저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
|
|
- 신일 간
- 5 years ago
- Views:
Transcription
1 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다. 저작권자로부터별도의허가를받으면이러한조건들은적용되지않습니다. 저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다. 이것은이용허락규약 (Legal Code) 을이해하기쉽게요약한것입니다. Disclaimer
2
3 i
4 ii
5 iii
6 iv
7 v
8 vi
9 vii
10 1
11 2
12 3
13 4
14 5
15 6
16 7
17 8
18 9
19 10
20 P D W P W ( ) ( ) = Õ N d ( x ) d = 1 [-E x W ] [- x ], 1 é E( x W ) ù exp ( ) P( x W ) = exp ê- ú= Z ( W ) ë k B T û exp E ( ' W ) å x' é E( x W ) ù Z( W ) = åexpê- ú x ë kbt û 11
21 12
22 ìw j xi Î E j j = 0 i ï a j = í 1 xi Î E j j = 1,..., E ï î 0 xi Ï E j j = 1,..., E 1 P W W Z( W ) d { x } ( d ) ( ) ( x ) = exp -e ( ; ), E = -å i1i 2... i E i i 1 i2 i Ei i= 1 ( d ) ( d ) ( d ) ( d ) e ( x ; W ) w x x... x e 13
23 ( d ) N DN = { x } d =1 ( ) n= 1 ( ) ( ) = Õ N n P D W P x W Õ ( n ln P( D W ) = ln P( x ) W ) N d = 1 N ìé K ü ï 1 ù ( k ) ( n) ( n) ( n) ï = å íêå ( ) ú - ln ý 1 2 ê ( ) å wi i i x k i xi xi Z W k ú = 1 ï C k d îë k = 1 i1, i2,..., i û ï k þ Ñ ( k ) Ñw i1, i2,..., ik ( d ) ln P( x W ) d = 1 N ìé K ü Ñ ï 1 ù ( k ) ( d ) ( d ) ( d ) ï = ( ) å íêå ln ( ) 1 2 ( ) å w ú i i i x - ý k i xi xi Z W k k Ñw ê ú 1 1 1, 2,..., = ï C k i i i d îë k = i1, i2,..., i û ï k k þ = N å N Õ ì é K ï Ñ 1 ù ( k ) ( d ) ( d ) ( d ) Ñ í ê ( ) å ú 1 2 ê ( ) å wi i i x k i xi xi - k k Ñ C k ú k ï wi 1 1, i2,..., i ë k = i1, i2,..., i k k û Ñw î 1 2 d = 1 i, i,..., ik N å ì ( d ) ( d ) ( d ) = íxi x i x i 2 i x x k 1 i x 2 i î d = 1 ü ý ( x W ) þ ì ü = N í xi x......, 1 i x - ý 2 i x k i x 1 i x 2 ik î Data P( x W ) þ k P ln Z ( W ) ( ) ü ï ý ï þ N 1 x x... x = x x... x, ( d ) ( d é ) ( d ) å ù ë k N û k P( x W ) i1 i2 ik Data i1 i2 i d = 1 x x... x = å é ë x x... x P ( x W ) ù û i1 i2 i i1 i2 ik x 14
24 15
25 å å å P( x) = P( x h ) P( h ) = P( x h ) P( h h ) P( h ) h1 h1 h2 = x1 x2 xv x (,,..., ) h = ( h1, h2,..., hn ) P( x) P( x h ) P( h h ) P( h ) = åå h2 h
26 å å P( x) =... P( x h ) P( h h ) P( h h ) P( h ) hn h1 å å h n-1 n n =... P( h h ) P( h h ) P( h x) P( x) hn n n exp( -e ( hs, hs- 1)) P( hs hs- 1) = exp( -e ( h )) s-1 e ( h ) s s ( h ) s e ( h ) = h( s( h )), s 1 h( x) =, 1 + exp( - x) s å å å s( h ) = w h + w h h w h... h ( s) ( s) ( s) ( s) ( s) ( s) ( s) ( s) s i1 i1 i1i 2 i1 i2 i1... ik i1 ik i1 i1, i2 i1, i2,..., ik r1, r2,..., r n w1, w2,..., wm 17
27 x = ( r, w) r = ( r, r,..., r ) 1 2 w = ( w, w,..., w ) 1 2 n m C 1, C 2 h = h, C = h, C = h3 2 C 18
28 19
29 P r w h c c P c c h Pt- 1 h c r w c = 2 P ( h, c,, ) t (,,, ) (, ) (, ) P( r, w, c ) 1 Pt-1 ( h, c ) 2 r, w, c 1 2 Pt ( h, c r, w, c ) 2 P( r, w, c ) = òò t-1 h, c 1 P( r, w, c ) P( r, w h, c, c ) P( c c, h) P ( h, c ) dhdc 1 dhdc D 1 2 ( ) ( ) d = 1 d d { t-1 } P ( h,c r, w, c ) µ Õ t P( r, w h,c,c ) P( c c ) P( c h) P ( h) t 20
30 argmax ì D ( ( ( ), ( ) ( ),, ) ( ( ) q a, a )) 1 1 (, ü = íå t d d d d t logp r w c e + logp c e + D logp - a) q d = t e ý î þ N ( ) M ( d ) ( d ) 2 1 d 2 1 ( d ) 2 1 = å n + å m n= 1 m= 1 log P( r, w c, c, h) log P( r c, c, h) log P( w c, c, h) ( d ) æ e c ö 2 1 ( 1,, ) expç w P w - a m = c c h = sm å i, ç i= 1 è ø ( d ) æ h c ö 2 1 ( = 1, ) = expç r P r -åa n c,c h sn i, ç i= 1 è ø s e c e c w w r r = åaiei, s = åaiei i= 1 i= 1 w ei e r i 21
31 a i { g e f r w e } ( ) ( ) 1 = å D d d t t i i i i = i + - i d = 1 a ( ) (, ; ), a la (1 l) a -, ( d ) ( d ) 1, if s.t. f ( r, w ; ei ) = í ï î d r d w ( r w ) ì ( ) ( ) T ï ei + ei eiei >k 0, otherwise d r ( ) i w ( ) e r d e w i g( ei ) å ij i, j Sim( u, v) = ( u - v ) ij 2 Sim( u, v) 22
32 23
33 24
34 25
35 26
36 27
37 28
38 29
39 30
40 31
41 32
42 33
43 34
44 35
45 36
46 37
47 p(r w) p(w) p(w r) = = p(r w) p(w), p(r) p(w r) p(r) p(r w) = = p(w r) p(r) p(w) 38
