Reinforcement Learning & AlphaGo

Size: px
Start display at page:

Download "Reinforcement Learning & AlphaGo"

Transcription

1 Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr

2 Overview 연구배경 관련연구 제안하는방법 Reference 2

3 I. 연구배경 Reinforcement Learning and AlphaGo Part.1 3

4 연구배경 기존의생체인식방식 범죄현장이나일상생활에서생체인식의어려움이 기존의방식은인식을위한인위적인환경이요구 얼굴인식의경우, 원거리영상에대하여인식률이크게저하 객체의협조가필요홍채인식이나지문인식의경우, 인식대상자가눈이나손가락을가까이접촉시켜야함 생체인증방식에서의걸음걸이인식 사람의보행패턴을이용하여, 특정대상을식별하는방법 인식대상이촬영되기만하면원거리에서객체인식이가능 인식을위해, 객체의협조가필요하지않다. 4

5 Gait recognition 걸음걸이인식 사람들이걷는방식에따라개개인을구별하는인식방법 거리를두고얻어진영상을통해, 인식을수행 HID(Human Identification at a Distance) 걸음걸이인식을위한특징 1. Model based feature 모션정보, 걸음걸이영상의 optical flow 다리의각도, 키와보폭등의분석을통한특징추출 2. Model free feature 걸음걸이실루엣영상전체를사용하여, 이를하나의패턴으로사용 <Optical flow> <Motion based Optical flow> <silhouette image> 5

6 인식데이터의특성 Intra-class 동일클래스내부의분산 Inter-class 서로다른클래스간의분산 Intra class 의분산이크고, Inter class 의분산은작을때, 분류가쉬움 6

7 연구목표 Model free 걸음걸이이미지는환경과각도에따라, 데이터의특징이굉장히불규칙함 데이터의특징을잘추출하는적합한 Feature extract Model 을찾기가어려움 데이터를최소한의방법으로전처리하고, 이를분류기의입력으로사용 End to End Feature 를잘분류하는적합한분류기모델을선정하기어려움 딥러닝을활용하여 Feature 추출과새로운데이터에대한예측이동시에가능한분류기를설계 Discrimination 분류하기좋게, Intra class 와 Inter class 의분산을딥러닝의학습방식으로최적화 7

8 연구목표 Structure Deep learning Network Training Learning Feature extraction Learn a Discrimination Testing Correct class label 8

9 II. 관련연구 Reinforcement Learning and AlphaGo Part.1 9

10 Feature 제한사항 모노카메라로촬영된이미지영상만으로입력특징을추출 서로다른조건에서동일한사람의큰보행변화는고려하지않음 => 개인의본래보행특성은변하지않는다.[1] Individual Recognition Using Gait Energy Image [2] 새로운시공간보행표현을제시 한장의이미지로, 정적 - 동적인부분을표현 실루엣이미지의노이즈를보완하는 Gait energy image 를제안 10

11 Feature Gait energy image (GEI) 사람의정기적인걷기는움직임이안정된주파수에서반복되는주기적운동 걸음걸이의전체사이클에서시간정규화된누적에너지이미지 기존대다수의실루엣이미지기반의 Gait recognition 대비 20% 이상의정확도향상 GEI+optical flow, GEI+motion 등의파생된 Feature 알고리즘이있지만, 이러한알고리즘대비간단히 Feature 를생성할수있음, Handcrafted data 의단점을보완 가장많은 Database CASIA, OU-ISIR, USF gait database.. 11

12 GEI + CNN GEINet: View-Invariant Gait Recognition Using a Convolutional Neural Network [3] GEI 를이용하여, 사람을식별하기위해다량의데이터로 CNN 을처음적용 10,000 명의사람에대한데이터를각도별로직접확보 (OU-ISIR) 2 layer CNN 으로구성 ( 레이어가추가되면성능이저하됨을실험적으로확인 ) 12

13 GEI + Siamese GEINet: View-Invariant Gait Recognition Using a Convolutional Neural Network [3] 기존머신러닝알고리즘대비, 하여가장성능이좋게측정 (ROC curve, rank) 그러나, 제한적인각도로만성능평가 다른클래스간의차별성을학습하는데한계를보임 13

