PowerPoint 프레젠테이션
|
|
- 보나 난
- 6 years ago
- Views:
Transcription
1 Computer Vision & Pattern Recognition Lab. 제 9 장영상인식 Computer Vision & Pattern Recognition Lab.
2 영상인식 Computer Vision & Pattern Recognition Lab. 2 /26
3 영상인식 일반적인영상인식은매우어려운문제임 제한된환경, 여러가지가정하에서수행 영상의종류를알경우 : 얼굴, 문자, 지문, 번호판, 배경이단순하다고가정 실내와같이제한된환경일경우 객체의 texture가단순하다고가정 물체의겹침이없다고가정 Computer Vision & Pattern Recognition Lab. 3 /26
4 영상인식의과정 Image Low-level processing Intermediate-level processing high-level processing 인식 Low-level processing: 전처리 (eg: Contrast 개선, 잡음제거 ) Intermediate-level processing: 영상분할, 특징추출 High-level processing: 영상인식 (eg: 얼굴인식, 문자인식 ) 전처리 --> 영상분할 --> 특징추출 --> 인식 Computer Vision & Pattern Recognition Lab. 4 /26
5 [1] 영상분할 (Image Segmentation) 목표 : 영상에존재하는서로다른영역들을구분 ( 예 : 영역별로서로다른번호가할당됨 ) 수행방법 : 이진화 + Connected Component Labeling Computer Vision & Pattern Recognition Lab. 5 /26
6 이진화 (Thresholding) 영상분할을위한이진화 (Thresholding) 물체와배경을분리 Computer Vision & Pattern Recognition Lab. 6 /26
7 최적의 Threshold 값의결정방법 T=165 Computer Vision & Pattern Recognition Lab. 7 /26
8 (1) Global thresholding ( Manual thresholding ) -. 주어진 threshold 값을영상전체에적용 -. 환경의제어가용이한경우에가능 ( 예 : industrial inspection) (2) P-tile thresholding -. 밝기값 0 부터의히스토그램값을더한것이전체화소의 P% 가되는지점을계산 -. Find T such that NxNy * P = 100 T i 0 H(i) -. 전체영상에서물체가차지하는면적이일정한경우 ( 예 : 지문인식 ) Computer Vision & Pattern Recognition Lab. 8 /26
9 (3) Otsu ( Minimum within-group variance ) 가정 : - 물체와배경이 Bimodal 히스토그램 - 하나의물체는밝기값이거의같음 ( 즉, 밝기값의 variance가작음. 무늬가없음 ) t Computer Vision & Pattern Recognition Lab. 9 /26
10 Otsu 방법의알고리즘 (1) 영상의히스토그램 H(i) 를계산함. (2) t = 0 부터 255 까지모든 t 값에대해서 (2.1) 왼쪽과오른쪽의평균을각각계산함. 1 (t) = t i H(i) i =0 t H(i) i =0 2 (t) = I i H(i) i = t+1 I H(i) i =t+1 t (2.2) 왼쪽분산값과오른쪽분산값의합을계산함. 2 (t) = t [ i 1 (t) ] 2 H(i) i =0 t H(i) i =0 (3) 2 (t) 값이최소가되는 t 값을구함. + I [ i 2 (t) ] 2 H(i) i=t+1 I H(i) i =t+1 Computer Vision & Pattern Recognition Lab. 10 /26
11 조명에관계없이배경과물체를정확히분리 Computer Vision & Pattern Recognition Lab. 11 /26
12 Connected component labeling 목표 : 주어진이진영상에대해서, 연결된영역들에서로다른숫자를할당함. ( 연결성의판별 : 4-connected, 8-connected) Algorithm (4-connected 의경우 ) 1) Scan the image left to right, top to bottom 2) For each non-zero pixel, look at top and left If they are zero, assign a new label to the current pixel If one of them is non-zero, assign that label If both are non-zero, assign any label and write down the equivalence 3) Relabel using equivalence. Computer Vision & Pattern Recognition Lab. 12 /26
13 Labeling 의과정 = Computer Vision & Pattern Recognition Lab. 13 /26
14 Segmentation 의결과 Computer Vision & Pattern Recognition Lab. 14 /26
15 [2] 특징추출 (Feature Extraction) 목표 : 분할된각영역에대한특징값들을정량적으로추출 결과 : 각영역별로특징값이벡터의형태로표현됨 Issues: 어떠한특징값 ( 면적, 둘레, 평균밝기, 등 ) 을사용할것인가? 특징값의 T, R, S invariance Computer Vision & Pattern Recognition Lab. 15 /26