48 w* = arg max P(w r, q ) = arg max P(r w, q ) P(w q ), w w r* = arg max P(r w, q ) = arg max P(w r, q ) P(r q ) r r w w { } w* = arg max log P(w r, q ) = arg max P(r w, q ) + log P(w q ) q 39
49 40
50 Sentence retrieval Image retrieval Med r Rec@1 Rec@5 Rec@10 Med r Random STD-RNN[38] m-rnn[48] FV[40] m-cnn[51] m-cnn+dhn
51 42
52 [1] B. J. Biddle. Recent development in role theory. In Proceedings of Annual Review of Sociology. 12: (1986) [2] S. Eisenstein. The film sense, New York: Harcourt Brace & World. Inc. (1947) [3] U. Hasson, O. Furman, D. Clark, Y. Dudai and L. Davachi. Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding. In Proceedings of Neuron. 57: (2008) [4] E. Morin. The cinema or the imaginary man, minneapolis: University of minnesota press. (2005) [5] J.-W. Ha, K.-M. Kim and B.-T. Zhang. Automated construction of visual-linguistic knowledge via concept learning from cartoon videos. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. pp (2015) [6] A. N. Meltzoff. Toward a developmental cognitive science: The implications of cross-modal matching and imitation for development of representation and memory in infancy. In Proceedings of Annual New York Academy Science. 608: (1990) [7] Y. Bengio, A. Courville and P. Vencent. Representation learning: A review and new perspectives. In Proceedings of IEEE Transactions on Patten Analysis and Machine Intelligence. 35(8): (2013) [8] Y. LeCun, B. Boser, J. S. Denker, Henderson D, R. E. Howard, W. Hubbard and L. D. Jackel. Backpropagation applied to handwritten Zip 43
53 code recognition. In Proceedings of Neural Computation. 1(4): (1989) [9] S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back, Face recognition: A convolutional neural-network approach. In Proceedings of IEEE Transactions on Neural Networks. 8(1): (1997) [10] G. E. Hinton. Deep belief networks. In Proceedings of Scholarpedia. 4(5): (2009) [11] R. Salakhutdinov and G. E. Hinton. An efficient learning procedure for deep boltzmann machines. In Proceedings of Neural Computation. 24(8): (2012) [12] D. Wang and E. Nyberg. A long short-term memory model for answer sentence selection in question answering. In Proceedings of Association for Computational Linguistics. pp (2015) [13] T. Mikolov, M. Karafiát, L. Burget et al. Recurrent neural network based language model. In Proceedings of INTERSPEECH pp (2010) [14] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In Proceedings of Advances in Neural Information Processing Systems. pp (2012) [15] C.-J. Nan, K.-M. Kim and B.-T. Zhang. Social network analysis of TV drama characters via deep concept hierarchies. In Proceedings of International Conference on Advances in Social Networks Analysis and Mining. pp (2015) [16] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of IEEE Conference on Computer Vision and 44
54 Pattern Recognition. pp (2014) [17] I.-H. Jhuo and D.T. Lee. Video event detection via multi-modality deep Learning. In Proceedings of International Conference on Pattern Recognition. pp (2014) [18] H.-W. Chen, J.-H. Kuo, W.-T. Chu and J.-L. Wu. Action movies segmentation and summarization based on tempo analysis. In Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval. pp (2004) [19] C.-W. Wang, W.-H. Cheng, J.-C. Chen, S.-S. Yang and J.-L. Wu. Film narrative exploration through the analysis of aesthetic elements. In Priceedings of the 13th International Conference on Multimedia Modeling - Volume Part I, pp (2007) [20] D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri. C3D: Generic features for video analysis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. arxiv preprint arxiv: (2014) [21] H. Li, H. Ji and L. Zhao. Social event extraction: Task, challenges and techniques. In Proceedings of International Conference on Advances in Social Networks Analysis and Mining. pp (2015) [22] V. Ramanathan, B. Yao and L. Fei-Fei. Social role discovery in human events. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp (2013) [23] Y.-F. Zhang, C.-S. Xu, H.-Q. Lu and Y-M Huang. Character identification in feature-length films using global face-name matching. In Proceedings of IEEE Transactions on Multimedia. pp (2009) 45
