DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

< B1E8B5BFC0B12E687770>

<30342DC0FAC0DABCF6C1A42DC6AFC1FD3132B9DABFB5B5B55F76312E687770>

DBPIA-NURIMEDIA

한국산학기술학회논문지 Vol. 6, No. 2, pp , 2005 교량용강재박스의현장제조시셀프실드플럭스코어드 아크용접의적용타당성에대한연구 황용화1* 고진현2 오세용3 A Feasibility Study on the Application of Self-Sh

DBPIA-NURIMEDIA

<3130BCF6C1A428C0FAC0DA292DC0CCC3A2C8F12E687770>

fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<4D F736F F F696E74202D20BDBAC5D7C0CEB7B9BDBAB0AD20BFEBC1A2BACEC0C720C0D4BFADB7AEBFA120B5FBB8A520B9CCBCBCB1D5BFADC6F2B0A15F3037B3E2204B494E5320B9DFC7A5C0DAB7E15F E E707074>

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

DBPIA-NURIMEDIA

ATOS 자동차구조용고강도강 Automobile Structural steel

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

<31302DBCF6C1A42D31335FB0EDC1F8C7F65FC0FAC0DABCF6C1A E687770>

DBPIA-NURIMEDIA

12-20(3)-수정.hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3036C0FAC0DAC6AFC1FDBCF6C1A42D3637B1E8B5BFC0B15B315D2E687770>

DBPIA-NURIMEDIA

< C0D3BAB4C3B62DBECBB7E7B9CCB4BD20C7D5B1DD28C7A5B9F8C8A320BEE0B7C2C8AEC0CE292E687770>

<30332DC0FAC0DAC6AFC1FD2DC0CCB1A4C1F85FC7D0C8B8BCF6C1A42E687770>

<30352D332DC0FAC0DAB0EDC1F8C7F62DBDB4C6DBB5E0C7C3B7BABDBA20C3D6C1BE20B3EDB9AE2E687770>

DBPIA-NURIMEDIA

exp

untitled

<30392DC0FAC0DABAAFB0E6BCF6C1A42DB9DAC0E7BFF E342E B315D2E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

12권2호내지합침

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3037BCF6C1A42D3533B1E8B8EDC7F65B315D2D65626F6F6B2E687770>

DBPIA-NURIMEDIA

MD-C-035-1(N-71-18)

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

본문.PDF

04-76(2)-수정.hwp

<3036C0FAC0DA2DB1E2BCFAB3EDB9AE2DB1E8BFEB28BCF6C1A4292E687770>

DBPIA-NURIMEDIA

<30392DB1B3C1A45FBCF6C1A42DB1E8C3B6C8F E687770>

<30322DC0FAC0DABCF6C1A42D3630C6AFC1FD5FC0CCC1BEC7A55B315D2DBCF6C1A42E687770>

<30382DC0FAC0DABCF6C1A42D3739B9CEBCBAC8AF5F E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

012임수진

고진현 hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

베이나이트 함유 이상조직강에 관한 연구

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<4D F736F F F696E74202D20C0E7B7E1C0C720B0ADB5B52CBFACBCBA2CB0E6B5B5C6F2B0A1B1E2B9FD205BC8A3C8AF20B8F0B5E55D>

<30392DC0FAC0DA2DC3D6B5BFBCF82D2E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DOOSAN HEAVY INDUSTRIES & CONSTRUCTION TOOL STEEL FOR DIE CASTING & HOT STAMPING The ever-faster pace of change necessitates products of ever-higher p

DBPIA-NURIMEDIA

<3036BCF6C1A42D3139B1E8B8EDC7F6BCF6C1A42E687770>

3-1.hwp

10-60(3)-수정.hwp

<3039BCF6C1A4C8C42DC6AFC1FD28B8F0B4CFC5D8292DC8B2B5BFBCF62E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Transcription:

