모바일동향
|
|
- 지오 순
- 6 years ago
- Views:
Transcription
1 .... 기계학습의원리, 능력과한계 김진형 소프트웨어정책연구소소장 KAIST 전산학부명예교수 국제패턴인식학회 Fellow 정보과학회명예회장
2 결과는종종혁신적이지만 진화는항상점진적이다 * 혁신적인알파고, 딥러닝은 70 년동안의인공지능기술진화의산물 * 출처 : 기술의진화 : 비유와함의들, 이관수 ( 동국대다르마칼리지이관수교수 ) 에서
3 지능적행동을자동화하기위한컴퓨터과학의한분야 (Luger & Stubblefield, 1993) 현재사람이더잘하는일을컴퓨터가하도록하는연구 (Rich & Knight, 1991) 컴퓨터를좀더스마트하게만들기 생각하는컴퓨터만들기 3
4 2013 년신규과목 인공지능 ACM/IEEE 제안커리큘럼 (308 Hrs) Discrete Structure SW Dev. Fundamentals Algorithm & Complexity Architecture & Organization Operating Systems Networking & Communication Programming Languages Human-Computer Interaction Grophics & Visualization Intelligent Systems Information Management Social Issues & Professional Practice SW Engineering Computational Science Information Assurance & Security Parallel & Distributed Computing System Fundamentals Platform-based Development Computer Science Body of Knowledge ( 학사과정학습내용 ) 4 [ 자료출처 :
5 1983 년 1 월호 15 가상비서? 00 자연언어처리 10 딥러닝 70 Expert System 50s- 60s AI 개념정립다양한방식시도 85 신경망 2000 Google Multiple Language Translatation 2012 Google Deep Learning 고양이인식 2016 AlphaGo 이세돌제압 1950 튜링테스트 1956 다트머쓰회의에서 AI 개념정립 1970~80 MYCIN, XCON Expert System 1986 Backpropagation Multilayer Network 1997 IBM Deep Blue 체스인간에게승리 2011 IBM 왓슨 Jeopardy 승리 2014 Facebook DeepFace 5
6 Computing Power 강력한병렬및분산처리능력 알고리즘 공개소프트웨어 개방 공유 협업의성과 Big Data Power 인터넷, IOT, Sensor 기술을통한수집능력 6
7 7
8 지식처리형 사람의지식을기호의조합으로표현 이슈 : 언어이해, 지식획득 데이터기반형 신호데이터에서공통성질추출 이슈 : 훈련, 기계학습 전문가시스템 IBM Watson 음성인식 영상인식 뉴럴네트웍 딥러닝 가상비서 그림내용설명하는로봇 8
9 기계학습 (Machine Learning) 명시적으로프로그램하지않고, 데이터로부터학습하는능력을컴퓨터에게주기위한연구
10 지도학습 (Supervised learning) 올바른입력 / 출력쌍으로된훈련데이터로부터입출력간의함수학습 자율학습 (Unsupervised learning) 데이터의무리짓기 (Clustering) or 일관된해석의도출 증강학습 (Reinforcement learning) 계속된행동으로얻은보상으로부터올바른행동을학습 10 10
11 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 11
12 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 12
13 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 13
14 키 (Cm) y 광수광수에의한오차철수철수에의한오차성수 영식 영철 영식에의한오차 영철에의한오차 직선의식 h(x)= ax+b 길동 영호 성수에의한오차영호에의한오차 166 길동에의한오차 몸무게 (Kg) x i 가만드는오차 14
15 Gradient Descent ( 급한기울기따라가기 ) 반복하여가장경사가급한곳으로 Parameter를변화시켜최대 ( 최소 ) 점도달 복잡한함수의최적화에많이사용, 특히신경망학습등에서 문제점 시작위치에따라서종종 Local 극점에도달 특이지형에서방향상실 얼마만한보폭으로? 15
16 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 16
17 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 17
18 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 18
19 어떤철학에의하여 좋음 을정의 예 ) Ockham s Razer 단순한 (Simple) 것을선호 예 ) 함수의복잡도와데이터적합성간의타협 (Tradeoff) 예 ) 일반화능력이강한것 훈련에참여하지않은데이터에대하여도좋은성능을보일것 19