55 [24] C.-Y. Weng, W.-T. Chu and J.-L. Wu. RoleNet: Movie analysis from the perspective of social networks. In Proceedings of IEEE Transactions on Multimedia. pp (2009) [25] T. Lan, L. Sigal and G. Mori. Social roles in hierarchical models for human activity recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp (2012) [26] T. Yu, S.-N. Lim, K. Patwardhan and N. Krahnstoever. Monitoring, recognizing and discovering social networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp (2009) [27] L. Ding and A. Yilmaz. Learning relations among movie characters: A social network perspective. In Proceedings of European Conference on Computer Vision. pp (2010) [28] L. Ding and A. Yilmaz. Inferring social relations from visual concepts. In Proceedings of IEEE International Conference on Computer Vision. pp (2011) [29] G. Wang, A. Gallagher, J.-B. Luo and D. Forsyth. Seeing people in social context: Recognizing people and social relationships. In Proceedings of European Conference on Computer Vision. pp (2010) [30] A. Frame, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ranzato and T. Mikolov. Devise: A deep visual-semantic embedding model. In Proceedings of Advances in Neural Information Processing Systems. pp (2013) [31] D. Grangier and S. Bengio. A neural network to retrieve images from text queries. In Proceedings of International Conference on Artificial Neural Networks. pp (2006) 46
56 [32] N. Srivastava and R. Salakhutdinov. Learning representations for multimodal data with deep belief nets. In Proceedings of International Conference on Machine Learning Representation Learning Workshop. (2012) [33] J. Weston, S. Bengio and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In Proceedings of the International Joint Conference on Artificial Intelligence. (2011) [34] M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In Proceedings of Computer Vision and Pattern Recognition. pp (2011) [35] C. L. Zitnick, D. Parikh and L. Vanderwende. Learning the visual interpretation of sentences. In Proceedings of the IEEE International Conference on Computer Vision. pp (2013) [36] M. Hodosh, P. Young and J. Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. In Proceedings of Journal of Artificial Intelligence Research. 47: (2013) [37] A. Karpathy, A. Joulin and L. Fei-Fei. Deep fragment embeddings for bidirectional image sentence mapping. In Proceedings of Advances in Neural Information Processing Systems. pp (2014) [38] R. Socher, Q. V. L. A. Karpathy, C. D. Manning and A. Y. Ng. Grounded compositional semantics for finding and describing images with sentences. In Proceedings of Transactions of the Association for Computational Linguistics. 2: (2014) [39] F. Yan and K. mikolajczyk. Deep correlation for matching images and text. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp (2015) 47
