<4D F736F F F696E74202D203034BECBB0EDB8AEC1F228BECBC6C4B0ED20BECBB0EDB8AEC1F220C0CCBEDFB1E2292E >
|
|
- 일섭 모
- 6 years ago
- Views:
Transcription
1 이산수학 Discrete Mathematics 알파고알고리즘이야기 인천대학교컴퓨터공학과공학시인이숙이철호교수 모바일컴퓨팅연구실 호
2 알파고에대하여 알파고의 HW 사양 최종버전 ( 싱글 ) 40개의탐색쓰레드 48개 CPU 8개 GPU를사용 분산구현버전 40개의탐색쓰레드 1202개의 CPU 176개의 GPU를사용 2
3 AlphaGo 와상용바둑프로그램성능비교 ELO rating??? 3
4 상용바둑게임프로그램비교 명칭 Crazy Stone Zen Pachi Fuego 개발자대표 Coulom R ( 프랑스 ) 요지오지마 ( 일본 ) Baudis P ( 체코 ) Baudis P ( 캐나다 ) 출시년도 최신버전 MCTS + Pattern Learning (Bradly-Terry 모델적용 ) 사용알고리즘 전적 수 준 2007, 2008 UEC 컵우승 2013 년제 1 회전성전에서이시다 9 단에게 4 점접바둑승리 MCTS 2009, 2011 컴퓨터올림피아드우승, 2012년다케미야아사키 9단에게 4점접바둑승리 수정 MCTS + UCT + RAVE ( 오픈소스 ) 2010 SVN 1989 MCTS + UCT ( 오픈소스 ) GnuGo GNU-FSF MCTS(3.8 버전 ) Bouzy s 5/21(2.6 버전 ) ( 오픈소스 ) 2011 년인간 vs 컴퓨터바둑대결 ( 파리 ) 에서주준훈 ( 중국 ) 9 단 7 점접바둑승리 2009 년프로그램최초로 9x9 바둑에서주준훈 ( 중국 ) 9 단프로에게이김 6d 6d 2d 1d 5k 4
5 ELO rating??? 참고 : 실제실력으로순위를정하자 ' 라는취지에부합되는시스템 전적누계방식 ' 승이든패든많은게임을해서전적을많이쌓으면순위가올라가는 ' 방식 각플레이어를 A, B라고할때, 그에대응되는승률 E R 은현재플레이어의레이팅점수 5
6 ELO rating??? 참고 : R은현재플레이어의레이팅점수 레이팅점수 각플레이어의 ' 실력 ' 을나타낸다고생각하면됨 처음시작하는사람의수준은임의의한숫자로나타냄. 이를테면 '1500' 만약 A플레이어가 B플레이어보다레이팅 400점이높다면, EA는약 , EB는약 A플레이어가이길확률이약 90%, B플레이어가이길확률이약 10% 두승률을합치면 1, 즉 100% 6
7 게임트리탐색알고리즘 게임에서장기, 바둑과같이두플레이어가번가아가면서한번씩게임을하는방식 특정게임상태에서다음수를예측하기위해서는수읽기를통해가장승리할확률이높은곳을결정하는알고리즘. 이과정이트리의탐색이고, 이론적으로는현재상태에서가능한모든결과를미리알경우가장승률이높은수를선택하는방법 알파고의인공지능바둑프로그램은 의경우의수를모두탐색하지않고, 제한된시간안에가장승리할가능성이높은경로를탐색. 탐색의전략이인공지능바둑프로그램의성능을좌우함 7
8 게임트리의탐색알고리즘 트리탐색기법 ( 트리순회 : Tree traversal) 은트리구조에서각각의노드를한번씩, 체계적인방법으로방문하는과정. 트리탐색기법에는탐색순서에따라전 중 후위및레벨순서순회기법이있음. 이중전위순회 (preorder) 는깊이우선의탐색 (depth-first search: DFS) 이라고도하며, MinMax 알고리즘의탐색방법임. < 탐색순서 > 1. 루트노드에서시작 2. 왼쪽자식노드를방문 - 왼쪽서브트리의전위순회 3. 오른쪽자식노드를방문 - 오른쪽서브트리의전위순회 깊이우선탐색 ( 전위순회 ) 의과정 < 탐색노드의순서 >
9 바둑에서의탐색알고리즘 바둑 (19 X 19) 보다탐색정도가낮은체스 (8 x 8) 의경우완전한게임트리에는약 1040 개의노드가존재 ( 약 가지의경우의수 ) 효율적인탐색을위해휴리스틱 (Heuristic) 기법깊이또는너비우선탐색기법이사용. 바둑과같은복잡한게임에서는충분한도움이되지않음. 바둑은게임중에서도극단적으로계산량이많음. 가장어려운문제로알려져있음. ( 약 가지의경우의수 ) 9
10 몬테카를로방법 (Monte Carlo method) 난수를이용하여함수의값을확률적으로계산하는알고리즘. 수학이나물리학등에자주사용. 계산하려는값이닫힌형식으로표현되지않거나복잡한경우에근사적으로계산할때사용. 모나코의유명한도박의도시몬테카를로의이름에서명명. 10
11 몬테카를로알고리즘 출처 : 원주율계산알고리즘 에서점를표집. 표집한점의중심이에있고, 반지름이 1인원에속하는지계산. 원의정의에따라와 1을비교함으로써계산. 위의두과정을충분히반복하여, 원에속한점들의개수를계산. 표집영역과원의공통영역은의넓이를가지며, 전체점갯수를원에속한점갯수로나눈비율은이값을근사화 11
12 몬테카를로트리탐색알고리즘 MCTS(Monte Calro Tree Search) 바둑에서가장널리사용되는인공지능알고리즘 MCTS는최소-최대알고리즘의성능을개선한것 모든경로를탐색하는것이불가능할때효율적 12
13 MCTS 의 4 단계과정 1 선택현재바둑판상태에서특정경로로수읽기를진행 2 확장일정수이상수읽기가진행되면그지점에서한단계더착수지점을예측 ( 게임트리의확장 ) 3 시뮬레이션 2 에서선택한노드에서바둑이종료될때까지무작위 (random) 방법으로진행. 속도가빠르기때문에여러번수행할수있으나착수의적정성은떨어짐 4 역전파 3 의결과를종합하여확장한노드의가치 (2 에서한단계더착수한것의승산 ) 를역전파하여해당경로의승산가능성을갱신 13
14 MCTS 의핵심요소 정책트리의폭을제한하는역할 MCTS 의두번째단계인확장에서주로사용특정시점에서가능한모든수중가장승률이높은것을예측 가치트리의깊이를제한하는역할가치는현재대국상황의승산을나타낸것승산이정확할수록많은수 ( 더깊은노드 ) 를볼필요가없음 스스로대국하는학습기법을통해정책과가치의성능을향상시킴 14
15 15