20 키 (Cm) 철수 광수 영식 길동 영호 성수 영철 몸무게 (Kg) 20
21 패턴인식시스템설계 패턴인식은지능이필요한 일반적인문제풀이능력
22 22
23 농어 연어 Length Lightness Width 23 Number and shape of fins Position of the mouth 23
24 Sensor? Sensor signal 특징추출 패턴인식기 특성값 분류기연어 어떤특징을보고어떻게분류할것인가를결정하는것이기계학습 의역할 패턴인식과기계학습은동전의앞뒷면! 24
25 길이가 l 보다크면연어라고하고작으면농어라하자 오류를최소화하는 l* 구할수있다 25 25
26 길이를보고분류하면밝기에의한분류보다오류가많다 밝기가 x보다어두우면연어라고하고밝으면농어라하자 오류를최소화하는 x* 구할수있다 특성의선택이패턴인식의성패를좌우 특성이주어지면훈련데이터로부터최적의분류방법학습가능 26 26
27 length 더많은특징을보면더좋을까? 길이밝기, 폭, 핀의개수, 핀의모양, 입의위치, 27
28 특성의선택이패턴인식성능좌우 더많은특성은더좋은성능? 상관관계가깊은특성은성능을 향상시키지못한다 특성에따라학습의어려움이상이 28
29 훈련에참여하지않은데이터에얼마나좋은성능을보일까? Simple Model A Complex Model B 훈련데이터에는완벽하도록복잡한모델을고를수있다. 일반화능력이최상이되도록모델을선택해야 29
30 underfitting good fit overfitting 복잡도에대한패널티를포함하여최적화 Validation Error 훈련데이터와별도의검증데이터로최적 의모델선택 Training Error 특성의수 30
31 유한한데이터를가지고특징을추가하면공간의크기가너무급하게증가하여가용한데이터가희소화 통계적으로신뢰할수있는결과얻기어려움 적절한일반화능력을위해요구되는훈련데이터양은급격히증가하는현상을 차원의저주 (Curse of Dimensionality) 라함 예 : 총 Sample 수의 20% 를확보하기위한차원별노력 31
32 데이터수집 Probably the most time-intensive component of project How many examples are enough? 특성의선택 Critical to the success of the PR project Require basic prior knowledge, engineering sense 인식방법론의선택과설계 Statistical, neural and structural Parameter settings 훈련 Given a feature set and blank model, adapt the model to explain the training data Supervised, unsupervised, reinforcement learning 평가 How well does the trained model do? Overfitting vs. generalization 32
33 신경망 (Neural Network)
34 x 1 w k1 x 2 w k2 활성화함수 v k (.) 출력 y k x m w km Summing 입력 가중치 weights v k m j 1 w kj x j y k (v k ) 34
35 O j O j O j t in i t in i in i Threshold Function Piecewise-linear Function Sigmoid Function (differentiable) ( v) 1 1 exp( av) a is slope parameter 35
36 신용평가분류기 직업 (1/0) 나이 good 급여 medium 가족수 bad 빚 36
37 단층구조 입력과출력층만 2 층구조 하나의은닉층 고충 (N>2) 구조 N-1 개의은닉층 Recurrent Networks 최소한하나의 feedback loop Network of Networks 복잡한모델형성가능 inputs outputs 37
38 By Rosenblatt, 1957년 간단한가중치 Update Rule W i W i + Δ W i Input Δ W i = η (D-Y) x i Learning rate = 1 Desired output Actual output 학습데이타를직선으로구분할수있 으면항상해에수렴 XOR 문제 곧실망 - 선형분류기의한계 XOR 문제는해결못함 38
39 은닉노드의층을가진구조 은익노드 (Hidden Node) 란 입력단 ( 저층 ) 에서오는값을처리하여출력단 ( 고층 ) 으로전파하는역할 은닉노드수를늘려서복잡한함수표현가능 모든 Boolean logic, 선형함수의조합 39
40 40
41 . 입력값에대한은닉노드의바람직한출력값을모름 직접학습불가능 해결 : 오류역전파알고리즘 1974 년 Werbos, 1986 년경부터널리알려짐 총오류함수를줄이는방향으로가중치수정 Gradient Descent ( 급한기울기따라가기 ) 출력노드의오류는이노드에양향을미친은닉노드들이책임져라 얼마나? 출력노드에공헌만만큼 출력단에서부터가중치를역방향순차적으로수정 41