57 [40] B. Klein, G. Lev, G. Sadeh and L. Wolf. Associating neural word embeddings with deep image representations using fisher vectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp (2015) [41] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun and S. Fidler. Skip-thought vectors. In Proceedings of Advances in Neural Information Processing Systems. pp (2015) [42] B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier and S. Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image to sentence models. In Proceedings of the IEEE International Conference on Computer Vision. pp (2015) [43] X. Chen and C. L. Zitnick. Learning a recurrent visual representation for image caption generation. arxiv: (2014) [44] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko and T. Darreell. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp (2015) [45] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp (2015) [46] R. Kiros, R. Salakhutdinov and R. Zemel. Multimodal neural language model. In Proceedings of International Conference on Machine Learning. pp (2014) [47] R. Kiros, R. Salakhutdinov and R. Zemel. Unifying visual-semantic embeddings with multimodal neural language models. arxiv:
58 (2014) [48] J. Mao, W. Xu, Y. Yang, J. Wang and A. L. Yuille. Explain images with multimodal recurrent neural networks. arxiv: (2014) [49] J. Mao, W. Xu, Y. Yang, J. Wang and A. L. Yuille. Deep captioning with multimodal recurrent neural networks. arxiv: (2014) [50] O. Vinyals, A. Toshev, S. Bengio and D. Erhan. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp (2015) [51] L. Ma, Z. Lu, L. Shang et al. Multimodal convolutional neural networks for matching image and sentence. In Proceedings of the IEEE International Conference on Computer Vision. pp (2015) [52] B.-T. Zhang. Hypernetworks: A molecular evolutionary architecture for cognitive learning and memory, In Proceedings of IEEE Computational Intelligence Magazine. 3(3): (2008) [53] B.-T. Zhang, J.-W. Ha and M. Kang. Sparse population code models of word learning in concept drift. In Proceedings of Annual Meeting of the Cognitive Science Society. pp (2012) [54] B.-T. Zhang, P. Ohm, and H. Muhlenbein. Evolutionary induction of sparse neural trees. In Proceedings of Evolutionary Computation, 5(2): (1997) [55] S. S. Farfade, M. J. Saberian and L. J. Li. Multi-view face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. pp (2015) [56] P. Viola and M. J. Jones. Robust real-time face detection. In Proceedings of International Journal of Computer Vision. 57(2): 49
59 (2004) [57] R. Socher, B. Huval, B. Bath, C. D. Manning and A. Y. Ng. Convolutional-recursive deep learning for 3D object classification. In Proceedings of Advances in Neural Information Processing Systems. pp (2012) [58] A. Coates, H. Lee, A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of Journal of Machine Learning Research. 1001(48109): 2. (2010) [59] L. Fei-Fei, P. Perona. A bayesian hierarchical model for learning natural scene categories. In Proceedings of Computer Vision and Pattern Recognition. pp. 2: (2005) [60] R. Girshick, J. Donahue, T. Darrell and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of International Conference on Pattern Recognition. pp (2014) [61] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean. Distributed representations of words and phrases and their compositionality. In Proceedings of Advances in Neural Information Processing Systems. pp (2013) [62] B. S. Everitt and G. Dunn. Principal components analysis. In Proceedings of Applied Multivariate Data Analysis. 2: (1993) [63] N. Durrani, A. Fraser, H. Schmid, H. Hoang, P. Koehn. Can markov models over minimal traslation units help phrase-based smt? In Proceedings of ACL(2). pp (2013) [64] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arxiv: (2014) 50
