ) 기동근무해제. 19 (장애인담당) 박노혁 ( 朴 魯 爀 ) 기동 人 事 發 令 논산시 (2013. 2. 7일자) 일련 1 감사담당관 지방행정사무관 이정열 ( 李 廷 烈 ) 2 지방행정사무관 김오형 ( 金 五 衡 ) 감사담당관 3 지방행정사무관 조상환 ( 趙 相 煥 ) 행정지원과 4 지방행정사무관 이정호 ( 李 廷 鎬 ) 5 지방행정사무관 서형욱 ( 徐 炯 旭 ) 6 산림공원과 지방행정사무관 이연형 ( 李 連 炯 ) 취암동

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

untitled

untitled Six Sigma - - Grouping Brainstorming : Observ. 8 - - 22 27 32 37 5 5 Capability -27.7552 63.7552 22 Capability 3.SL=69.82 X=29.73-3.SL=-.35 3.SL=49.24 R=5.7-2.29 7.7578-3.SL=.E+ 22 Data Source: Time Span:

More information

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770> 설화에 나타난 사회구조와 그 의미 23) 박유미 * 차례 Ⅰ. 문제제기 Ⅱ. 서사 내부의 사회구조 Ⅲ. 사회문제의 해결방식과 그 의미 Ⅳ. 설화와 후대전승과의 상관관계 Ⅴ. 결론 국문초록 삼국유사 의 조에는 왕거인 이야기와 거타지 이야기가 하나의 설화에 묶여 전하고 있는데, 두 이야기는 해결구조에서 차이를

More information

Slide 1

Slide 1 Clock Jitter Effect for Testing Data Converters Jin-Soo Ko Teradyne 2007. 6. 29. 1 Contents Noise Sources of Testing Converter Calculation of SNR with Clock Jitter Minimum Clock Jitter for Testing N bit

More information

Something that can be seen, touched or otherwise sensed

Something that can be seen, touched or otherwise sensed Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

NLTK 6: 텍스트 분류 학습 (` `%%%`#`&12_`__~~~ౡ氀猀攀)

NLTK 6: 텍스트 분류 학습 (` `%%%`#`&12_`__~~~ౡ氀猀攀) nltk.org/book/ch06.html gender_features word last_letter word[-1] word >>> def gender_features(word):... return { last_letter : word[-1]} >>> gender_features( Shrek ) { last_letter : k } nltk.corpus.names

More information

solution map_....

solution map_.... SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System

More information

-................_

-................_ Tel_3660 2724 http://www.kado.or.kr e-mail : yheein@kado.or.kr CONTENTS DIGITAL OPPORTUNITY TRENDS CONTENTS DIGITAL OPPORTUNITY TRENDS DIGITAL OPPORTUNITY TRENDS www.kado.or.kr 001 002 DIGITAL OPPORTUNITY

More information

슬라이드 1

슬라이드 1 / 유닉스시스템개요 / 파일 / 프로세스 01 File Descriptor file file descriptor file type unix 에서의파일은단지바이트들의나열임 operating system 은파일에어떤포맷도부과하지않음 파일의내용은바이트단위로주소를줄수있음 file descriptor 는 0 이나양수임 file 은 open 이나 creat 로 file

More information

Contents Contents 2 1 Abstract 3 2 Infer Checkers Eradicate Infer....

Contents Contents 2 1 Abstract 3 2 Infer Checkers Eradicate Infer.... SV2016 정적분석보고서 201214262 라가영 201313250 서지혁 June 9, 2016 1 Contents Contents 2 1 Abstract 3 2 Infer 3 2.1 Checkers................................ 3 2.2 Eradicate............................... 3 2.3 Infer..................................

More information

10X56_NWG_KOR.indd

10X56_NWG_KOR.indd 디지털 프로젝터 X56 네트워크 가이드 이 제품을 구입해 주셔서 감사합니다. 본 설명서는 네트워크 기능 만을 설명하기 위한 것입니다. 본 제품을 올바르게 사 용하려면 이 취급절명저와 본 제품의 다른 취급절명저를 참조하시기 바랍니다. 중요한 주의사항 이 제품을 사용하기 전에 먼저 이 제품에 대한 모든 설명서를 잘 읽어 보십시오. 읽은 뒤에는 나중에 필요할 때

More information

歯FDA6000COP.PDF

歯FDA6000COP.PDF OPERATION MANUAL AC Servo Drive FDA6000COP [OPERATION UNIT] Ver 1.0 (Soft. Ver. 8.00 ~) FDA6000C Series Servo Drive OTIS LG 1. 1.1 OPERATION UNIT FDA6000COP. UNIT, FDA6000COP,,,. 1.1.1 UP DOWN ENTER 1.1.2

More information

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770> 2012학년도 2학기 중등과정 3학년 국어 수업 계획서 담당교사 - 봄봄 현영미 / 시온 송명근 1. 학습 목적 말씀으로 천지를 창조하신 하나님이 당신의 형상대로 지음 받은 우리에게 언어를 주셨고, 그 말씀의 능 력이 우리의 언어생활에도 나타남을 깨닫고, 그 능력을 기억하여 표현하고 이해함으로 아름다운 언어생활 을 누릴 뿐만 아니라 언어문화 창조에 이바지함으로써

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * , 40 12 (2006 6) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * 40, 40 12 (EPQ; economic production quantity). (setup cost) (setup time) Bradley

More information

SIGPLwinterschool2012

SIGPLwinterschool2012 1994 1992 2001 2008 2002 Semantics Engineering with PLT Redex Matthias Felleisen, Robert Bruce Findler and Matthew Flatt 2009 Text David A. Schmidt EXPRESSION E ::= N ( E1 O E2 ) OPERATOR O ::=