42 간단한문제에는좋은성능을보이지만, 여러가지문제점이 ( 차원의저주 ) 신경망 parameter 수가쉽게증가 Overfitting 을피하기위하여너무나많은훈련데이터가요구됨 은닉노드가무엇을배울지, 어떤특성을갖게될런지모름 지가알아서뭔가를하는데잘하지도못한다 하위계층의학습부진 상위노드에서다양한방향으로수정요구가들어옴 오차신호가약해져서학습의방향성소실 훈련에많은시간소요, Local 극점문제가골치 여러학습촉진하는팁 42
43 딥러닝 : 고층신경망에잘작동하는학습방법론의총칭, 2005 ~ 층층이별도로훈련 Pre Training 자율학습기법으로특성미리학습 훈련된은닉층을층층이쌓는다 그후통합훈련으로미세조정 Local 극점에강인하고학습이잘됨 무작위초기화보다좋은자리에서출발하는효과 적은데이터로도 Overfitting 회피가능 은닉층이원하는특성을갖도록학습가능 입력단에가까운은닉층은저수준특성 고층에서는고수준특성으로추상화가능 효과검증된기법으로은닉층구성가능 변형을흡수하는층삽입가능 43
44 Pre Training : 입력과출력이동일하도록은닉층을훈련 시각화를통해서 원하는특성 이발현되는지확인가능 Auto Encoder Ristricted Boltzman Machine 은닉층시각화 44
45 45
46 Google s Face 와 Cat 자율학습 10 억개연결, 개컴퓨터 음성인식오류률 3 일간의 You-Tube 영상 Facebook, DeepFace 97.25% 1억2천만개의연결 4000명의 4백만얼굴사진 층층의독립적으로훈련덕분에 46
47 어린아이들이고양이를아는데몇백만장의고양이사진이필요하지않다 Tomaso Poggio, MIT 50년만에만난친구도한눈에알아본다 신경세포의계산은느리지만 딥러닝은뭘그렇게계산하니? 47
48 현재의딥러닝은얼마나배울수있을까? 순수딥러닝 Go 는언제나? (10, 7) 에놓아요
49 5 년내에모든기업이 머신러닝을사용할것이다 - Eric Schumidt Google Tensor Flow Microsoft CNTK, DMTK Skymind DL4j 기계학습은로켓의엔진과같다. 로켓이날아가려면엔진에넣을연료가필요한데이것이바로데이터이고, 데이터는 IoT를이용한센서에서얻어진다. Baidu WARP-CTC Facebook Torch OPEN AI Community Google 49
50 단일기능수행 다양한기능수행 AlphaGo Watson 50
딥러닝 첫걸음
딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망
More informationCh 1 머신러닝 개요.pptx
Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial
More informationIntroduction to Deep learning
Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron
More information모바일동향
@SW 중심대학워크숍 4 차산업혁명에서의인공지능역할 2016.11.30 김진형 지능정보기술연구원원장 KAIST 명예교수 Watson wins Jeopardy (2011) 사람의말을이해하고사람이쓰는언어로대답. 인간만의고유능력이었던지적판단의영역까지컴퓨터에내어주는순간 [ 이미지출처 : 구글검색 ] 2 IBM Watson 컴퓨터가미국주요병원에서암진단및치료법조언 2013년투입전
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information슬라이드 0
Machine Learning Basic 2016.09 Quarry systems 윤동한 인공지능이란? 지능적행동을자동화하기위한컴퓨터과학의한분야 (Luger & Stubblefield, 1993) 현재사람이더잘하는일을컴퓨터가하도록하는연구 (Rich & Knight, 1991) 1 Machine Learning 이란 명시적으로 Program 하지않고, 스스로학습할수있는능력을컴퓨터에게주기위한연구
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는
More informationData Industry White Paper
2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM
More information1-1-basic-43p
A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing
More information( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (
보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,
More information2 지능정보사회를 선도하는 인공지능 공동연구소
제4차산업혁명 소프트웨어 중심사회를 준비하는 인공지능 연구체계 구축 2016.08.21 김진형 지능정보기술연구원 원장 공공데이타전략위원회 위원장 KAIST 명예교수 지능정보사회를 선도하는 인공지능 공동연구소 2 지능정보사회를 선도하는 인공지능 공동연구소 70 년전컴퓨터가발명되었을때 알파고승리는예견되었던것 컴퓨터는사람의생각을담아서사람의사고과정을자동화하는기계 대한민국은이기술의능력과가치를제대로이해하고필요한조치를취했는가?