16 AlphaGo 의차별성 딥러닝 (Deep Learning) 딥러닝을활용하여전문바둑기사들의패턴을학습함. 바둑기보를 19x19 픽셀을갖는이미지로입력받아전문바둑기사의다음착수를학습하는과정. * 바둑입문자가기보를공부하여바둑기사들의패턴을습득하는것과유사함. *AlphaGo 개발자인데이비드실버는 AlphaGo는 16만개의기보를 5주만에학습했다 라고밝힘. AlphaGo 는딥러닝기법중특히이미지처리에강한컨볼루션신경망을기반으로학습하기때문에국지적인패턴인식에도강점을가짐 * 바둑에서지역적인대국이전체적인형세판단에매우중요한역할을함 바둑기사의착수를학습한것은정책네트워크임 국지적인패턴인식을통한승산판단은가치네트워크로구현 정책과가치네트워크는 MCTS 에서게임트리를탐색할때적용됨 16
17 AlphaGo 의정책과가치네트워크 정책네트워크 (Policy Network) 정책계산을위한딥러닝신경망 - 정책네트워크에서사용된딥러닝기법은컨볼루션신경망 (Convolution Neural Network, CNN) 으로 19x19 바둑판상태를입력하여바둑판모든자리의다음수선택가능성확률분포를출력. * 컨볼루션신경망은페이스북의얼굴인식기술인 DeepFace 에적용된기술로입력이미지를작은구역으로나누어부분적인특징을인식하고, 이것을결합하여전체를인식하는특징을가짐. - 바둑에서는국지적인패턴과이를바탕으로전반적인형세를파악하는것이중요하므로컨볼루션신경망을활용하는것이적절한선택 17
18 정책네트워크학습 - 지도학습 (supervised learning) 프로바둑기사들의착수전략학습 *KGS Go Server 프로 6단에서 9단사이의실제대국 16만개기보로부터 3000만가지바둑판상태를추출하여데이터로사용함 * 이중약 2900만개를학습에이용하고, 나머지 100만가지바둑판상태를시험에이용 ( 정확도 57%). 이것은사람이다음수를두는경향을모델링한것 *50개의 GPU를사용하여학습 ( 기간 : 3주, 3억4천번의학습과정 ) - 강화학습 (reinforcement learning) 스스로경기하여지도학습을강화함 * 지도학습의결과로구해진정책네트워크는사람의착수선호도를표현하지만이정책이반드시승리로가는최적의선택이라고볼수없음 * 이것을보완하기위해지도학습으로구현된정책네트워크와자체대결 (self-play) 을통해결과적으로승리하는선택을 강화 학습함약 128번의자체대결을수행 * 이로부터도출된경기결과 (reward) 를바탕으로이기는방향으로가도록네트워크의가중치를강화 ( 개선 ). 강화학습후의정책네트워크로도기존바둑프로그램인 Pachi와대결하여 85% 의승률 *50개의 GPU를사용하여학습 ( 기간 : 1일 ) 18
19 가치네트워크 (Value Network) 바둑의전체적인형세를파악 - AlphaGo에서는가치 (value) 를계산하기위해딥러닝을이용한가치네트워크 (value network) 사용 * 기존프로그램의가치함수는비교적간단한선형결합으로표현인공신경망을활용하여더정확한값을기대할수있음 - 인공신경망의입력층과은닉층구조는정책네트워크와유사한컨볼루션신경망이지만출력층은현재의가치 ( 형세 ) 를표현하는하나의값 (scalar) 이나오는구조 - 특정게임상태에서의승률 (outcome) 을추정 * 강화학습의자체대결에서생성된 3천만개의바둑상태로부터가치네트워크를학습함 * 게임에서이길경우의승률을 1이라고볼때, 가치네트워크의오차는약 수준 ( 강화학습의자체대결로학습된신경망을시험 (test) 한오차 ) *50개의 GPU를사용하여학습 ( 기간 : 1주 ) 19
20 AlphaGo 의컨볼루션신경망 컨볼루션신경망개요 컨볼루션신경망은이미지나비디오에서객체의분류에특화된방법 이미지의객체분류는전통적인인공신경망인다층퍼셉트론으로도충분히가능했으나, 노드간링크가모두연결되어있는구조 (fully-connected) 가갖는한계때문에그대안으로컨볼루션신경망이부상함 이미지처리 (Image processing) 분야에서의컨볼루션은필터 ( 커널 ) 을지칭하고, 이컨볼루션필터로원본이미지를처리하여특징을추출해냄 바둑에서컨볼루션필터의의미는국소적, 지역적인대국의특징을추출해내서전반적인형세를추론하는도구로볼수있음 20
21 AlphaGo 의컨볼루션신경망 AlphaGo 에서사용된컨볼루션신경망구조 특정바둑상태는 19x19 의행렬에대하여 48 가지특징을추출 흰돌, 검은돌, 빈칸, 축, 활로, 과거기록등 각각 48 가지특징맵 (feature map) 19x19 의이진행렬로구성됨 컨볼루션신경망의미지수는필터의가중치값 신경망구조 입력층 : 특정대국에대한 48 가지특징맵 은닉층 : 13 개의컨볼루션층 결과층 : 착수가능한다음수의확률분포 (19x19, 정책네트워크 ) 현재대국에서의승산 ( 스칼라, 가치네트워크 ) 21
22 AlphaGo 의컨볼루션신경망 컨볼루션층의상세구조 컨볼루션필터는 k개로 AlphaGo에서는 k=128, 192, 256, 384의경우모두테스트함 ( 성능이가장좋은필터개수는 192) 첫번째은닉층의컨볼루션필터는 5x5 크기로총 k개. zero-padding으로 19x19를 23x23으로표현 (stride는 1) 두번째부터 12번째은닉층의컨볼루션필터는 3x3 크기로총 k개 (1 zero-padding, stride는 1) 13 번째은닉층은 1x1 컨볼루션필터한개로 19x19 한개가 13번째층의결과값 ( 정책네트워크결과층 ) softmax 활성함수를통해착수가능한지점의확률분포산출 ( 가치네트워크결과층 ) fully-connected된 256노드의은닉층을지나결과층으로전파됨. 마지막으로 tangent hyperbolic 활성함수를지나스칼라값산출 22
23 AlphaGo 의컨볼루션신경망 AlphaGo 의컨볼루션신경망구조 ( 정책, 가치네트워크 ) 23
Microsoft PowerPoint - ai-2 탐색과 최적화-I
탐색과최적화 -I 충북대학교소프트웨어학과이건명 충북대인공지능 1 1. 상태공간과탐색 탐색 ( 探索, search) 문제의해 (solution) 이될수있는것들의집합을공간 (space) 으로간주하고, 문제에대한최적의해를찾기위해공간을체계적으로찾아보는것 탐색문제의예 선교사 - 식인종강건너기문제 틱 - 택 - 토 (tic-tac-toe) 8- 퍼즐문제 순회판매자문제
More information딥러닝 첫걸음
딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망
More information본보고서는 과학기술정보통신부정보통신진흥기금 을지원받아제작한것으로과학기술정보통신부의공식의견과다를수있습니다. 본보고서의내용은연구진의개인견해이며, 본보고서와관련한의문사항또는수정 보완할필요가있는경우에는아래연락처로연락해주시기바랍니다. 소프트웨어정책연구소기술 공학연구실추형석선임연