76 연구논문 490MPa 급고장력강탄뎀가스메탈아크용접부에대한기계적성질과미세조직비교 이희준 *, 강성수 * 유금빈 * 배원학 ** 문현수 ** * 부산대학교기계기술연구소미시소성연구실 ** 현대로템주식회사품질기획팀 Comparison of Mechanical Properties and Microstructural Charateristies of GMAW Weld Metal in 490MPa Grade Steel Hui-Jun Yi*,, Sung-Soo Kang*, Gum-Bin Yu*, Won-Hak Bae** and Hyun-Soo Moon** *Research Institute of Mechanical Technology, Pusan National University, Pusan 609-735, Korea **Quality Planing Team, Hyundai Rotem Company, Chang-Won 641-, Korea Corresponding author : heejunjjang@hotmail.com (Received December 3, 8 ; Revised March 22, 9 ; Accepted March 25, 9) Abstract GMAW is one of the high performance welding process and used in many industries to increase the productivity. An evaluation is presented of the mechanical properties and microstructural characteristics of the GMAW and conventional GMAW welds in 30mm thickness 490MPa grade steel by comparison method. Welding sequence and bead with and hight was kept, avoiding the effect of the bead shape and welding sequence. Tension, bending, hardness and Charpy impact test results of GMAW met the requirement of specification and showed similar distribution with conventional GMAW. Volume fraction of ferrite phase in weld metal showed little difference between GMAW and GMAW Key Words : Productivity, GMAW, Mechanical properties, Microstructural charateristic, Acicular ferrite 1. 서론 가스메탈아크용접기법을사용하는용접구조물의생산공정에서능률문제는전체원가절감을위해항상연구되는문제이며생산성향상을위해다양한용접기법들이개발 연구되어지고있다. 현재까지개발되어진용접기법중가스메탈아크용접방식을이용하는것은 Φ3.2 이상의와이어를사용하는대구경용접, 사각대상형상의와이어를사용하는대상용접, 두개의와이어를이용하나의용융지를형성하는탄뎀가스메탈아크용접, 레이저용접의장점과가스메탈아크용 접의장점을혼합한레이저아크하이브리드용접과아크의이행현상중회전이행을이용한회전아크용접등이있으며이들을묶어고효율용접혹은고생산성용접이라칭하기도한다. 이번연구에서는현재까지개발되어진고효율용접중효율성과적용성이높다고판단되는탄뎀가스메탈아크용접을이용, 자동차외판성형에사용되는 0ton 급, 1ton 급프레스설비용접구조물용접공정의생산성향상을꾀하고자하며이를위해프레스용접구조물에소요되는 490MPa 급강재에대해기존에사용되는전통적인가스메탈아크용접 ( 이하일반가스메탈아크용접 ) 방식과탄뎀가스메 194 Journal of KWJS, Vol. 27, No. 2, April, 9