More information사회통계포럼
wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science
More informationPowerPoint 프레젠테이션
I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More informationPowerPoint 프레젠테이션
2016 Data Grand Conference AI Platform Company 인공지능과 Virtual Assistant 마인즈랩박성준 2016-11-04 c 2016, MindsLab. All Rights Reserved Big Data Analytics, Deep Learning, Artificial Intelligence CONTENTS 1. About
More information<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More information레이아웃 1
CSE NEWSLETTER 부산대학교 정보컴퓨터공학전공 뉴스레터 01 03 07 09 12 @ PNU 여름호 (통권 제15호) 2016년 6월 정컴 소식 정컴행사, 학사일정, 정컴포커스(교수, 학생, 학과) 교수 동정 칼럼 (유영환 교수) 발행처 부산대학교 정보컴퓨터공학전공 동문 동정 해외 IT기업 재직 선배 이야기 주소 부산시 금정구 부산대학로 63번길 2
More informationPowerPoint 프레젠테이션
[ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309
More information제1강 인공지능 개념과 역사
인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........
More information3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45
3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev
More informatione01.PDF
2119, -., 4.25-40 4 km -.. km,, -,.,,,,,,,,,,,..... . 90%..,.., 20 1 - -.,.. 2172,. - 3 - < > 1.! 6 2.. 10 3.? 18 4. 22 5. 26 6.. 32 7. 36 8.. 44 9.. 49 10.. 61 11. 65 12. 76 13.. 80 14. 85 15.. 90 16..
More information01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce
Artificial Intelligence for Deep Learning 01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Concept of Neural
More informationMicrosoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx
실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationPowerPoint Presentation
4 장. 신경망 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 4.2-4.3 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학
More information(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.
1 (, ), ( ) 2 1. 2. (, sta*s*cal disclosure control) - (Risk) and (U*lity) - - 3. (Synthe*c Data) 4. 5. 3 1. + 4 1. 2.,. 3. K + [ ] 5 ' ', " ", " ". (SNS), '. K KT,, KG (PG), 'CSS'(Credit Scoring System)....,,,.
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More informationChap 6: Graphs
5. 작업네트워크 (Activity Networks) 작업 (Activity) 부분프로젝트 (divide and conquer) 각각의작업들이완료되어야전체프로젝트가성공적으로완료 두가지종류의네트워크 Activity on Vertex (AOV) Networks Activity on Edge (AOE) Networks 6 장. 그래프 (Page 1) 5.1 AOV
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More informationOverview Decision Tree Director of TEAMLAB Sungchul Choi
Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based
More information_KrlGF발표자료_AI
AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think
More information<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>
Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 2 : 258~264 Feb. 2015 ID3 알고리즘 기반의 귀납적 추론을 활용한 모바일 OS의 성공과 실패에 대한
More informationIPAK 윤리강령 나는 _ 한국IT전문가협회 회원으로서 긍지와 보람을 느끼며 정보시스템 활용하 자. 나는 _동료, 단체 및 국가 나아가 인류사회에 대하여 철저한 책임 의식을 가진 다. 나는 _ 활용자에 대하여 그 편익을 증진시키는데 최선을 다한다. 나는 _ 동료에 대해
IPAK 윤리강령 나는 _ 한국IT전문가협회 회원으로서 긍지와 보람을 느끼며 정보시스템 활용하 자. 나는 _동료, 단체 및 국가 나아가 인류사회에 대하여 철저한 책임 의식을 가진 다. 나는 _ 활용자에 대하여 그 편익을 증진시키는데 최선을 다한다. 나는 _ 동료에 대해서 도의와 성실과 지식을 바탕으로 서로 우애하고 경애한다. 나는 _ 단체와 국가에 대해서 그
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More informationR을 이용한 텍스트 감정분석
R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45
More information슬라이드 1
Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치
More information제2강 생각하는 기계
제 2 강 생각하는기계 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180312=> 20180313 목차 튜링테스트...... 3 중국어방논증........... 7 강인공지능과약인공지능..... 8 특이점....... 10 의식의문제와인공지능........