2018. 1. 23. AlphaGo Zero 의인공지능알고리즘 추형석선임연구원 본보고서는 과학기술정보통신부정보통신진흥기금 을지원받아제작한것으로과학기술정보통신부의공식의견과다를수있습니다. 본보고서의내용은연구진의개인견해이며, 본보고서와관련한의문사항또는수정 보완할필요가있는경우에는아래연락처로연락해주시기바랍니다. 소프트웨어정책연구소기술 공학연구실추형석선임연구원 (hchu@spri.kr)
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는
More information<313620B1E8BFB5BFF52E687770>
The Journal of The Institute of Internet, Broadcasting and Communication (IIBC) Vol. 17, No. 5, pp.119-124, Oct. 31, 2017. pissn 2289-0238, eissn 2289-0246 https://doi.org/10.7236/jiibc.2017.17.5.119 JIIBC
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014
More informationIntroduction to Deep learning
Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron
More information08장.트리
---------------- T STRUTURES USING ---------------- HPTER 트리 /29 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 트리는부모-자식관계의노드들로이루어짐 응용분야 : 대표이사 총무부 영업부 생산부 전산팀구매팀경리팀 생산 팀 생산 2 팀 (a) 회사의조직도 내문서 동영상음악사진 영화예능드라마 여행 (b) 컴퓨터의폴더구조
More information목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론
인공지능 컴퓨팅 환경 확보 방안 및 전략 2016. 08. 25. 2016 정보과학회 HPC연구회 하계 워크샵 추형석 소프트웨어정책연구소 선임연구원 신기술확산연구팀 목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론 1. 연구목적 배경및필요성 컴퓨팅환경확보는인공지능연구를위해선결되어야하는과제 인공지능연구에왜 컴퓨팅파워
More informationCh 8 딥강화학습
Chapter 8. 딥강화학습 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 최진영 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Version
More information( 분류및특징 ) 학습방법에따라 1 지도학습 (Supervised 2 비지도 학습 (Unsupervised 3 강화학습 (Reinforcement 으로구분 3) < 머신러닝의학습방법 > 구분 지도학습 (Supervised 비지도학습 (Unsupervised 강화학습 (
보안연구부 -2016-016 머신러닝 (Machine 개요및활용동향 - 금융권인공지능 (AI) 을위한머신러닝과딥러닝 - ( 보안연구부보안기술팀 / 2016.3.24.) 개요 이세돌 9단과인공지능 (AI, Artificial Intelligence) 알파고 (AlphaGo) 의대국 ( 16 년 3월 9~15일총 5국 ) 의영향으로 4차산업혁명단계 1) 진입을인식함과더불어금융권에서도인공지능기술이주목받게됨에따라,
More information슬라이드 1
CHAP 7: 트리 C 로쉽게풀어쓴자료구조 생능출판사 2005 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 트리는부모 - 자식관계의노드들로이루어진다. 대표이사 응용분야 : 계층적인조직표현 총무부 영업부 생산부 파일시스템 인공지능에서의결정트리 전산팀구매팀경리팀생산 1 팀생산 2 팀 트리의용어 노드 (node): 트리의구성요소 루트 (root): 부모가없는노드
More information제 1 장 기본 개념
이진트리순회와트리반복자 트리순회 (tree traversal) 트리에있는모든노드를한번씩만방문 순회방법 : LVR, LRV, VLR, VRL, RVL, RLV L : 왼쪽이동, V : 노드방문, R : 오른쪽이동 왼쪽을오른쪽보다먼저방문 (LR) LVR : 중위 (inorder) 순회 VLR : 전위 (preorder) 순회 LRV : 후위 (postorder)
More informationchap 5: Trees
Chapter 5. TREES 목차 1. Introduction 2. 이진트리 (Binary Trees) 3. 이진트리의순회 (Binary Tree Traversals) 4. 이진트리의추가연산 5. 스레드이진트리 (Threaded Binary Trees) 6. 히프 (Heaps) 7. 이진탐색트리 (Binary Search Trees) 8. 선택트리 (Selection
More informationCh 1 머신러닝 개요.pptx
Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial
More information선형대수학 Linear Algebra
탐색과최적화 1. 상태공간과탐색 2. 맹목적탐색 3. 정보이용탐색 4. 게임탐색 5. 제약조건만족문제 6. 최적화 1. 상태공간과탐색 탐색 ( 探索, search) 문제의해 (solution) 이될수있는것들의집합을공간 (space) 으로간주하고, 문제에대한최적의해를찾기위해공간을체계적으로찾아보는것 탐색문제의예 선교사 - 식인종강건너기문제 틱 - 택 - 토 (tic-tac-toe)
More information보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마
특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.