14 GEI + Siamese Siamese neural network based gait recognition for human identification [4] 입력간의차별성을학습하기위해, Siamese network 도입 두개의쌍둥이 CNN 을이용하여, 최종출력은두이미지간의학습한거리를출력 가장마지막에 KNN 을사용하여, 거리에따라클래스라벨을부여 + KNN classifier 14

15 GEI + Siamese Siamese neural network based gait recognition for human identification [4] 두이미지를 pair 하여, 새로운라벨을부여하는전처리작업이필요 모든경우의수에대한 DB 를만들면, 데이터의불균형이발생 랜덤샘플링으로인해, 데이터를충분히활용하지못함 15

16 GEI + ALL CNN A comprehensive study on cross-view gait based human identification with deep cnns [5] CNN 으로여러가지네트워크를구성하고이를조합하여, fusion 네트워크를설계 모든 DB, 각도, 네트워크구성, 네트워크조합으로모든성능을평가 가장정리가잘된논문 16

17 GEI + Triplet loss On input/output architectures for convolutional neural network-based cross-view gait recognition [6] 구글의 Triplet loss 방법을, gait recognition 에도입 기존 Siamese 방식의단점을보완하여, 3 input 으로네트워크를구성 Anchor / Positive / Negative 이미지간의유사성, 차별성을각각학습 17

18 GEI + Triplet loss On input/output architectures for convolutional neural network-based cross-view gait recognition [4] 세가지이미지를 pair 하여, 새로운라벨을부여하는전처리작업이필요 모든경우의수에대한 DB 를만들면, 데이터의불균형이발생 Hard Positive, Nagative 를찾는연산이필요 Unseen data 에취약한성능을보임 18

19 III. 제안하는방법 Reinforcement Learning and AlphaGo Part.1 19

20 Reinforcement Learning and AlphaGo Part.1 20

21 Reference [1] Han, Ju, and Bir Bhanu. "Performance prediction for individual recognition by gait." Pattern Recognition Letters 26.5 (2005): [2] Han, Jinguang, and Bir Bhanu. "Individual recognition using gait energy image." IEEE Transactions on Pattern Analysis & Machine Intelligence 2 (2006): [3] Shiraga, Kohei, et al. "Geinet: View-invariant gait recognition using a convolutional neural network." Biometrics (ICB), 2016 International Conference on. IEEE, [4] Zhang, Cheng, et al. "Siamese neural network based gait recognition for human identification." Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on. IEEE, [5] Wu, Zifeng, et al. "A comprehensive study on cross-view gait based human identification with deep cnns." IEEE Transactions on Pattern Analysis & Machine Intelligence 2 (2017): [6] Takemura, Noriko, et al. "On input/output architectures for convolutional neural network-based crossview gait recognition." IEEE Transactions on Circuits and Systems for Video Technology (2017). [7] Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European Conference on Computer Vision. Springer, Cham,

22 감사합니다 Reinforcement Learning and AlphaGo Part.1 22

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

..........(......).hwp

..........(......).hwp START START 질문을 통해 우선순위를 결정 의사결정자가 질문에 답함 모형데이터 입력 목표계획법 자료 목표계획법 모형에 의한 해의 도출과 득실/확률 분석 END 목표계획법 산출결과 결과를 의사 결정자에게 제공 의사결정자가 결과를 검토하여 만족여부를 대답 의사결정자에게 만족하는가? Yes END No 목표계획법 수정 자료 개선을 위한 선택의 여지가 있는지

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

다중 곡면 검출 및 추적을 이용한 증강현실 책

다중 곡면 검출 및 추적을 이용한 증강현실 책 1 딥러닝기반성별및연령대 추정을통한맞춤형광고솔루션 20101588 조준희 20131461 신혜인 2 개요 연구배경 맞춤형광고의필요성 성별및연령별주요관심사에적합한광고의필요성증가 제한된환경에서개인정보획득의한계 맞춤형광고의어려움 영상정보기반개인정보추정 연구목표 딥러닝기반사용자맞춤형광고솔루션구현 얼굴영상을이용한성별및연령대추정 성별및연령대를통합네트워크로학습하여추정정확도향상