More informationPattern Recognition
딥러닝이해및미디어응용 아주대학교구형일 인공지능 / 기계학습 / 딥러닝 AI 에관한 4 개의관점 Humanly Rationally Thinking Thinking Humanly Thinking Rationally Acting Acting Humanly Acting Rationally Acting Humanly 사람처럼일하는 / 행동하는기계 인공지능은사람에의해서수행될때지능이필요한일을수행하는기계를만드는기술이다.
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationCh 8 딥강화학습
Chapter 8. 딥강화학습 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 최진영 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Version
More information오시는 길 동명 무료순환버스 2 0 1 6 정 시 모 집 요 강 울산지역 꽃나루공원 공업탑로타리 태화로타리 신복로타리 동명대도착 2016학년도 정시모집요강 창원지역 창원종합 버스터미널 앞 CT7/ CGV 창원종합운동장 시청 로타리 남산시외버스 정류소 동명대도착 김해 / 장유지역 동명대 출발 장유면사무소 김해 소방서 동명대도착 대중교통 시내버스 : 21번, 25번,
More informationSK IoT IoT SK IoT onem2m OIC IoT onem2m LG IoT SK IoT KAIST NCSoft Yo Studio tidev kr 5 SK IoT DMB SK IoT A M LG SDS 6 OS API 7 ios API API BaaS Backend as a Service IoT IoT ThingPlug SK IoT SK M2M M2M
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationSW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013
SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING
More information2005 2004 2003 2002 2001 2000 Security Surveillance Ubiquitous Infra Internet Infra Telematics Security Surveillance Telematics Internet Infra Solutions Camera Site (NETWORK) Monitoring & Control
More information03-최신데이터
Database Analysis II,,. II.. 3 ( ),.,..,, ;. (strong) (weak), (identifying relationship). (required) (optional), (simple) (composite), (single-valued) (multivalued), (derived), (identifier). (associative
More informationuntitled
디지털 시대의 N세대 학습자 특성에 따른 교수전략 김희배 (관동대 교수) Ⅰ. 수업은 있는데... 왜, 학습은 없는 것일까? 시대적 트랜드로서 학습사회 를 거론하지 않더라도 산다는 것은 곧 배운다 는 것이다 라는 교육적 명제는 인간의 삶에 있어서 학습 의 당위성 및 중요 성을 가장 잘 나타내는 말일 것이다. 특히 오늘날과 같은 무한 경쟁시대에서 개인과 국가의
More informationKCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion
KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion
More information대회 조직 대 회 장 서정연(한국정보과학회 회장) 조직위원회 위 원 장 최종원(숙명여대), 홍충선(경희대), 황승구(ETRI) 위 원 강선무(NIA), 김 종(POSTECH), 김철호(ADD), 민경오(LG전자), 박진국(LG CNS), 서형수(알서포트), 엄영익(성균
http://www.kiise.or.kr/swcs/2014/ Software Convergence Symposium 2014 Software Convergence Symposium 2014 2014. 1. 23(Thu) ~ 24(Fri) 대회 조직 대 회 장 서정연(한국정보과학회 회장) 조직위원회 위 원 장 최종원(숙명여대), 홍충선(경희대), 황승구(ETRI)
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More informationPowerPoint 프레젠테이션
ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical
More information2 2000. 8. 31
IT update 00 1 / 2000.8.30 IT update Information Technology 2 2000. 8. 31 C o n t e n t s 2000. 8. 31 3 4 2000. 8. 31 2000. 8. 31 5 6 2000. 8. 31 2000. 8. 31 7 8 2000. 8. 31 2000. 8. 31 9 1 0 2000. 8.