More informationChap 6: Graphs
그래프표현법 인접행렬 (Adjacency Matrix) 인접리스트 (Adjacency List) 인접다중리스트 (Adjacency Multilist) 6 장. 그래프 (Page ) 인접행렬 (Adjacency Matrix) n 개의 vertex 를갖는그래프 G 의인접행렬의구성 A[n][n] (u, v) E(G) 이면, A[u][v] = Otherwise, A[u][v]
More information05_tree
Tree Data Structures and Algorithms 목차 트리의개요 이진트리의구현 이진트리의순회 (Traversal) 수식트리 (Expression Tree) 의구현 Data Structures and Algorithms 2 트리의개요 Data Structures and Algorithms 3 트리의접근과이해 트리는계층적관계 (Hierarchical
More informationAIGo 개발 줂갗 보곀.hwp
AIGo 개발중간보고 AIGolab(https://aigolab.tistory.com) AIGo 프로젝트는지난 2016년 03 월, 한국의이세돌九단과 5번기를벌인 Google DeepMind의인공 지능 AlphaGo 에영감을받아시작됐습니다. AIGo 프로젝트는약 1년 4개월의연구및개발을거쳐 정책망(Policy Network) 를이용해오픈소스바둑인공지능 GNUGo를
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More information7장
CHAP 7: 트리 C 로쉽게풀어쓴자료구조 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 트리는부모 - 자식관계의노드들로이루어진다. 응용분야 : 계층적인조직표현파일시스템인공지능에서의결정트리 대표이사 총무부 영업부 생산부 전산팀구매팀경리팀생산 1 팀생산 2 팀 * 예제 : 책그림 7-2, 7-3, 7-4 트리의용어 노드 (node): 트리의구성요소 루트
More information시장분석통계Ⅰ. 서론부록인공신경망의시초라할수있는퍼셉트론 (perceptron) 은 1957 년 Frank Rosenblatt 가발명했고딥러닝의 학습알고리즘인오차역전파법 (back-propagation) 은 1986년 LeCun에의해발명됐다. 이미딥러닝의핵심이론은 198
SURVEY AND RESEARCH 02 딥러닝의현재와미래 Ⅰ. 서론 Ⅱ. 딥러닝을이용한채권회수율예측 Ⅲ. 알파고, 알파고제로, 알파제로 Ⅳ. 결론 김동현 * 한국주택금융공사정보전산부팀장 2017년말에딥마인드에서개발한알파제로는딥러닝을이용한강화학습을통해바둑의기본규칙만을입력받고스스로바둑을둬가며학습하여불과 3일만에수천년간쌓아올린인간의바둑지식을터득했고인간이미처생각하지못한새로운전략도발견했다.
More informationMicrosoft PowerPoint - lec07_tree [호환 모드]
Tree 2008학년도 2학기 kkman@sangji.ac.krac kr -1- 트리 (Tree) 1. 개요 ~ 계층적인구조를나타내는비선형 (Non-linear) 자료구조 ~ 트리는부모 - 자식관계의노드로구성 ~ 응용분야 계층적인조직표현 파일시스템 인공지능에서의결정트리 -2- 트리자료구조를사용하는이유? ~ 다른자료구조와달리비선형구조. ~ 정렬된배열 탐색은빠르지만
More information인공지능은한마디로정의하기어렵다. 지능이란것자체가모호하기때문에이를인공적으로재현한다는것이쉽지않다. 일반적으로지능은외부를인식하고추론하며적응하는능력이라고보는데, 인간조차어떻게그런기능을하는지명확히모르는상태에서전통적인환원주의 (reductionism) 에입각한과학적방법으로는구현이
주제 1 새로운기술혁명과미래도시 미래사회를위한인공지능기술과전망 조성배 ( 연세대학교컴퓨터과학과교수 ) 1. 들어가며 인간처럼감정을갖고경험을통해지식을축적하는인간형로봇에서부터대화를통해공감대를형성하거나두뇌를복제하여자의식을갖는인공지능에대한이야기는아직 SF영화속의이야기라고치부해왔는데, 최근에빌게이츠나스티븐호킹과같은사회지도층인사들이약속이나한듯이일제히인공지능에대한우려를표명하고있다.
More information1-1-basic-43p
A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing
More informationArtificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제
Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf
More informationMicrosoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx
실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호
More informationReinforcement Learning & AlphaGo
Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement
More informationMicrosoft PowerPoint - 6장 탐색.pptx
01. 순차탐색 02. 이진탐색 03. 이진탐색트리 04. 레드블랙트리 탐색 (search) 기본적으로여러개의자료중에서원하는자료를찾는작업 컴퓨터가가장많이하는작업중의하나 탐색을효율적으로수행하는것은매우중요. 탐색키 (search key) 항목과항목을구별해주는키 (key) 탐색을위하여사용되는자료구조 배열, 연결리스트, 트리, 그래프등 탐색키데이터 순차탐색 (sequential
More information제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을 드러
국가연구개발사업 정보 길잡이 제23호 2016년 4월 4월 과학의 날 특집 인공지능과 알파고 이야기 제4차 산업혁명과 인공지능 차 례 제4차 산업혁명과 인공지능 2 제46회 다보스포럼이 2016년 1월 21일~24일 4차 산업혁명의 이해 라는 주제로 개최 되었습니다. 4차 산업혁명은 인공지능에 의해 자동화와 연결성이 극대화되는 단계 로서 오늘날 우리 곁에 모습을
More information......
Introduction to Computers 3 4 5 6 01 7 02 8 03 9 04 05 10 06 11 07 12 08 13 09 10 14 11 15 12 16 13 17 14 15 18 19 01 48 Introduction to Computers 임들을 많이 볼 수 있다. 과거에는 주로 컴퓨터
More informationSlide 1
딥러닝 (Deep Learning) 2016 04 29 변경원 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가? Agenda 4. 딥러닝은어떤역할을하는가? 5. 딥러닝은어떻게만들어야하는가? 6. GPU 의역할 7. 딥러닝의기여 8. AlphaGo 와 GPU 2 1. 딥러닝이란무엇인가? 2. 인공지능이란무엇인가? 3. 딥러닝은왜필요한가?