More information

07.045~051(D04_신상욱).fm

07.045~051(D04_신상욱).fm J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,

More information

0914ä¿òÇÕº».PDF

0914ä¿òÇÕº».PDF PART 05 PART 05 PART 05 PART 06 PART 06 Inter Interview Interview Inter Interview Interview Inter Interview Interview Inter

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE 2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

박선영무선충전-내지

박선영무선충전-내지 2013 Wireless Charge and NFC Technology Trend and Market Analysis 05 13 19 29 35 45 55 63 67 06 07 08 09 10 11 14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 36 37 38 39 40

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017)   ISSN (JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Computer Vision & Pattern Recognition Lab. 제 9 장영상인식 Computer Vision & Pattern Recognition Lab. 영상인식 Computer Vision & Pattern Recognition Lab. 2 /26 영상인식 일반적인영상인식은매우어려운문제임 제한된환경, 여러가지가정하에서수행 영상의종류를알경우

More information

12권2호내지합침

12권2호내지합침 14 OPTICAL SCIENCE AND TECHNOLOGY April 2008 15 16 OPTICAL SCIENCE AND TECHNOLOGY April 2008 17 18 OPTICAL SCIENCE AND TECHNOLOGY April 2008 19 20 OPTICAL SCIENCE AND TECHNOLOGY April 2008 21 22 OPTICAL

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

PART 8 12 16 21 25 28

PART 8 12 16 21 25 28 PART 8 12 16 21 25 28 PART 34 38 43 46 51 55 60 64 PART 70 75 79 84 89 94 99 104 PART 110 115 120 124 129 134 139 144 PART 150 155 159 PART 8 1 9 10 11 12 2 13 14 15 16 3 17 18 19 20 21 4 22 23 24 25 5

More information

I

I I II III (C B ) (C L ) (HL) Min c ij x ij f i y i i H j H i H s.t. y i 1, k K, i W k C B C L p (HL) x ij y i, i H, k K i, j W k x ij y i {0,1}, i, j H. K W k k H K i i f i i d ij i j r ij i j c ij r ij

More information

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,

More information

第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대

第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대검찰청 차장검사,대검찰청 검사,검찰연구관,부

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

방송공학회논문지 제18권 제2호

방송공학회논문지 제18권 제2호 방송공학회논문지 제 20권 6호 (2015년 11월) 특집논문 : 2015년 하계학술대회 좌장추천 우수논문 프레넬 회절을 이용한 디지털 홀로그램 암호화 알고리즘 새로운 광적응 효과 모델을 이용한 정교한 영상 화질 측정 민방위 경보 방송에 대한 정보 수용자 인식 연구 UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석 홍보동영상 제작 서비스를

More information

Problem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

<4D6963726F736F667420576F7264202D2032303133303231352DB1E2BCFAB5BFC7E2BAD0BCAE2DBEF3B1BCC0CEBDC42DC3A4BFF8BCAE2E646F6378>

<4D6963726F736F667420576F7264202D2032303133303231352DB1E2BCFAB5BFC7E2BAD0BCAE2DBEF3B1BCC0CEBDC42DC3A4BFF8BCAE2E646F6378> 2013-02-15 얼굴인식 기술 동향 얼굴인식 기술의 개념과 기본적인 배경 지식 에 대해 소개하고, 최근 업계 동향을 살펴봄 목차 1. 개요...2 2. 인식 기술 분류 및 소개...4 3. 얼굴 인식 업계 동향...7 채원석, wschae@etri.re.kr ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실 ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실 1 1.