More information.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201
4 21.,,,.,,. 1, 2, 3, 4.,,,,,,.,,,,., ( ). 60-66,,,,,.. (Corresponding Author): / / 303 Tel: 063-220-2495/ E-mail: ikkim@jj.ac.kr .,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;,
More information2015
2015 34863 85 Tel 042 530 3548 Fax 042 530 3559 Web www djdi re kr/gfcenter/main do 2015 information Graphic Infographics Gender Sensitive 1995 2014 2013 2014 1 2013 2014 SNS SNS 1. 1 1 daejeon DEVELOPMENT
More information제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을 드러
국가연구개발사업 정보 길잡이 제23호 2016년 4월 4월 과학의 날 특집 인공지능과 알파고 이야기 제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More information±èÇö¿í Ãâ·Â
Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
최신 ICT 이슈 IITP, 2016 년에 대두될 ICT 산업 10 대 이슈 발표 * 2016 년에는 IoT, 드론, 자율주행자동차, 로봇 등 인공지능을 활용한 제품 활성화가 ICT 업계의 가장 큰 화두가 될 것으로 전망 정보통신기술진흥센터(IITP)는 10 월 6 일 개최한 2016 ICT 산업전망컨퍼런스 를 통해 다음과 같이 2016 년 ICT 산업 10
More informationPowerPoint 프레젠테이션
ETRI, Kim Kwihoon (kwihooi@etri.re.kr) 1 RL overview & RL 에주목하는이유? 2 RL Tech. Tree 3 Model-based RL vs Model-free RL 4 몇가지사례들 5 Summary 2 AI Framework KSB AI Framework BeeAI,, Edge Computing EdgeX,, AI
More information<C8ADB7C220C5E4C3EBC0E52E687770>
하동 화력 7 8호기 건설부지 문화재 지표조사 결과보고서 2005. 01. ( 재) 우리문화재연구원 하동 화력 7 8호기 건설부지 문화재지표조사 결과보고서 Ⅰ. 조사개요 1. 조 사 명 : 하동 화력 78 호기 건설부지 문화재지표조사 2. 조사지역 : 경남 하동군 금성면 가덕리 1336답 일원 3. 조사 면적 : 134,204m2 4. 조사 목적 한국남부발전(
More informationCONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More information생들의 역할을 중심으로 요약 될 수 있으며 구체적인 내용은 다음과 같다. 첫째. 교육의 대상 면에서 학습대상이 확대되고 있다. 정보의 양이 폭발적으로 증가하고 사회체제의 변화가 가속화 되면서 학습의 대상은 학생뿐만 아니라 성인 모두에게 확대되고 있으며 평생학습의 시대가
Ⅰ. 사회패러다임과 교육패러다임의 변화 1. 사회패러다임변화 교육환경의 변화를 이해하기 위해서는 우선 21세기 사회패러다임의 변화에 대한 이해가 필요하다. 요즈음 우리사회에 자주 사용되는 말 가운데 하나가 패러다임 을 전환해야 한다., 21세기를 지향하는 새로운 패러다임을 갖추어야 한다. 는 등 등 패러다임이라는 말을 많이 사용하고 있다. 패러다임이란 말은
More information歯15-ROMPLD.PDF
MSI & PLD MSI (Medium Scale Integrate Circuit) gate adder, subtractor, comparator, decoder, encoder, multiplexer, demultiplexer, ROM, PLA PLD (programmable logic device) fuse( ) array IC AND OR array sum
More information시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198
SURVEY AND RESEARCH 02 딥러닝의현재와미래 Ⅰ. 서론 Ⅱ. 딥러닝을이용한채권회수율예측 Ⅲ. 알파고, 알파고제로, 알파제로 Ⅳ. 결론 김동현 * 한국주택금융공사정보전산부팀장 2017년말에딥마인드에서개발한알파제로는딥러닝을이용한강화학습을통해바둑의기본규칙만을입력받고스스로바둑을둬가며학습하여불과 3일만에수천년간쌓아올린인간의바둑지식을터득했고인간이미처생각하지못한새로운전략도발견했다.