60 ABSTRACT Multimodal Learning from TV Drama using Deep Hypernetworks Chang-Jun Nan Computer Science and Engineering The Graduate School Seoul National University Recently, development of internet technology and advancements in deep learning research has led to the rapid expansion of datasets in artificial intelligence field. Needless to say, there are standardized single-modality data such as ImageNet and WordNet, and representative multimodal data, for instance, Flickr 8K, Flickr 30K, Microsoft COCO have also appeared. Until now, artificial intelligence learned from this kind of static data has attained many successful cases in the field of image retrieval, visual-language translation and so on. Nevertheless, to handle a much wider variety of problems in real world, artificial intelligence technology which is capable of learning the dynamic multimodal data efficiently is necessary. TV drama is a sort of big data, which contains an enormous amount of knowledge regarding modern human society. As the character-centered stories unfold, diverse knowledge on topics such as economics, politics and culture, are displayed by this sort of video data. In particular, the speaking habits 51
61 and behavioral patterns of the character in different occasions include helpful information for understanding the social relationships between the characters. However, due to the dynamic and multimodal properties of TV drama, it is difficult for the learning model to automatically extract knowledge from the videos. To solve these problems, we need an efficient, dynamic and multimodal data learning technology and diverse image processing methods. Here, we propose the multimodal learning method based on the deep hypernetworks (DHN) to construct and analyze the knowledge from the TV drama automatically. DHN uses a multi-hierarchy structure to abstract various levels of knowledge, thus extracts knowledge from data. This feature makes complicated multimodal learning become efficient. Compared to the fixed structure of neural network models, the structure of the DHN is able to change flexibly, and so more appropriate to handle dynamic information. According to the method proposed, TV dramas have been chosen to be our research object. For our experiment, we adopted data from approximately 183 episodes, 4400-minutes of a TV drama - Friends as our dataset. Using various image processing methods, we extracted visual information such as scenes and characters. Then, the social network between the characters was established automatically by the DHN model and the relationship changes in different scenes were analyzed. Through the social network analysis, that the method we proposed is effective for multimodal learning was proved. Further, we also proved that dynamic multimodal data learning was achievable from relationship changes between characters along with story unfolding. Moreover, for the quantitative evaluation, we utilized the knowledge from data to operate visual-language translation experiments. Depending on the experiment results, we confirmed that knowledge extracted through multimodal learning contributed to the growth of visual-language translation s accuracy, and the accuracy increased as story accumulated. Keywords: Deep Hypernetworks; Multimodal Learning; Social Network Analysis; Visual-language Translation. Student Number:
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information법학박사학위논문 실손의료보험연구 2018 년 8 월 서울대학교대학원 법과대학보험법전공 박성민
저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More informationPrecipitation prediction of numerical analysis for Mg-Al alloys
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information행정학석사학위논문 공공기관기관장의전문성이 조직의성과에미치는영향 년 월 서울대학교행정대학원 행정학과행정학전공 유진아
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information문학석사학위논문 존밀링턴싱과이효석의 세계주의비교 로컬 을중심으로 년 월 서울대학교대학원 협동과정비교문학 이유경
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationi
저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물
저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationÀ±½Â¿í Ãâ·Â
Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at
More information저작자표시 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원
저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는, 이저작물과동일한이용허락조건하에서만배포할수있습니다.