More informationPowerPoint 프레젠테이션
3 장. 다층퍼셉트론 PREVIEW 신경망 기계학습역사에서가장오래된기계학습모델이며, 현재가장다양한형태를가짐 1950년대퍼셉트론 1980년대다층퍼셉트론 3장은 4장딥러닝의기초가됨 3.1 신경망기초 3.1.1 인공신경망과생물신경망 3.1.2 신경망의간략한역사 3.1.3 신경망의종류 3.1.1 인공신경망과생물신경망 사람의뉴런 두뇌의가장작은정보처리단위 세포체는 cell
More information의기보를데이터베이스로사용하였으며 어느정도안정화되어서는 개의알파고가서로대국하여만들어진기보를사용하여다시머신러닝을강화하도록학습시켰다 문제를해결하기위한인공지능은반드시최적의해법을구해야할필요는없기때문에짧은시간에해를구할수있는알고리즘의개발이중요하다고할수있다 본논문에서는 완전문제인스도
김태석, 김종수 Tai Suk Kim, Jong Soo Kim 1. 서론 완전문제임이증명된스도쿠게임은구글의신경망네트워크를가지는알파고와다르게현재의데스크탑컴퓨터의자원을이용해서주어진문제를빠른시간내에해결할수있는알고리즘구현을위한좋은소재로사용될수있다 수학자오일러의라틴방진을응용한스도쿠는약 개의경우의수를가지는복잡한문제이면서 바둑과같이상대방이필요한턴방식의게임이아니므로해당기능구현이필요없다는장점이있다
More informationMicrosoft PowerPoint - 제9장-트리의응용.pptx
제 9 강의. 트리의탐색 1. 이진트리탐색알고리즘 2. 쓰레드 (Threaded) 이진트리 3. 이진트리를다루는알고리즘 1 1. 이진트리탐색알고리즘 트리의탐색 (traversal) 은트리의각노드를방문하는작업을말한다. ( 왜방문할까요?) 다음과같은방법들을생각해볼수있다. 방법 1) 레벨순 : 레벨이낮은순으로방문 A B C D E F G H 3가지다른방법이나올수있다.
More information슬라이드 1
CHAP 7: 트리 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 리스트, 스택, 큐등은선형구조 트리는부모 - 자식관계의노드들로이루어진다. 응용분야 : 계층적인조직표현 컴퓨터디스크의디렉토리구조 인공지능에서의결정트리 (decision tree) 회사의조직 파일디렉토리구조 결정트리 ( 예 ) 골프에대한결정트리 트리의용어 노드 (node): 트리의구성요소
More informationMicrosoft PowerPoint - chap10_tree
Chap. 10 : Tree 2007 학년도 2 학기 1. 개요 재귀 (recursion) 의정의, 순환 ~ 정의하고있는개념자체에대한정의내부에자기자신이포함되어있는경우를의미 ~ 알고리즘이나함수가수행도중에자기자신을다시호출하여문제를해결하는기법 ~ 정의자체가순환적으로되어있는경우에적합한방법 ~ 예제 ) 팩토리얼값구하기 피보나치수열 이항계수 하노이의탑 이진탐색 -2-
More informationChapter 08. 트리(Tree)
윤성우의열혈자료구조 : C 언어를이용한자료구조학습서 Chapter 08. 트리 (Tree) Introduction To Data Structures Using C Chapter 08. 트리 (Tree) Chapter 08-1: 트리의개요 트리의접근과이해 트리는계층적관계 (Hierarchical Relationship) 를표현하는자료구조이다. 트리의예 트리의예
More information1장. 리스트
01. 순차탐색 02. 이진탐색 03. 이진탐색트리 04. 레드블랙트리 탐색 (search) 기본적으로여러개의자료중에서원하는자료를찾는작업 컴퓨터가가장많이하는작업중의하나 탐색을효율적으로수행하는것은매우중요. 탐색키 (search key) 항목과항목을구별해주는키 (key) 탐색을위하여사용되는자료구조 배열, 연결리스트, 트리, 그래프등 탐색키데이터 순차탐색 (sequential
More information슬라이드 1
CHAP 7: 트리 yicho@gachon.ac.kr 1 트리 (TREE) 트리 : 계층적인구조를나타내는자료구조 리스트, 스택, 큐등은선형구조 트리는부모 - 자식관계의노드들로이루어진다. 응용분야 : 계층적인조직표현 컴퓨터디스크의디렉토리구조 인공지능에서의결정트리 (decision tree) 2 2 회사의조직 대표이사 총무부 영업부 생산부 전산팀구매팀경리팀생산
More informationchap 5: Trees
5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경
More information문제여섯사람이일곱개의발판위에있다. 빈발판을중심으로세사람은왼쪽에서가운데를보고서있고, 다른세사람은오른쪽에서가운데를보고서있다. Figure: 양창모 ( 청주교육대학교컴퓨터교육과 ) Problems and Algorithms 2015 년여름 1 / 35 목표왼쪽에서있던세사람을오른쪽으로, 오른쪽에서있던사람을왼쪽으로이동한다. 가운데발판은여전히비어있어야한다. 최소의움직임으로목표를달성하도록한다.