More information

1. 서 론

1. 서 론 리팩토링을 위한 성능 기반의 무브 메소드 영역 추출 및 분석 연구 (refactoring for performance-based move method region extraction and analysis of research) 권 예 진 이 준 하 박 용 범 단국대학교 전자계산학과 충남 천안시 동남구 단대로 119 kwon6030@dankook.ac.kr

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

19_9_767.hwp

19_9_767.hwp (Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion

More information

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018)   ISSN (JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.642 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Online

More information

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 첨부 168 첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 Ⅰ-1. 설문조사 개요 Ⅰ. 설문분석 결과 병무청 직원들이 생각하는 조직문화, 교육에 대한 인식, 역량 중요도/수행도 조사를 인터넷을 통해 실 시 총 1297명의 응답을 받았음 (95% 신뢰수준에 표본오차는 ±5%). 조사 방법 인터넷 조사 조사 기간 2005년 5월 4일 (목) ~ 5월

More information

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (

( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 ( 보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,

More information

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Feb.; 27(2), 170175. http://dx.doi.org/10.5515/kjkiees.2016.27.2.170 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate

More information

Safe and Humanized Bir t h

Safe and Humanized Bir t h Safe and Humanized Bir t h 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9

More information

ȲÀμº Ãâ·Â

ȲÀμº Ãâ·Â Enhanced Film-Grain-Noise Removal Filter for High Fidelity Video Coding In this paper, we propose a novel technique for film grain noise removal, which can be adopted in high fidelity video coding in order

More information

<32303134B3E220C3DFB0E8C1BEC7D5C7D0BCFAB4EBC8B820B9D720C1A4B1E2C3D1C8B820BEC8B3BBC0E528323031342E31302E323129202832292E687770>

<32303134B3E220C3DFB0E8C1BEC7D5C7D0BCFAB4EBC8B820B9D720C1A4B1E2C3D1C8B820BEC8B3BBC0E528323031342E31302E323129202832292E687770> 초대의 글 존경하는 한국정보통신학회 회원여러분 그리고 귀한 시간을 내시어 이 자리에 참석해 주신 귀빈여러분께 감사의 말씀을 드립니다. 만추의 계절 10월을 맞이하여 진리탐구의 본산인 남서울대학교에서 제 36회 2014년 한국정 보통신학회 추계종합학술대회를 개최하게 되었습니다. 우리 학회는 창립 이래 회원들의 끝 임 없는 노력의 결과로 오늘에 이르렀습니다. 18년이란

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

REP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi

REP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi 1 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Histogram and ROI Extraction using SURF 류동성 Ryu Dong-Sung 부산대학교 그래픽스 연구실 dsryu99@pusan.ac.kr

More information

39호뉴스레터.indd

39호뉴스레터.indd S&T Market Report vol. 39 2016. 2 생체인식 기술 및 시장동향 생체인식 기술 및 시장동향 1. 서론 口 목적 본 보고서는 생체인식(Biometrics)과 관련한 국내 외 시장규모 및 관련 업체 현황에 관한 기본정보를 제공하여 관련 연구를 통한 사업화 전략 수립 시 참고자료로 활용하는데 그 목적을 두고 있음 口 생체인식 기술의 정의 및

More information

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019 4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, 2019 5 (JBE Vol. 24, No. 3, May 2019) https://doi.org/10.5909/jbe.2019.24.3.387 ISSN 2287-9137

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

<372DBCF6C1A42E687770>

<372DBCF6C1A42E687770> 67 [논문] - 공학기술논문집 Journal of Engineering & Technology Vol.21 (October 2011) 눈 폐쇄상태 인지 및 시선 탐지 기반의 운전자 졸음 감지 시스템 여 호 섭*, 임 준 홍** Driver Drowsiness Monitoring System Based on Eye Closure State Identification

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

PowerPoint Presentation

PowerPoint Presentation 기계학습을통한 시계열데이터분석및 금융시장예측응용 울산과학기술원 전기전자컴퓨터공학부최재식 얼굴인식 Facebook 의얼굴인식기 (DeepFace) 가사람과비슷한인식성능을보임 문제 : 사진에서연애인의이름을맞추기 사람의인식율 : 97.5% vs DeepFace 의인식률 : 97.35% (2014 년 3 월 ) 물체인식 ImageNet (http://image-net.org):