16 (1) Boundary-based features -. Boundary length = Number of pixels at bndry -. Diameter = Max [ D(P i, P j ) ], Pi, Pj : boundary pixels -. Major axis = line segment joining 2 pts farthest from each other -. Minor axis = perpendicular to major axis -. Eccentricity = Major axis 길이 / Minor axis 길이 Computer Vision & Pattern Recognition Lab. 16 /26
17 (2) Region-based features -. Area = f(x,y), f(x,y) is binary image -. Compactness = Perimeter 2 / Area (T, R, S, invariant) -. Mean gray level -. Min. gray level -. Max. gray level -. Number of pixels above mean -. Variance of gray level -. Elongation Computer Vision & Pattern Recognition Lab. 17 /26
18 (3) Moment-based features Moment of order (p+g): m pq = f(x,y) x p y q Central moment: pq = f(x,y) (x-x) p (y-y) q, x = m 10 / m 00, y = m 01 / m 00 * Central moment is translation invariant! -. Area = m Centroid : x = m 10 / m 00, y = m 01 / m Orientation : = tan -1 [ 2 11 / ( ) ] 1 2 Computer Vision & Pattern Recognition Lab. 18 /26
19 -. Bounding rectangle l = max min, = x cos + y sin ( : orientation) w = max min, = -x sin + y cos boundary(x,y) -. Best fit ellipse 1/4 1/8 1/4 1/8 I 3 max I min a = 4, b= I max = [ ( x- x ) cos + ( y- y ) sin ] 2 I min = [ - ( x- x ) sin + ( y- y ) cos ] 2 4 I 3 min I max ( ) Eccentricity = m 00 Computer Vision & Pattern Recognition Lab. 19 /26
20 Normalized Central moment : pq = pq / r 00, r = (p+q)/2 +1, p+q = 2,3,... * Normalized central moment is Translation, Scaling invariant! Invariant moments : Moments which are invariant to T, R, S ==> Useful features for object recognition (1) 1 = (2) 2 = ( ) (3) 3 = ( ) 2 + ( ) 2 (4) 4 = ( ) 2 + ( ) 2 (5) 5 = ( ) ( )[ ( ) 2-3( ) 2 ] + ( ) ( )[3( ) 2 - ( ) 2 ] (6) 6 = ( )[( ) 2 - ( ) 2 ] ( ) ( ) (7) 7 = ( ) ( )[( ) 2-3( ) 2 ] + ( ) ( )[( ) 2 - ( ) 2 ] Computer Vision & Pattern Recognition Lab. 20 /26
21 [3] 인식 (Recognition) 목표 : 영역별특징값벡터로부터각영역을인식 1. Pattern classification ( 분류 ): Assignment of objects into one of several pre-specified categories(classes, 예 : 볼트, 너트, 못, 망치 ) 2. Scene understanding ( 이해 ): classification + analysis of relations between objects ==> Solutions are highly problem dependent Computer Vision & Pattern Recognition Lab. 21 /26
22 인식의과정 Computers should learn (imitate) from human!!! Classification 문제로국한한컴퓨터의인식방법 Training 과정 + Classification 과정 (1) Training - 반복적인학습에의한유아의인지과정을모방 - 주어지는샘플들의특징정보를축적, 기억 - 축적된 training 샘플들의정보로부터 Classifier 를설계 (2) Classification - 반복적인학습에의해인지능력이확보된후 - 설계된 Classifier 를이용하여 unknown input 을분류 Computer Vision & Pattern Recognition Lab. 22 /26
23 인식문제의예 - 4 종류의물체가존재 : w 1, w 2, w 3, w 4 - 분류를위하여 2 가지의정보를추출 X 1 : average gray level X 2 : boundary length - 2 차원특징벡터 X = [x 1, x 2 ] X X 1 Computer Vision & Pattern Recognition Lab. 23 /26
24 인식 (Classification) 문제에서해결해야할 Issue 들 : -. What kind of features? ==> Problem dependent ( 예 : 사과와배는색상으로는구별가능하지만면적으로는구별하기어려움.) -. How to partition the feature space into regions (one region for each class) to minimize classification error Computer Vision & Pattern Recognition Lab. 24 /26