More information<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More information슬라이드 1
Data Structure Chapter 7. 트리 Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr 트리의개념 트리 (Tree) 트리 : 계층적인구조를나타내는자료구조 리스트, 스택, 큐등은선형구조 정의 (1) 하나의루트 (root) 노드 (2) 다수의서브트리 (subtree) 트리는부모-자식관계의노드들로이루어짐
More informationMicrosoft PowerPoint - 제8장-트리.pptx
제 8 강의. 트리 (Tree) 자료구조 1. 트리의개념 2. 이진트리 3. 이진트리의저장 1 트리자료구조필요성연결리스트의삽입삭제시데이터를이동하지않는장점을살리자. 연결리스트의검색시노드의처음부터찾아가야하는단점을보완하자. 데이터를중간부터찾아가는이진검색의장점을이용하자. 연결리스트의포인터를리스트의중간에두는방법? ptr 10 23 34 42 56 검색을중간부터시작하여좌우중하나로분기,
More information00_임원소개
게임프로그래밍 박현수경동정보대학컴퓨터정보기술과 hspark@kdtc.ac.kr A Study of Stone Influence, Influence Point, and Influence Area in Computer Go Hyun-Soo Park Dept. of Computer Information Technology, Kyungdong College of Techno-Information
More informationPowerPoint 프레젠테이션
I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring
More information02본문
87 특집 딥러닝기반방송미디어기술 CNN 과 RNN 의기초및응용연구 이은주 / 계명대학교 Ⅰ. 서론 2016 년 3월, 전세계적으로굉장히이슈가되는사건이있었다. 다름아닌, 구글딥마인드 (Deep Mind) 가개발한인공지능바둑프로그램인알파고 (AlphaGo) 와이세돌 9단의바둑대결에서컴퓨터가 4대 1이라는압승을거둔것이다. 이때, 일반대중들에게바둑에대한관심못지않게오래된패러다임으로생각되었던인공지능에대한관심이폭발적으로증가하게되었다
More informationPowerPoint 프레젠테이션
딥러닝소개 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University (C) 2007-2018, SNU Biointelligence Lab, http://bi.snu.ac.kr/ 1 Playground (playground.tensorflow.org)
More informationMicrosoft PowerPoint Predicates and Quantifiers.ppt
이산수학 () 1.3 술어와한정기호 (Predicates and Quantifiers) 2006 년봄학기 문양세강원대학교컴퓨터과학과 술어 (Predicate), 명제함수 (Propositional Function) x is greater than 3. 변수 (variable) = x 술어 (predicate) = P 명제함수 (propositional function)
More informationMicrosoft PowerPoint - Java7.pptx
HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)
More information04 Çмú_±â¼ú±â»ç
42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.
More informationPowerPoint Presentation
기계학습을통한 시계열데이터분석및 금융시장예측응용 울산과학기술원 전기전자컴퓨터공학부최재식 얼굴인식 Facebook 의얼굴인식기 (DeepFace) 가사람과비슷한인식성능을보임 문제 : 사진에서연애인의이름을맞추기 사람의인식율 : 97.5% vs DeepFace 의인식률 : 97.35% (2014 년 3 월 ) 물체인식 ImageNet (http://image-net.org):
More informationPowerPoint 프레젠테이션
실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More informationCh.1 Introduction
Tree & Heap SANGJI University Kwangman Ko (kkman@sangji.ac.kr) 트리개요 트리 (Tree) ~ 계층적인구조를나타내는비선형 (Non-linear) 자료구조 ~ 트리는부모-자식관계의노드로구성 ~ 응용분야 계층적인조직표현 파일시스템 인공지능에서의결정트리 kkman@sangji.ac.kr 2 트리자료구조를사용하는이유?
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More information슬라이드 0
Machine Learning Basic 2016.09 Quarry systems 윤동한 인공지능이란? 지능적행동을자동화하기위한컴퓨터과학의한분야 (Luger & Stubblefield, 1993) 현재사람이더잘하는일을컴퓨터가하도록하는연구 (Rich & Knight, 1991) 1 Machine Learning 이란 명시적으로 Program 하지않고, 스스로학습할수있는능력을컴퓨터에게주기위한연구
More informationPowerPoint Presentation
4 장. 신경망 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 4.2-4.3 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information입학사정관제도
자료구조 강의노트 교재 : C 로배우는쉬운자료구조 ( 개정판 ) 출판사 : 한빛미디어 (2011 년 3 월발행 ) 저자 : 이지영 소프트웨어학과원성현교수 1 8 장트리 소프트웨어학과원성현교수 93 1. 트리 트리개요 트리 (tree) 란? 리스트, 스택, 큐등은선형자료구조 (linear data structure) 인것에반해서트리는계층 (hierarchy)
More information신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University
신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론
More information쉽게 풀어쓴 C 프로그래밍
제 5 장생성자와접근제어 1. 객체지향기법을이해한다. 2. 클래스를작성할수있다. 3. 클래스에서객체를생성할수있다. 4. 생성자를이용하여객체를초기화할수 있다. 5. 접근자와설정자를사용할수있다. 이번장에서만들어볼프로그램 생성자 생성자 (constructor) 는초기화를담당하는함수 생성자가필요한이유 #include using namespace
More information비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2
비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,
More information¹Ì·¡Æ÷·³-5±âºê·Î¼Å_1228.ps
미래에 대해 얼마나 알고 계십니까? 새로운 미래, 어떻게 맞이할 것입니까? 오늘보다 나은 내일, 더 큰 미래를 열어갑시다 2014년 아시아 세계경제 33% 차지 / 광컴퓨터 상용화 2016년 대한민국 경제활동 인구 감소 시작 2021년 인공지능 로봇 실용화 2024년 유전자 치료와 암 정복 가능 2025년 중국 세계 1위 경제대국 / 세계인구 80억 돌파 2030년
More information<BFACB1B831382D31355FBAF2B5A5C0CCC5CD20B1E2B9DDC0C720BBE7C0CCB9F6C0A7C7E820C3F8C1A4B9E6B9FD20B9D720BBE7C0CCB9F6BBE7B0ED20BFB9C3F8B8F0C7FC20BFACB1B82D33C2F7BCF6C1A E687770>
Ⅳ. 사이버사고예측모델개발 사이버보험시장활성화를위해서는표준데이터개발이필요하다. 이를위하여이전장에서는빅데이터기반의사이버위험측정체계를제안하였다. 본장에서는제안된사이버위험지수를이용하여사이버사고 (Cyber Incident) 를예측하는모델을개발하고자한다. 이는향후정확한보험금산출에기여할것으로기대한다. 최근빅데이터, 인공지능 (Artificial Intelligence),