More information

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비 2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰

More information

기관별 공동 Template

기관별 공동 Template VR/AR/ 홀로그램과의융복합 그리고산업에서의응용 2017.11.09. 전자부품연구원강훈종 (hoonjongkang@keti.re.kr) Hologram?? Star Wars - 2 - Hologram?? Manchester and London Luton airports Hologram Hatsune Miku concert CNN's human 'hologram'

More information

MVVM 패턴의 이해

MVVM 패턴의 이해 Seo Hero 요약 joshua227.tistory. 2014 년 5 월 13 일 이문서는 WPF 어플리케이션개발에필요한 MVVM 패턴에대한내용을담고있다. 1. Model-View-ViewModel 1.1 기본개념 MVVM 모델은 MVC(Model-View-Contorl) 패턴에서출발했다. MVC 패턴은전체 project 를 model, view 로나누어

More information

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 15, No. 2 pp. 1051-1058, 2014 http://dx.doi.org/10.5762/kais.2014.15.2.1051 멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석 김부강 1, 박호종 2, 박용수 3, 송한정 1*

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

푸른21탄소중립행사내지확정

푸른21탄소중립행사내지확정 Carbon Neutral Events / Carbon Free Events Contents 3 11 31 41 47 51 2 01 Part 1 Part. 01 4 Part 1 5 Part 1 6 Part 1 7 Part 1 8 Part 1 9 02 Part 2 Part. 02 12 Part 2 13 Part 2 14 Part 2 15 Part 2 16 Part

More information

2

2 02 1 1 22 36 38 46 5 1 54 61 65 77 81 2 _ 3 4 _ 5 6 _7 8 _ 9 1 0 _ 11 1 2 _ 13 1 4 _ 15 1 6 _ 17 1 8 _ 19 2 0 _ 21 2 2 www.kats.go.kr www.kats.go.kr _ 23 Scope of TC/223 Societal security International

More information

À±½Â¿í Ãâ·Â

À±½Â¿í Ãâ·Â Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at

More information

(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018)   ISSN (JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.614 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Generative

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

- 2 -

- 2 - 2014 년융 복합기술개발사업 ( 융 복합과제 ) 제안요청서 목차 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - Ω - 18 - - 19 - - 20 - 기계소재 -001-21 - 기계소재 -002-22 - 기계소재

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 2030 년, 나노봇 통해 뇌와 클라우드 상의 제 2 두뇌 연결 * 미래학자 레이 커즈와일은 로봇기술이 기하급수적으로 발전해서 적혈구 정도의 크기가 되면, 이를 체내에 삽입하여 인간의 두뇌와 클라우드 상의 인공지능을 연결함으로써 정 보처리와 학습능력에서 현 인류의 수준을 초월하는 하이브리드 인간의 출현이 가능하다 고 주장 미래학자 레이 커즈와일(Ray

More information

RM2005-9.hwp

RM2005-9.hwp 이슈리포트 3호 e-러닝을 통한 주5일 수업제 지원 방안 2005. 4. 31 ksoon@keris.or.kr 1 - 1 - 2003년 시 기 시 행 일 정 우선 시행학교 26개교 연구학교 136개교 (총 162개교, 전체 학교의 1.5% 해당) 2004년 3월 월1회 우선 시행학교 확대 운영 (총 1,023개교, 전체 10%이상) 2005년 3월 전국 학교

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,. : 565 (Special Paper) 7 4, 0 7 (JBE Vol. 7, No. 4, July 0) http://dx.doi.org/0.5909/jbe.0.7.4.565 a), b), a) Depth Map Denoising Based on the Common Distance Transform Sung-Yeol Kim a), Manbae Kim b),

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

광운소식-68호F

광운소식-68호F 광운 비전 2014 : 동북아 IT 최강 대학교 talk@kwangwoon 신캠퍼스 조성사업 의 비전과 목표 기초과학의 힘이 잉태되는 곳 - 광운대학교 기초과학연구소 enjoy@kwangwoon 나이와 함께 찾아오는 불청객 - 퇴행성 관절염(골관절염) act@kwangwoon 2007년 신년 하례식 김상훈 부총장, 소프트웨어산업인의 날 국무총리 표창 학생복지처