More information저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니
저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information경영학석사학위논문 투자발전경로이론의가설검증 - 한국사례의패널데이타분석 년 8 월 서울대학교대학원 경영학과국제경영학전공 김주형
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비
저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비
저작자표시 - 비영리 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 동일조건변경허락. 귀하가이저작물을개작, 변형또는가공했을경우에는, 이저작물과동일한이용허락조건하에서만배포할수있습니다.
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 변경금지. 귀
저작자표시 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More informationHigh Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More informationDBPIA-NURIMEDIA
김진주 김수연. 초등학생대상장애이해교육에활용된동화에나타난장애인관분석. 특수교육, 2013, 제12권, 제2호, 135-160... 20.,,. 4.,,.,..... 주제어 : 장애이해교육, 동화, 장애인관 1. ( 1 ) Incheon Munhak Elementary School ( )(, E-mail: sooyoun@ginue.ac.kr) Dept. of
More information(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-
(Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition
More informationR을 이용한 텍스트 감정분석
R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information행정학박사학위논문 목표모호성과조직행태 - 조직몰입, 직무만족, 공직봉사동기에미치는 영향을중심으로 - 년 월 서울대학교대학원 행정학과행정학전공 송성화
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationDelving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:
Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More information[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp
RUF * (A Simple and Efficient Antialiasing Method with the RUF buffer) (, Byung-Uck Kim) (Yonsei Univ. Depth of Computer Science) (, Woo-Chan Park) (Yonsei Univ. Depth of Computer Science) (, Sung-Bong
More information<5B313132385D32303039B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>
디지털 영상에서의 자막추출을 이용한 자막 특성 분석에 관한 연구 이세열 * 요약 본 연구는 방송 프로그램 제작에 있어서 중요한 역할을 담당하고 있는 영상 자막의 특성과 영상 커 뮤니케이션 기능적인 관점에서 나타나고 있는 현상을 살펴본다. 다양한 방송 프로그램에서 활용되고 있는 디지털 영상 자막의 기능은 단순하게 간략한 정보를 전달하는 기능적인 역할을 수행하였다.
More information30이지은.hwp
VR의 가상광고에 나타난 그래픽영상 연구 -TV 스포츠 방송을 중심으로- A study of the graphic image that is presented in Virtual Advertising of VR(Virtual Reality) - Focused on TV Sports broadcasts - 이지은(Lee, ji eun) 조일산업(주) 디자인 실장
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석
,, Even the short history of the Web system, the techniques related to the Web system have b een developed rapidly. Yet, the quality of the Webbased application software has not improved. For this reason,
More information(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN
(Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional
More information- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -
More information07.045~051(D04_신상욱).fm
J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of
Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.99-117 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.99 2015 * A Analysis of the Characters and Issues about the 2015 Revised Social
More information저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니
저작자표시 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc
Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information<31335FB1C7B0E6C7CABFDC2E687770>
에너지기후변화교육 4(2):203~211(2014) 203 초등학교 교과서 에너지 단원의 탐구활동과 시각자료 기능 분석 사례 연구 신명경 권경필 * 경인교육대학교 Abstract : This study aimed to analyze energy related inquiry activity and visual materials in elementary textbook.