More information목 차 1 편인공지능기술현황과물분야시사점 Ⅰ. 요약보고서 2 Ⅱ. 본보고서 5 1) 알파고의등장과인공지능 (AI) 5 2) 인공지능의재조명 8 3) 국내외인공지능기술동향 13 4) 인공지능의물분야적용시사점 22 < 참고문헌 > 2 편물분야인공지능기술적용사례 * 2 편이
VOL.2016-15 2016.06.10 GLOBAL 이슈 - ( 분야 ) 공통 기타 인공지능기술현황과물분야시사점 (1 편 ) 물정보포털 www.water.or.kr * 본이슈리포트는발간기관의공식적인의견이아니며, 작성자 ( 연구진 ) 의견해임을밝힙니다. 목 차 1 편인공지능기술현황과물분야시사점 Ⅰ. 요약보고서 2 Ⅱ. 본보고서 5 1) 알파고의등장과인공지능
More information본보고서는 미래창조과학부정보통신진흥기금 을지원받아제작한것으로미래창조과학부의공식의견과다를수있습니다. 본보고서의내용은연구진의개인견해이며, 본보고서와관련한의문사항또는수정 보완할필요가있는경우에는아래연락처로연락해주시기바랍니다. 소프트웨어정책연구소 SW융합연구실추형석선임연구원 (
2017.01.26. 인공지능의핵심인프라 고성능컴퓨팅환경의중요성 추형석선임연구원 안성원선임연구원 본보고서는 미래창조과학부정보통신진흥기금 을지원받아제작한것으로미래창조과학부의공식의견과다를수있습니다. 본보고서의내용은연구진의개인견해이며, 본보고서와관련한의문사항또는수정 보완할필요가있는경우에는아래연락처로연락해주시기바랍니다. 소프트웨어정책연구소 SW융합연구실추형석선임연구원
More informationch3.hwp
미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k
More information표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 지도교수장병탁 이논문을공학학사학위논문으로제출함 년 12 월 21 일 서울대학교공과대학컴퓨터공학부한동식 2016 년 2 월
표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석 Experimental Analyses on Generalized Discriminability of Deep Convolutional Image Features using Representational Learning 서울대학교공과대학컴퓨터공학부한동식 표상학습을이용한딥러닝이미지특성의범용분류성에대한실험적분석
More informationPowerPoint 프레젠테이션
Chapter 1. 머신러닝개요 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 김준호, 이상우 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University
More information쉽게 배우는 알고리즘 강의노트
쉽게배우는알고리즘 ( 한빛미디어 ) 2 장. 상태공간트리의탐색 State-Space Tree State-space tree ( 상태공간트리 ) 문제해결과정의중간상태를각각한노드로나타낸트리 이장에서배우는세가지상태공간탐색기법 Backtracking Branch-and-bound A * algorithm - 2 - 한빛미디어 Travelling Salesman Problem
More information딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning
딥러닝튜토리얼 Deep Learning Tutorial - 신경망과딥러닝의이해 Understanding Neural Network & Deep Learning 집필기관및참여인원 : 소프트웨어정책연구소 안성원 추형석 전남대학교 김수형 목 차 제 1 장서론 2 제2장단일퍼셉트론 2 제1절구조 2 제2절기능 3 제3절학습원리 5 제4절단층퍼셉트론 8 제3장다층퍼셉트론
More information온습도 판넬미터(JTH-05) 사양서V1.0
온습도 조절기 Model:JTH-05 1. 제품 사양. [제품 구분] JTH-05A(입력 전원 AC), JTH-05D(입력 전원 DC) [전원 사양] JTH-05A 입력 전압 출력 전원 소비 전력 JTH-05D AC 90~240V DC 10~36V 12Vdc / Max.170mA Max.2W [본체 사이즈] ~ 온/습도 범위(본체): 사용 [0 ~ 50, 85%RH
More informationChap 6: Graphs
5. 작업네트워크 (Activity Networks) 작업 (Activity) 부분프로젝트 (divide and conquer) 각각의작업들이완료되어야전체프로젝트가성공적으로완료 두가지종류의네트워크 Activity on Vertex (AOV) Networks Activity on Edge (AOE) Networks 6 장. 그래프 (Page 1) 5.1 AOV
More information이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다
이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More information제1강 인공지능 개념과 역사
인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........
More informationMicrosoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600
균형이진탐색트리 -VL Tree delson, Velskii, Landis에의해 1962년에제안됨 VL trees are balanced n VL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at
More information제이쿼리 (JQuery) 정의 자바스크립트함수를쉽게사용하기위해만든자바스크립트라이브러리. 웹페이지를즉석에서변경하는기능에특화된자바스크립트라이브러리. 사용법 $( 제이쿼리객체 ) 혹은 $( 엘리먼트 ) 참고 ) $() 이기호를제이쿼리래퍼라고한다. 즉, 제이쿼리를호출하는기호
제이쿼리 () 정의 자바스크립트함수를쉽게사용하기위해만든자바스크립트라이브러리. 웹페이지를즉석에서변경하는기능에특화된자바스크립트라이브러리. 사용법 $( 제이쿼리객체 ) 혹은 $( 엘리먼트 ) 참고 ) $() 이기호를제이쿼리래퍼라고한다. 즉, 제이쿼리를호출하는기호 CSS와마찬가지로, 문서에존재하는여러엘리먼트를접근할수있다. 엘리먼트접근방법 $( 엘리먼트 ) : 일반적인접근방법
More information<C7C1B8AEB9CCBEF6B8AEC6F7C6AE2031362D3032C8A3202DBECBC6C4B0ED2DC3D6C1BEC0CEBCE2BFEBC6C4C0CF402E687770>
ISSN 2233-6583 16-02 2016. 6. 20 알파고의 충격 : 인공지능의 가능성과 한계 최 계 영 정보통신정책연구원 선임연구위원 요약문 1. 인공지능 개요 4 2. 알파고를 통해 인공지능 혁신 이해하기 3. 인공지능의 가능성과 한계 4. 정책적 시사점 [참고문헌] 12 13 18 22 알파고의 충격 : 인공지능의 가능성과 한계 최 계 영 정보통신정책연구원
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract
2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract - 31 - 소스코드유사도측정도구의성능에관한비교연구 1. 서론 1) Revulytics, Top 20 Countries for Software Piracy and Licence Misuse (2017), March 21, 2017. www.revulytics.com/blog/top-20-countries-software
More informationo 경로 (path) 트리에서사용하는용어 ~ 어떤한노드에서다른노드까지링크를통해이동했을때, 거쳐온노드들의집합. o 루트 (root) ~ 트리의가장상위에있는노드로루트는항상하나만존재 o 부모, 자식 (parent, children) ~ 링크로연결된노드중위에있는노드를부모노드,
Tree & Heap SANGJI University Kwangman Ko kkman@sangji.ac.kr - 1 - o 트리 (Tree) 1. 개요 ~ 계층적인구조를나타내는비선형 (Non-linear) 자료구조 ~ 트리는부모 - 자식관계의노드로구성 ~ 응용분야 계층적인조직표현 파일시스템 인공지능에서의결정트리 - 2 - o 트리자료구조를사용하는이유? ~ 다른자료구조와달리비선형구조.