25 Classification 알고리즘 [1] Minimum distance classifier (1) Classifier design (Training) 각각의 class j 에대해서, 그 class 에속한 training sample 들의특징벡터 (X) 의평균을계산 m j = X / N j j=1,...,m m j : 평균벡터 x j N j : class j 에속한샘플의수 j : j-th class M : class 의수 (2) Classification 미지의 sample X에대해서, 1) 각 Class 평균까지의거리를계산 d j (X) = X - m j j=1,..,m 2) d i (X) 가최소인 class i 로분류 Computer Vision & Pattern Recognition Lab. 25 /26
26 [2] K-NN (K Nearest Neighbor) classifier 1. 미지의샘플과모든 training 샘플과의특징벡터의거리를계산 2. 가장가까운 K 개샘플들의 label 중에서다수의 label 로분류 Example: Computer Vision & Pattern Recognition Lab. 26 /26
27 Clustering ( 군집화 ) 패턴인식 ( 교보문고 ), 전북대학교오일석교수님 Computer Vision & Pattern Recognition Lab. 27 /26
28 Clustering ( 군집화 ) 군집화의특성 주관성 : 군집화결과의품질은응용이처한상황과요구사항에따라다름 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
29 순차알고리즘 특성 군집개수를찾아준다. ( 대신임계값을설정해주어야한다.) 순서에민감하다. 빠르다 ( 선형시간 ). 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
30 k-means 알고리즘 특성 가장널리쓰인다. ( 직관적이해. 구현간편 ) 군집개수를설정해주어야한다. 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
31 k-means 알고리즘 7 개샘플을 k=3 개의군집으로만드는예제 초기화에의해 ( 그림 (a)), 라인 5 에의해 ( 그림 (b)), 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
32 k-means 알고리즘 두번째루프를실행하면 ( 그림 (c)), 세번째루프는그이전과결과가같다. 따라서멈춘다. 결국출력은 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
33 k-means 알고리즘 항상지역최적점으로수렴한다. ( 전역최적점보장못함 ) 초기군집중심에민감 빠르다. outlier 에민감하다. ( 진파랑은 k-medoids, 연파랑은 k-means) 패턴인식 ( 교보문고 ), 전북대학교오일석교수님
Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationLIDAR와 영상 Data Fusion에 의한 건물 자동추출
i ii iii iv v vi vii 1 2 3 4 Image Processing Image Pyramid Edge Detection Epipolar Image Image Matching LIDAR + Photo Cross correlation Least Squares Epipolar Line Matching Low Level High Level Space
More information(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228
(JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More information(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re
EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern
More information소프트웨어개발방법론
사용사례 (Use Case) Objectives 2 소개? (story) vs. 3 UC 와 UP 산출물과의관계 Sample UP Artifact Relationships Domain Model Business Modeling date... Sale 1 1..* Sales... LineItem... quantity Use-Case Model objects,
More information歯이칠우(01-02).PDF
1999. 7. 15. 1.. 3. 4. 5. 6. Image Representation 7. Frame Grabber 8. Image Format 9. Look up Table Color 10. Image Class 11. Perspective Transform 1. Stereo Camera Model 13. Fourier Transform 14. Convolution
More informationMicrosoft PowerPoint - 7-Work and Energy.ppt
Chapter 7. Work and Energy 일과운동에너지 One of the most important concepts in physics Alternative approach to mechanics Many applications beyond mechanics Thermodynamics (movement of heat) Quantum mechanics...