More information¼º¿øÁø Ãâ·Â-1
Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission
More information............
제2장 1. 모월곶, 석곶, 서곶, 개건너 검단지역이 편입되기 전, 인천의 서구 전체는 지난날 서곶으로 불리던 지역이었다. 1914년 4월 1일 부평군 모월곶면과 석곶면을 통합되어 서곶 면이 되었다. 서곶이라는 지명은 군 소재지인 부평에서 서쪽 해안에 길 게 뻗어있으므로 그렇게 지어졌다. 이 지명은 반세기 이상 사용되었다. 그래서 인천시가 구제( 區 制 )를
More informationReinforcement Learning & AlphaGo
Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement
More informationSECTION TITLE A PURE PRIMER (AI), // 1
SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,
More information[한반도]한국의 ICT 현주소(송부)
ICT 2016. 5. 3 SKT KT LGU+ ( ) ( ) ( ) 18,000 15939 16141 16602 17164 17137 18,000 21990 23856 23811 23422 22281 12,000 10905 11450 11000 10795 13,500 13,425 9,000 9185 9,000 8,850 6,000 4,500 4,275 3,000-0
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University
신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론
More information03.Agile.key
CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development
More informationDWCOM15/17_manual
TFT-LCD MONITOR High resolution DWCOM15/17 DIGITAL WINDOW COMMUNICATION DIGITAL WINDOW COMMUNICATION 2 2 3 5 7 7 7 6 (Class B) Microsoft, Windows and Windows NT Microsoft VESA, DPMS and DDC Video Electronic
More informationuntitled
웹2.0의 사회 경제적 영향력 2007. 3. 21 < 목 차 > Ⅰ. 웹2.0의 의의 및 현황 1 Ⅱ. 웹2.0은 무엇이 다른가? 4 Ⅲ. 웹2.0의 비즈니스 모델 9 Ⅳ. 사회 경제적 영향 11 산은경제연구소 산업분석 2팀 Ⅰ. 웹2.0의 의의 및 현황 1. 의의 웹2.0이란 무엇인가? 정보의 개방을 통해 인터넷 사용자들간의 정보공유와 참여를 이끌어내고,
More information목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향
차량-IT 융합 기반의 미래형 서비스 발전 동향 이범태 (현대자동차) 목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향 Ⅰ. 정보 기술의 환경변화 1. 정보기술의 발전 2. 자동차 전장 시스템의 발전 1. 정보기술의 발전 정보기술은 통신 네트워크의 급속한 발전, 단말의 고기능화,
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More information45-51 ¹Ú¼ø¸¸
A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More information<333820B1E8C8AFBFEB2D5A6967626565B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 1 pp. 306-310, 2012 http://dx.doi.org/10.5762/kais.2012.13.1.306 Zigbee를 이용한 실외 위치추정 시스템 구현 김환용 1*, 임순자 1 1 원광대학교 전자공학과 Implementation
More information보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마
특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.
More information보안연구부 인공지능 (AI) 개요및기술동향 - 딥러닝 (Deep Learning) 기술의발달을중심으로 - ( 보안연구부보안기술연구팀 / ) 개요 기술연구및투자의장기간침체가있었던인공지능 (AI) 은최근딥러닝기반기술의발달및기존기술과의결합
보안연구부 -2016-043 인공지능 (AI) 개요및기술동향 - 딥러닝 (Deep Learning) 기술의발달을중심으로 - ( 보안연구부보안기술연구팀 / 2016.8.26.) 개요 기술연구및투자의장기간침체가있었던인공지능 (AI) 은최근딥러닝기반기술의발달및기존기술과의결합등을통해산업전반에적용가능한수준으로발전하고있음 이에현재활용되고있는인공지능기술중딥러닝에대한개념및기술동향을중심으로소개하고자함
More informationMegazone-ML-v2
활용장점 학습모델개발자관점및비지니스 Time-to-market Jaehoon Lee 목차 I. 머신러닝 à 개발자관점 기본개념 약간의수학 약간의데모 모델개발자들의작업 II. 모델개발자생산성과비교 No coding. Fast deployment 비즈니스영역 SageMaker 란? 마무리 머신러닝은수집 / 저장 / 처리 / 분석 / 배포 / 활용단계를거쳐프로덕션되어집니다.