More information목차 윈도우드라이버 1. 매뉴얼안내 운영체제 (OS) 환경 윈도우드라이버준비 윈도우드라이버설치 Windows XP/Server 2003 에서설치 Serial 또는 Parallel 포트의경우.
소프트웨어매뉴얼 윈도우드라이버 Rev. 3.03 SLP-TX220 / TX223 SLP-TX420 / TX423 SLP-TX400 / TX403 SLP-DX220 / DX223 SLP-DX420 / DX423 SLP-DL410 / DL413 SLP-T400 / T403 SLP-T400R / T403R SLP-D220 / D223 SLP-D420 / D423
More information프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음
프로그래밍개론및실습 2015 년 2 학기프로그래밍개론및실습과목으로본내용은강의교재인생능출판사, 두근두근 C 언어수업, 천인국지음을발췌수정하였음 CHAPTER 9 둘중하나선택하기 관계연산자 두개의피연산자를비교하는연산자 결과값은참 (1) 아니면거짓 (0) x == y x 와 y 의값이같은지비교한다. 관계연산자 연산자 의미 x == y x와 y가같은가? x!= y
More informationMicrosoft PowerPoint - 제10장-그래프.pptx
제 강의. 그래프개념과그래프탐색 학습목차. 그래프의개념. 그래프의표현. 그래프탐색 . 그래프의개념 graph? chart? 오래된그래프문제로다음과 Köenigsberg 다리문제가있다. 이문제는다음과같은지형이있을때임의의한곳 (A,B,C,D) 에서출발하여 a 부터 f 까지 모든다리를한번씩건널수있는가? 하는문제이다. 자료구조의그래프는이러한문제를컴퓨터에표현하고알고리즘을개발하는분야이다.
More informationSpecial Edition 인공지능 (AI) 기술발전과부동산분야의활용방안 와같은방식으로번갈아가면서돌을놓다가더이상놓을돌이없을때, 각자의집의수를세어서더많은쪽이이기는게임이다. 매우단순한게임이지만이기기위한수를결정하기위해서포석을한다든지기풍을따르는식의직관을사용하는것이고수들이하는
국내 외인공지능산업의현황및활성화방안 조성배교수연세대학교컴퓨터과학과 Ⅰ. 인공지능의실체 SF 영화속의허구이거나잘해야먼미래의이야기로치부되던인공지능이알파고덕분에부쩍현실로가깝게다가왔다. 하루가멀다하고 TV와신문을통해인공지능에대한다양한소식이전해지고있는상황에서, 일부호사가들은스스로학습하고터득해서곧인간을대체할것처럼호들갑을떨기도한다. 반면에인공지능에대해서좀안다는사람들은이미몇차례있었던소동의연장선으로보고얼마지나지않아곧실체가드러날사기라고시큰둥한반응을보이기도한다.
More informationMicrosoft PowerPoint - e pptx
Import/Export Data Using VBA Objectives Referencing Excel Cells in VBA Importing Data from Excel to VBA Using VBA to Modify Contents of Cells 새서브프로시저작성하기 프로시저실행하고결과확인하기 VBA 코드이해하기 Referencing Excel Cells
More information미래포럼수정(2.29) 2012.12.29 3:36 PM 페이지3 위너스CTP1번 2540DPI 200LPI 미래에 대해 얼마나 알고 계십니까? 새로운 미래, 어떻게 맞이할 것입니까? 오늘보다 나은 내일, 더 큰 미래를 열어갑시다 2014년 아시아 세계경제 33% 차지
미래포럼수정(2.29) 2012.12.29 3:36 PM 페이지3 위너스CTP1번 2540DPI 200LPI 미래에 대해 얼마나 알고 계십니까? 새로운 미래, 어떻게 맞이할 것입니까? 오늘보다 나은 내일, 더 큰 미래를 열어갑시다 2014년 아시아 세계경제 33% 차지 / 광컴퓨터 상용화 2016년 대한민국 경제활동 인구 감소 시작 2021년 인공지능 로봇
More informationC# Programming Guide - Types
C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든
More information제 11 장 다원 탐색 트리
제 11 장 다원탐색트리 Copyright 07 DBLB, Seoul National University m- 원탐색트리의정의와성질 (1) 탐색성능을향상시키려면메모리접근횟수를줄여야함 탐색트리의높이를줄여야함 차수 (degree) 가 2보다큰탐색트리가필요 m- 원탐색트리 (m-way search tree) 공백이거나다음성질을만족 (1) 루트는최대 m 개의서브트리를가진다.
More informationPowerPoint Presentation
Class - Property Jo, Heeseung 목차 section 1 클래스의일반구조 section 2 클래스선언 section 3 객체의생성 section 4 멤버변수 4-1 객체변수 4-2 클래스변수 4-3 종단 (final) 변수 4-4 멤버변수접근방법 section 5 멤버변수접근한정자 5-1 public 5-2 private 5-3 한정자없음
More information정의 이진탐색트리 이진탐색트리 (BST: binary search tree) 는각각의노드가 BST 특성을만족하는키 - 주소쌍을가지고있는이진트리 BST 특성 트리에있는각각의키에대해, 왼쪽서브트리에있는모든키는이것보다작고, 오른쪽서브트리에있는모든키는이것보다큼 < > 2
13. 탐색트리 AVL 트리, B- 트리, 2-3-4 트리 정의 이진탐색트리 이진탐색트리 (BST: binary search tree) 는각각의노드가 BST 특성을만족하는키 - 주소쌍을가지고있는이진트리 BST 특성 트리에있는각각의키에대해, 왼쪽서브트리에있는모든키는이것보다작고, 오른쪽서브트리에있는모든키는이것보다큼 < > 2 이진탐색트리의예 3 BST 의최선과최악의경우
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationElectronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology
Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,
More information