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More informationHigh Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More information2005CG01.PDF
Computer Graphics # 1 Contents CG Design CG Programming 2005-03-10 Computer Graphics 2 CG science, engineering, medicine, business, industry, government, art, entertainment, advertising, education and
More informationuntitled
전방향카메라와자율이동로봇 2006. 12. 7. 특허청전기전자심사본부유비쿼터스심사팀 장기정 전방향카메라와자율이동로봇 1 Omnidirectional Cameras 전방향카메라와자율이동로봇 2 With Fisheye Lens 전방향카메라와자율이동로봇 3 With Multiple Cameras 전방향카메라와자율이동로봇 4 With Mirrors 전방향카메라와자율이동로봇
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More information,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3
Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More information02(848-853) SAV12-19.hwp
848 정보과학회논문지 : 소프트웨어 및 응용 제 39 권 제 11 호(2012.11) 3차원 객체인식을 위한 보완적 특징점 기반 기술자 (Complementary Feature-point-based Descriptors for 3D Object Recognition) 장영균 김 주 환 문 승 건 (Youngkyoon Jang) (Ju-Whan Kim) (Seung
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More informationch3.hwp
미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on
Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective
More informationhwp
100% Concentration rate (%) 95% 90% 85% 80% 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Time (min) Control box of RS485 Driving part Control trigger Control box of driving car Diaphragm Lens of camera Illumination
More informationuntitled
CLEBO PM-10S / PM-10HT Megapixel Speed Dome Camera 2/39 3/39 4/39 5/39 6/39 7/39 8/39 ON ON 1 2 3 4 5 6 7 8 9/39 ON ON 1 2 3 4 10/39 ON ON 1 2 3 4 11/39 12/39 13/39 14/39 15/39 Meg gapixel Speed Dome Camera
More informationREP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi
1 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Histogram and ROI Extraction using SURF 류동성 Ryu Dong-Sung 부산대학교 그래픽스 연구실 dsryu99@pusan.ac.kr
More informationsna-node-ties
Node Centrality in Social Networks Nov. 2015 Youn-Hee Han http://link.koreatech.ac.kr Importance of Nodes ² Question: which nodes are important among a large number of connected nodes? Centrality analysis
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More information(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN
(Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional
More informationArtificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제
Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf
More informationLine (A) å j a k= i k #define max(a, b) (((a) >= (b))? (a) : (b)) long MaxSubseqSum0(int A[], unsigned Left, unsigned Right) { int Center, i; long Max
알고리즘설계와분석 (CSE3081-2반 ) 중간고사 (2013년 10월24일 ( 목 ) 오전 10시30분 ) 담당교수 : 서강대학교컴퓨터공학과임인성수강학년 : 2학년문제 : 총 8쪽 12문제 ========================================= < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고반드시답을쓰는칸에답안지의어느쪽의뒷면에답을기술하였는지명시할것.
More informationVertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket
Vertical Probe Card for Wafer Test Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket Life Time: 500000
More information3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)
3 : 3D (Regular Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.281 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 3D a), a), a), a) 3D Depth Estimation by a
More information2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2