More information

PL10

PL10 assert(p!=null); *p = 10; assert(0

More information

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ 알고리즘설계와분석 (CSE3081(2 반 )) 기말고사 (2016년 12월15일 ( 목 ) 오전 9시40분 ~) 담당교수 : 서강대학교컴퓨터공학과임인성 < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고, 반드시답을쓰는칸에어느쪽의뒷면에답을기술하였는지명시할것. 연습지는수거하지않음. function MakeSet(x) { x.parent

More information

Week5

Week5 Week 05 Iterators, More Methods and Classes Hash, Regex, File I/O Joonhwan Lee human-computer interaction + design lab. Iterators Writing Methods Classes & Objects Hash File I/O Quiz 4 1. Iterators Array

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

11111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111 서울시 금천구 가산동 448 대륭테크노타운 3차 301호 전화 : (02)838-0760 팩스 : (02)838-0782 메일 : support@gyrosoft.co.kr www.gyrosoft.co.kr www.gyro3d.com 매뉴얼 버전 : 1.00 (발행 2008.6.1) 이 설명서의 어느 부분도 자이로소프트(주)의 승인 없이 일부 또는 전부를 복제하여

More information

e hwp

e hwp TITLE 'Dew Pressure Calculation for the Condenser Pressure' IN-UNITS ENG DEF-STREAMS CONVEN ALL DESCRIPTION " General Simulation with English Units : F, psi, lb/hr, lbmol/hr, Btu/hr, cuft/hr. Property

More information

DE1-SoC Board

DE1-SoC Board 실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically

More information

슬라이드 제목 없음

슬라이드 제목 없음 2006-09-27 경북대학교컴퓨터공학과 1 제 5 장서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 슈퍼넷팅 (Supernetting) 2006-09-27 경북대학교컴퓨터공학과 2 서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 하나의네트워크를여러개의서브넷 (subnet) 으로분할 슈퍼넷팅 (supernetting) 여러개의서브넷주소를결합 The idea

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

<C1A6203420C0E52831292D33BCBABAD0B0E820C1B6BCBAC0D0B1E22E687770>

<C1A6203420C0E52831292D33BCBABAD0B0E820C1B6BCBAC0D0B1E22E687770> 제 4 장 3성분계 상태도 4.1 조성읽기 (성분 분률) ( )%A-( )%B-( )%C ( )%A-( )%B-( )%C ( )% A - ( )% B - ( )% C Fig. 4-1 3성분계 성분분률(1). - 39 - What is the composition for the points shown (% A,B,C): Note the composition always

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

09È«¼®¿µ 5~152s

09È«¼®¿µ5~152s Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information

大学4年生の正社員内定要因に関する実証分析

大学4年生の正社員内定要因に関する実証分析 190 2016 JEL Classification Number J24, I21, J20 Key Words JILPT 2011 1 190 Empirical Evidence on the Determinants of Success in Full-Time Job-Search for Japanese University Students By Hiroko ARAKI and

More information

Lab10

Lab10 Lab 10: Map Visualization 2015 Fall human-computer interaction + design lab. Joonhwan Lee Map Visualization Shape Shape (.shp): ESRI shp http://sgis.kostat.go.kr/html/index.html 3 d3.js SVG, GeoJSON, TopoJSON

More information

Motor

Motor Interactive Workshop for Artists & Designers Earl Park Motor Servo Motor Control #include Servo myservo; // create servo object to control a servo int potpin = 0; // analog pin used to connect

More information

윤활유 개발 동향 및 연구 사례

윤활유 개발 동향 및 연구 사례 0.3% 3.4% 40,530 4.9% 71,000 4,414 '00 '06 '10 HMC KMC ( ( 195 ( 125 ( ( ( EUROPE ASIA N. AMERICA AFRICA Hyundai Kia S. AMERICA Overseas Plant India OCEANIA : 300,000 Turkey : 200,000 China : 500,000 U.S.A

More information

#KM560

#KM560 KM-560 KM-560-7 PARTS BOOK KM-560 KM-560-7 INFORMATION A. Parts Book Structure of Part Book Unique code by mechanism Unique name by mechanism Explode view Ref. No. : Unique identifcation number by part

More information

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.

More information

1

1 1 1....6 1.1...6 2. Java Architecture...7 2.1 2SDK(Software Development Kit)...8 2.2 JRE(Java Runtime Environment)...9 2.3 (Java Virtual Machine, JVM)...10 2.4 JVM...11 2.5 (runtime)jvm...12 2.5.1 2.5.2

More information

untitled

untitled - -, (insert) (delete) - - (insert) (delete) (top ) - - (insert) (rear) (delete) (front) A A B top A B C top push(a) push(b) push(c) A B top pop() top A B D push(d) top #define MAX_STACK_SIZE 100 int

More information

Overview Ensemble Model Director of TEAMLAB Sungchul Choi

Overview Ensemble Model Director of TEAMLAB Sungchul Choi Overview Ensemble Model Director of TEAMLAB Sungchul Choi Ensemble Model - 하나의모델이아니라여러개모델의투표로 Y값예측 - Regression 문제에서는평균값을예측함 - meta-classifier - stacking (meta-ensemble) 등으로발전 - 학습은오래걸리나성능이매우좋음 - Kaggle

More information

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1. Continuous Distillation Column Design Jungho Cho Department of chemical engineering, Dongyang university 1. ( ).... 2. McCabe-Thiele Method K-value. (1) : :, K-value. (2) : :, α. α (3)., (3). α α (4) (4).

More information