More information<32303131C7CFB9DDB1E22028C6EDC1FD292E687770>
통일문제연구 2011년 하반기(통권 제56호) 전쟁 경험의 재구성을 통한 국가 만들기* - 역사/다큐멘터리/기억 - 1)이 명 자** Ⅰ. 들어가는 말 Ⅱ. 과 제작배경 Ⅲ. 과 비교 Ⅳ. 역사/다큐멘터리/기억 현대 남북한 체제 형성에서 주요한 전환점인 한국전 쟁은 해방 후 시작된 좌우대립과 정치적,
More information歯kjmh2004v13n1.PDF
13 1 ( 24 ) 2004 6 Korean J Med Hist 13 1 19 Jun 2004 ISSN 1225 505X 1) * * 1 ( ) 2) 3) 4) * 1) ( ) 3 2) 7 1 3) 2 1 13 1 ( 24 ) 2004 6 5) ( ) ( ) 2 1 ( ) 2 3 2 4) ( ) 6 7 5) - 2003 23 144-166 2 2 1) 6)
More information행정학석사학위논문 외국인주민생활만족도의 영향요인연구 년 월 서울대학교대학원 행정학과행정학전공 최은영
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3
Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More information232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특
한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province
More information04김호걸(39~50)ok
Journal of Environmental Impact Assessment, Vol. 22, No. 1(2013) pp.39~50 Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model Kim, Hogul* Lee, Dong-Kun** Mo, Yongwon*
More information교육학석사학위논문 윤리적입장에따른학교상담자의 비밀보장예외판단차이분석 년 월 서울대학교대학원 교육학과교육상담전공 구승영
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationCh 1 머신러닝 개요.pptx
Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial
More informationePapyrus PDF Document
막힌 부분을 갖는 네트워크 내 효과적인 경로 탐색을 위한 유전 알고리즘 적용 김준우 *, 이민정 ** 요약 자연계의 진화 과정을 모방하는 유전 알고리즘은 다양한 조합 최적화와 같은 NP-hard 문제의 해를 탐색하는데 매 우 유용한 도구이다. 본 논문은 네트워크 내에 존재하는 두 노드 사이의 최단 경로를 구하는 문제 풀이를 위하여 유 전 알고리즘을 적용하고자
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information½Éº´È¿ Ãâ·Â
Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started
More informationuntitled
PMIS 발전전략 수립사례 A Case Study on the Development Strategy of Project Management Information System 류 원 희 * 이 현 수 ** 김 우 영 *** 유 정 호 **** Yoo, Won-Hee Lee, Hyun-Soo Kim, Wooyoung Yu, Jung-Ho 요 약 건설업무의 효율성
More informationWHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi
WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 2004. 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disability)..,,. (WHO) 2001 ICF. ICF,.,.,,. (disability)
More information<5B335DC0B0BBF3C8BF2835B1B35FC0FAC0DAC3D6C1BEBCF6C1A4292E687770>
동남아시아연구 20권 2호(2010) : 73~99 한국 영화와 TV 드라마에 나타난 베트남 여성상 고찰* 1) 육 상 효** 1. 들어가는 말 한국의 영화와 TV 드라마에 아시아 여성으로 가장 많이 등장하는 인물은 베트남 여성이다. 왜 베트남 여성인가? 한국이 참전한 베트 남 전쟁 때문인가? 영화 , , 드라마 을
More information<B7CEC4C3B8AEC6BCC0CEB9AEC7D0322832303039B3E23130BFF9292E687770>
로컬리티 인문학 2, 2009. 10, 257~285쪽 좌절된 세계화와 로컬리티 - 1960년대 한국영화와 재외한인 양 인 실* 50) 국문초록 세계화 로컬리티는 특정장소나 경계를 지칭하는 것이 아니라 관계와 시대에 따 라 유동적으로 변화하는 개념이다. 1960년대 한국영화는 유례없는 변화를 맞이하고 있었다. 그 중 가장 특이할 만한 사실은 미국과 일본의 영화계에서
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More information(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN
(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationKCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion
KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion
More information