More information

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음

Artificial Intelligence: Assignment 3 Seung-Hoon Na November 30, Sarsa와 Q-learning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 Artificil Intelligence: Assignment 3 Seung-Hoon N November 30, 2017 1 1.1 Srs와 Q-lerning Windy Gridworld Windy gridworld는 (Sutton 교재 연습문제 6.5) 다음 그림과 같이 8 7 Grid world 로, Agent는 up, down, right, left의

More information

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) 3 : 3D (Regular Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.281 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 3D a), a), a), a) 3D Depth Estimation by a

More information

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019)   ISSN 2287- (Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition

More information

2015 경제ㆍ재정수첩

2015 경제ㆍ재정수첩 Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Part 01 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Part 02 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

untitled

untitled Huvitz Digital Microscope HDS-5800 Dimensions unit : mm Huvitz Digital Microscope HDS-5800 HDS-MC HDS-SS50 HDS-TS50 SUPERIORITY Smart Optical Solutions for You! Huvitz Digital Microscope HDS-5800 Contents

More information

0125_ 워크샵 발표자료_완성.key

0125_ 워크샵 발표자료_완성.key WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host

More information

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P 1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.341

More information

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770>

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770> 축 사 - 대구 박람회 개막 - 존경하는 신상철 대구광역시 교육감님, 도승회 경상북도 교육감님, 김달웅 경북대학교 총장님, 장이권 대구교육대학교 총장님, 김영택 대구광역시교육위 원회 의장님, 류규하 대구광역시의회교사위원회 위원장님을 비롯한 내외 귀빈 여러분, 그리고 교육가족 여러분! 제8회 e-러닝 대구 박람회 의 개막을 진심으로 축하드리며, 이 같이 뜻 깊

More information

2 차원단위블록정렬을이용한 내용기반이미지매칭 장철진 O 조환규부산대학교컴퓨터공학과 {jin, Content-based image matching based on 2D alignment of unit block tessellation C

2 차원단위블록정렬을이용한 내용기반이미지매칭 장철진 O 조환규부산대학교컴퓨터공학과 {jin, Content-based image matching based on 2D alignment of unit block tessellation C 2 차원단위블록정렬을이용한 내용기반이미지매칭 장철진 O 조환규부산대학교컴퓨터공학과 {jin, hgcho}@pusan.ac.kr Content-based image matching based on 2D alignment of unit block tessellation Chuljin Jang O Hwan-Gue Cho Dept. of Computer Engineering,

More information

서재초등학교 5학년 학교생활

서재초등학교 5학년 학교생활 서재초등학교 5학년 6반 학교생활 1. 학교는 8시 30분 이전에 등교 합니다. 등교 후 오늘 수업 시간을 확인하고 수업과 관련된 과목을 사 물함에서 꺼내어 책상서랍으로 옮 겨둡니다. 남는 시간동안 독서를 하도록 합니다. 책상서랍을 어지럽히지 않습니다. 색연필이나 색 사인펜을 책상 고리에 걸어두지 않습니다. 2. 8시 30분에서 40분 사이에 수학 10분 공부를

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

±è¼ºÃ¶ Ãâ·Â-1

±è¼ºÃ¶ Ãâ·Â-1 Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Sep.; 26(10), 876 884. http://dx.doi.org/10.5515/kjkiees.2015.26.10.876 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Design

More information

정연덕(126-140)-97.PDF

정연덕(126-140)-97.PDF (Biometrics) (B i o m e t ri c s ) 1).. (Biometric s ) 1. (Biometrics) 2. 3.. 1. 2. 3. 4. 5. 6. ( ). 1. 2. 3. 4.. 1. 2. 3. (Sweat of the Brow ) 4. 5. 6. 7.. 1 . 2002 (Minority Report ) 2050. (Biometrics).

More information