More information개정판 서문 Prologue 21세기 한국경제를 이끌어갈 후배들에게 드립니다 1부 인생의 목표로써 CEO라는 비전을 확고히 하자 2부 인생의 비전을 장기 전략으로 구체화하라 1장 미래 경영환경 이해하기 20p 4장 장기 실행 전략 수립하기 108p 1) 미래 환경분석이
휴넷 조영탁 대표가 제시하는 차세대 비즈니스 리더가 되는 길 개정판 글 _ 조영탁 21세기 국가경쟁력은 세계 최고 수준의 경영자가 얼마나 배출되느냐에 달려있다. 10년 후에는 우리나라에도 100억원의 연봉을 받는 CEO가 다수 등장할 것이다. 이들은 기업의 성공과 국가경쟁력을 이끌어가는 초엘리트 그룹을 형성 할 것이다. 그러나 아무나 100억 연봉 CEO 대열에
More information기사스크랩 (160317).hwp
서울신문 / 2016.03.15(화) 출연연들 여성 인력 유출 막아라 한국에너지기술연구원에서 근무하는 임모(31)씨는 지난 1월 출산휴가에 들어가면서 자동으로 육아휴 직까지 갈 수 있게 됐다. 연구원이 지난해 7월부터 정부출연연구소 최초로 자동육아휴직제도를 운영 하고 있기 때문이다. 덕분에 임씨는 출산휴가가 끝나더라도 눈치보지 않고 육아휴직까지 쓸 수 있게
More information2005CG01.PDF
Computer Graphics # 1 Contents CG Design CG Programming 2005-03-10 Computer Graphics 2 CG science, engineering, medicine, business, industry, government, art, entertainment, advertising, education and
More information세종대 요람
Sejong University 2016 2016 Sejong University 4 SEJONG UNIVERSITY www.sejong.ac.kr 5 8 SEJONG UNIVERSITY 2016 Sejong University 10 SEJONG UNIVERSITY www.sejong.ac.kr 11 12 SEJONG UNIVERSITY www.sejong.ac.kr
More information기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비
2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More information통계적 학습(statistical learning)
통계적학습 (statistical learning) 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 통계적학습 (statistical learning) 1 / 33 학습내용 통계적학습목적 : 예측과추론방법 : 모수적방법과비모수적방법정확도와해석력지도학습과자율학습회귀와분류모형의정확도에대한평가적합도편의-분산의관계분류문제 박창이 ( 서울시립대학교통계학과
More information00-CourseSyllabus
웹기술및응용 : Course Syllabus 2018 년도 2 학기 Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering Contents Introduction Major Topics Term Project Course Material Grading Policy Class Schedule
More information/ TV 80 () DAB 2001 2002 2003 2004 2005 2010 Analog/Digital CATV Services EPG TV ( 60 ) TV ( Basic, Tier, Premiums 60 ) VOD Services Movies In Demand ( 20 ) Education N- VOD (24 ) Digital Music
More informationKAST International Symposium on Convergence Education of Science and Technology Seoul Sep. 13-14, 2007
과학기술과 사회의 변화 온누리교회 장로아카데미 2016년 5월 10일 이재규 KAIST 석좌교수; 세계정보시스템학회장 (AIS) 주요 과학기술과 영향 IT (정보 통신 기술): 인터넷, 스마트폰, AI 효율증대 고용 절벽 BT (바이오 기술) : 유전공학 장수 고령화 ET (에너지 기술) : 탄산가스 배출 저감 기후변화 방지 탄산가스 배출 규제 NT(나노 기술):
More informationez-shv manual
ez-shv+ SDI to HDMI Converter with Display and Scaler Operation manual REVISION NUMBER: 1.0.0 DISTRIBUTION DATE: NOVEMBER. 2018 저작권 알림 Copyright 2006~2018 LUMANTEK Co., Ltd. All Rights Reserved 루먼텍 사에서
More information