(Special Paper) 232, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.235 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 3 a), a), a) Three-Dimensional Rotation Angle Preprocessing
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More information비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2
비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,
More information<32392D342D313020C0FCB0C7BFED2CC0CCC0B1C8F12E687770>
Journal of the Society of Korea Industrial and Systems Engineering Vol 9 No 4 pp75 8 December 006 유전자 알고리즘을 이용한 시간제약 차량경로문제 * ** * ** 1 Vehicle Routing Problems with Time Window Constraints by Using Genetic
More informationchap 5: Trees
5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information融合先验信息到三维重建 组会报 告[2]
[1] Crandall D, Owens A, Snavely N, et al. "Discrete-continuous optimization for large-scale structure from motion." (CVPR), 2011 [2] Crandall D, Owens A, Snavely N, et al. SfM with MRFs: Discrete-Continuous
More information(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287
(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, 2019 1 (JBE Vol. 24, No. 1, January 2019) https://doi.org/10.5909/jbe.2019.24.1.142 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), b), a)
More information09구자용(489~500)
The Study on the Grid Size Regarding Spatial Interpolation for Local Climate Maps* Cha Yong Ku** Young Ho Shin*** Jae-Won Lee**** Hee-Soo Kim*****.,...,,,, Abstract : Recent global warming and abnormal
More informationMicrosoft PowerPoint - bioinfo_09lect12_shpark_microarray.ppt [호환 모드]
생명정보학의이해 (Introduction to Bioinformatics) Chapter 5. DNA Microarray 데이터분석 박성희 (shpark@ssu.ac.kr) ac kr) 목차 DNA Microarray 실험의원리 Microarray 데이터전처리 이미지처리 (image preprocessing) Microarray 데이터정규화 (Normalization)
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More information<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>
2012학년도 2학기 중등과정 3학년 국어 수업 계획서 담당교사 - 봄봄 현영미 / 시온 송명근 1. 학습 목적 말씀으로 천지를 창조하신 하나님이 당신의 형상대로 지음 받은 우리에게 언어를 주셨고, 그 말씀의 능 력이 우리의 언어생활에도 나타남을 깨닫고, 그 능력을 기억하여 표현하고 이해함으로 아름다운 언어생활 을 누릴 뿐만 아니라 언어문화 창조에 이바지함으로써
More informationReinforcement Learning & AlphaGo
Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationMicrosoft PowerPoint - Java7.pptx
HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)
More information강의지침서 작성 양식
정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,
More information11이정민
Co-Evolution between media and contents in the Ubiquitous era - A Study of the Format of Mind-Contents based on Won-Buddhism - Lee, Jung-min Korean National University of Arts : Keyword : Ubiquitous, Convergence,
More information216 동북아역사논총 41호 인과 경계공간은 설 자리를 잃고 배제되고 말았다. 본고에서는 근세 대마도에 대한 한국과 일본의 인식을 주로 영토와 경계인 식을 중심으로 고찰하고자 한다. 이 시기 대마도에 대한 한일 양국의 인식을 살펴볼 때는 근대 국민국가적 관점에서 탈피할
전근대시기 한국과 일본의 대마도 인식 215 전근대시기 한국과 일본의 대마도 인식 하우봉 전북대학교 사학과 교수 Ⅰ. 머리말 브루스 배튼(Bruce Batten)의 정의에 따르면 전근대의 국경에는 국경선으로 이루어진 boundary가 있고, 공간으로 이루어진 frontier란 개념이 있다. 전자 는 구심적이며 내와 외를 격리시키는 기능을 지니고, 후자는 원심적이며
More informationLecture12_Bayesian_Decision_Thoery
Bayesian Decision Theory Jeonghun Yoon Terms Random variable Bayes rule Classification Decision Theory Bayes classifier Conditional independence Naive Bayes Classifier Laplacian smoothing MLE / Likehood
More informationMicrosoft PowerPoint - D03_SpatialDomainEnhance_note.ppt [호환 모드]
Digital Image Processing 3. Image Enhancement in the Spatial Domain Computer Engineering, Sejong University Spatial domain processing 영상의화소값에대해서직접연산을수행 g(x,y) = T[(x,y)] (x,y) : 입력영상 g(x,y) : 출력영상 T[.]
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information00.1
HOSPA Chipboard screws with countersunk head Material: Drive: Cross recess PZ galvanized yellow chromatized nickel plated burnished Partly threaded, galvanized or yellow chromatized dk k L d m Head Ø dk
More information<31372DB9DABAB4C8A32E687770>
김경환 박병호 충북대학교 도시공학과 (2010. 5. 27. 접수 / 2011. 11. 23. 채택) Developing the Traffic Severity by Type Kyung-Hwan Kim Byung Ho Park Department of Urban Engineering, Chungbuk National University (Received May
More informationMVVM 패턴의 이해
Seo Hero 요약 joshua227.tistory. 2014 년 5 월 13 일 이문서는 WPF 어플리케이션개발에필요한 MVVM 패턴에대한내용을담고있다. 1. Model-View-ViewModel 1.1 기본개념 MVVM 모델은 MVC(Model-View-Contorl) 패턴에서출발했다. MVC 패턴은전체 project 를 model, view 로나누어
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More informationTEL:02)861-1175, FAX:02)861-1176 , REAL-TIME,, ( ) CUSTOMER. CUSTOMER REAL TIME CUSTOMER D/B RF HANDY TEMINAL RF, RF (AP-3020) : LAN-S (N-1000) : LAN (TCP/IP) RF (PPT-2740) : RF (,RF ) : (CL-201)
More informationPage 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,
Page 1 of 5 Learn Korean Ep. 4: To be and To exist Of course to be and to exist are different verbs, but they re often confused by beginning students when learning Korean. In English we sometimes use the
More information1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No
1: 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, 2019 1 (JBE Vol. 24, No. 1, January 2019) https://doi.org/10.5909/jbe.2019.24.1.3
More information자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr
Original Article pissn 1738-2637 J Korean Soc Radiol 2012;67(2):129-134 The Survey of Magnetic Resonance Imaging Quality according to in Korea 1 자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 1 Hyun-Hae
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although
More information확률 및 분포
확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import
More information182 동북아역사논총 42호 금융정책이 조선에 어떤 영향을 미쳤는지를 살펴보고자 한다. 일제 대외금융 정책의 기본원칙은 각 식민지와 점령지마다 별도의 발권은행을 수립하여 일본 은행권이 아닌 각 지역 통화를 발행케 한 점에 있다. 이들 통화는 일본은행권 과 等 價 로 연
越 境 하는 화폐, 분열되는 제국 - 滿 洲 國 幣 의 조선 유입 실태를 중심으로 181 越 境 하는 화폐, 분열되는 제국 - 滿 洲 國 幣 의 조선 유입 실태를 중심으로 - 조명근 고려대학교 BK21+ 한국사학 미래인재 양성사업단 연구교수 Ⅰ. 머리말 근대 국민국가는 대내적으로는 특정하게 구획된 영토에 대한 배타적 지배와 대외적 자주성을 본질로 하는데, 그
More informationPowerPoint 프레젠테이션
Chapter Radar Cross Section ( R C S ) 엄효준교수 한국과학기술원 Contents.1. RCS Definition.. RCS Prediction Methods.3. RCS Dependency on Aspect Angle and Frequency.4. RCS Dependency on Polarization.5. RCS of Simple
More information슬라이드 제목 없음
2006-09-27 경북대학교컴퓨터공학과 1 제 5 장서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 슈퍼넷팅 (Supernetting) 2006-09-27 경북대학교컴퓨터공학과 2 서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 하나의네트워크를여러개의서브넷 (subnet) 으로분할 슈퍼넷팅 (supernetting) 여러개의서브넷주소를결합 The idea
More information19_9_767.hwp
(Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion
More informationMicrosoft PowerPoint - 알고리즘_5주차_1차시.pptx
Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1
More information<32382DC3BBB0A2C0E5BED6C0DA2E687770>
논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학
More information2 차원단위블록정렬을이용한 내용기반이미지매칭 장철진 O 조환규부산대학교컴퓨터공학과 {jin, Content-based image matching based on 2D alignment of unit block tessellation C
2 차원단위블록정렬을이용한 내용기반이미지매칭 장철진 O 조환규부산대학교컴퓨터공학과 {jin, hgcho}@pusan.ac.kr Content-based image matching based on 2D alignment of unit block tessellation Chuljin Jang O Hwan-Gue Cho Dept. of Computer Engineering,
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN
(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time
More informationhttp://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between
More information<3136C1FD31C8A320C5EBC7D52E687770>
고속도로건설에 따른 지역간 접근성 변화분석 A study on the impact of new highway construction on regional accessibility The purpose of this is to analyse the interregional accessibility changes due to highway construction.
More information데이터 시각화
데이터시각화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 1 / 22 학습내용 matplotlib 막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 데이터시각화 2 / 22 matplotlib I 간단한막대그래프, 선그래프, 산점도등을그릴때유용 http://matplotlib.org 에서설치방법참고윈도우의경우명령프롬프트를관리자권한으로실행한후아래의코드실행
More informationPage 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh
Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.
More information232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특
한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province
More informationLet G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ
알고리즘설계와분석 (CSE3081(2 반 )) 기말고사 (2016년 12월15일 ( 목 ) 오전 9시40분 ~) 담당교수 : 서강대학교컴퓨터공학과임인성 < 주의 > 답안지에답을쓴후제출할것. 만약공간이부족하면답안지의뒷면을이용하고, 반드시답을쓰는칸에어느쪽의뒷면에답을기술하였는지명시할것. 연습지는수거하지않음. function MakeSet(x) { x.parent
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More informationez-shv manual
ez-shv+ SDI to HDMI Converter with Display and Scaler Operation manual REVISION NUMBER: 1.0.0 DISTRIBUTION DATE: NOVEMBER. 2018 저작권 알림 Copyright 2006~2018 LUMANTEK Co., Ltd. All Rights Reserved 루먼텍 사에서
More information大学4年生の正社員内定要因に関する実証分析
190 2016 JEL Classification Number J24, I21, J20 Key Words JILPT 2011 1 190 Empirical Evidence on the Determinants of Success in Full-Time Job-Search for Japanese University Students By Hiroko ARAKI and
More informationStructure and Interpretation of Computer Programs: Assignment 3 Seung-Hoon Na October 4, George (아래 3개의 문제에 대한 구현이 모두 포함된 george.rkt파일을 제출하시오.
Structure and Interpretation of Computer Programs: Assignment 3 Seung-Hoon Na October 4, 2018 1 George (아래 3개의 문제에 대한 구현이 모두 포함된 george.rkt파일을 제출하시오. 실행후 Problem 1.3에 대한 Display결과가 나와야 함) George 그림은 다음과
More information<3135C8A3B3EDB9AE303333312DBCF6C1A42E687770>
기업파티 공간연출 분석에 관한 연구 -국내 기업파티 사례 중심으로- A Study on the Analysis of Space Display for Company Party -Focusing on the parties of domestic companies- 백승범 / 100-스타일 대표 Paik Seung beom / 100-style President 김주연
More informationJournal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways
Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.65-89 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.65 * Suggestions of Ways to Improve Teaching Practicum Based on the Experiences
More informationKCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion
KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion
More informationuntitled
www.hyundaielevator.co.kr 2014 vol.239 07+08 BIFC(Busan International Finance Center) Korea[600mpm] www.hyundaielevator.co.kr 2014 vol.239 07 + 08 People Harmony Inside Space Ele-Cop (BIFC)[600mpm] 04-05
More information산선생의 집입니다. 환영해요
Biped Walking Robot Biped Walking Robot Simulation Program Down(Visual Studio 6.0 ) ). Version.,. Biped Walking Robot - Project Degree of Freedom : 12(,,, 12) :,, : Link. Kinematics. 1. Z (~ Diablo Set
More information국립국어원 20010-00-00 발간등록번호 00-000000-000000-00 국어정책 통계 조사 및 통계 연보 작성 연구책임자 이순영 제 출 문 국립국어원장 귀하 국어정책 통계 조사 및 통계 연보 작성 에 관하여 귀 원과 체결한 연 구 용역 계약에 의하여 연구 보고서를 작성하여 제출합니다. 2010년 12월 2일 연구책임자: 이순영(고려대학교 국어교육과)
More information영어-중2-천재김-07과-어순-B.hwp
Think Twice, Think Green 1 도와드릴까요? Listen and Speak 1 (I / you / may / help) 130,131 15 이 빨간 것은 어때요? (this / how / red / about / one) 16 오, 저는 그것이 좋아요. (I / it / oh / like) 2 저는 야구 모자를 찾고 있는데요. (a / looking
More informationPowerPoint 프레젠테이션
CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.
More information슬라이드 1
CJ 2007 CONTENTS 2006 CJ IR Presentation Overview 4 Non-performing Asset Company Profile Vision & Mission 4 4 - & 4-4 - & 4 - - - - ROE / EPS - - DreamWorks Animation Net Asset Value (NAV) Disclaimer IR
More information음악의 구성 형식에 따라 추출된 대표 선율을 이용한 내용 기반 음악 검색 시스템
악구 동기(1동기) 동기(2동기) 악 절 MIC Hummed Queries Digital Audio MIDI Songs Melody Database Pitch Tracker Melodic Contour Query Engine Ranked List of Matching Melodies 사용자 음악 MIDI 화일 특징 정보 추출 박자, 높이,
More information