490MPa 급고장력강탄뎀가스메탈아크용접부에대한기계적성질과미세조직비교 77 탈아크용접방식을이용 30mm 두께의시험편을제작한후인장시험, 충격시험, 경도측정과굽힘시험과같은기본적인기계적성질시험을통하여정적강도측면을고찰하고, 용접부미세조직관찰을통하여각용접기법에따른용접부의미세조직변화를검토하고자한다 1-5). Table 1 Mechanical properties of base metal Material 2. 실험재료및방법 2.1 실험재료및용접조건 본연구에서사용된피용접재는 0ton, 1ton 프레스및제철설비에사용되는용접구조용강재 KS D 3515, SM 490YB( 두께 30mm) 를사용하였으며규격상피용접재의기계적물성치와화학성분을 Table 1과 Table 2에각각정리하여나타내었다. 사용용가재는 AWS 5.18, ER70S-6 현대종합금속의 SM 70을사용하였으며용가재의기계적물성치와화학성분을 Table 3과 Table 4에정리하여나타내었다. 보호가스는 Ar 80%+CO 2 20% 를사용하였으며가스의유량은 25ml /min 으로공급하였다. 용접시편은 V형 groove 를 60 로루트간격과이면 Yield strength Mechanical properties Tensile strength Elongation (%) SM490YB 355 490 610 19 Table 2 Chemical composition of base metal 받침재없이맞대기다층용접으로제작하였다. 각시험편에대한용접조건은 Table 5와같으며용접적층방법및순서에따른영향 6) 을최소화하기위하여매패스마다용접후비드높이를측정하여최대한동일조건하에서용접적층이가능하도록하였다. 그형상은 Fig. 1과같이나타내었으며 Table 5에측정한비드높이를나타내었다. 두용접방식모두펄스모드를적용하였으며용접조건중전류조건의경우평균전류조건을나타내었다. 2.2 실험방법맞대기용접이음의인장시험편의형상은 KS B 0801 1호시험편이며용접선직각방향으로채취하였으며 KS B 0833 을기준으로시험하였다. 굽힘시험편의형상은 KS B 0832 에준하여제작하였고 KS B 0832 를기준으로시험하였다. 충격시험편의형상은 KS B 0821 4호시험편으로용접선직각방향으로채취하였고충격시험방법은 KS B 0810 에의거수행하였다. 충격시험편채취위치는용접금속중심 (W.M), 용접선 (F.L), 용접선에서 2mm 떨어진지점과 (F.L+ 2) 5mm 떨어진위치 (F.L+5) 이며 0 조건에서실시하였다. 경도측정은비커스경도기를이용하여 KS B 0811 에근거하여 10Kgf 의하중을사용하여용접부의위표면에서 2mm 떨어진위치, 아래표면에서 2mm 떨어진위치와아래표면에서 15mm 떨어진중심부에서측정하였다. 미세조직관찰은나이탈 2% 로에칭한후 500 배전자현미경을이용하여관찰하였고 ASTM E 112 를기준으로결정립크기를확인하였으며 IIW에서규정한방법에따라용접금속부내미세 Material Chemical composition (wt. %) C Si Mn P S SM490YB 0. 0.550 1.600 0.035 0.035 Table 3 Mechanical properties of filler metal Filler metal Yield strength Mechanical properties Tensile strength Elongation (%) (a) GMAW SM-70 430 540 28 Table 4 Chemical composition of filler metal Filler metal Chemical composition (wt. %) C Si Mn P S SM-70 0.060 0.410 1.100 0.012 0.011 (b) GMAW Fig. 1 Shapes of cross sections and welding process in each weld specimen 大韓熔接 接合學會誌第 27 卷第 2 號, 9 年 4 月 195

78 이희준 강성수 유금빈 배원학 문현수 Pass No. Ampere (A) Volt (V) Speed (cm /min) Heat Input (KJ/cm) Bead hight (mm) Weld mode 1 255 27.8 35 12.2 7.3 Pulse 2 311 30.7 30 19.1 12.5 Pulse 3 316 30.6 26 22.3 16.3 Pulse 4 319 30.6 23 25.5 19.7 Pulse 5 317 31.8 22 27.5 22.8 Pulse 6 317 31.6 19 31.6 25.3 Pulse 7 323 31.4 18 33.8 27.7 Pulse 8 323 31.4 17 35.8 32.0 Pulse Pass No. Table 5 Welding condition of each specimen Ampere (A) (a) GMAW Volt (V) Speed (cm /min) Heat Input (KJ/cm) Bead hight (mm) Weld mode 1 M 230 25.9 5.5 Pulse 65 7.6 S 176 25.2 4.1 Pulse 2 M 298 29.8 9.2 58 11.7 Pulse S 242 29.1 7.3 Pulse 3 M 310 30.0 10.1 55 15.3 Pulse S 261 29.9 8.5 Pulse 4 M 301 30.3 11.4 49 18.3 Pulse S 259 30.3 9.6 Pulse 5 M 310 30.3 12.5 45 20.7 Pulse S 266 30.1 10.7 Pulse 6 M 313 30.1 14.9 38 23.2 Pulse S 269 29.3 12.4 Pulse 7 M 307 30.0 17.3 32 26.3 Pulse S 261 30.1 14.7 Pulse 8 M 309 30.1 29.4 19 32.2 Pulse S 269 30.3 25.7 Pulse (b) GMAW (M : master / S : slave) 조직을 AF(Acicular ferrite), PF(Primary ferrite), FS(Ferrite with second phase) 로분류하여체적분률로나타내었다 7). 3. 실험결과및고찰 3.1 인장시험및굽힘시험결과 인장시험은일반가스메탈아크용접방식과탄뎀가스메탈아크용접방식시험편에대하여각각 3번씩실시하였으며, 그결과를평균내어 Table 6에나타내었다. 인장강도는일반가스메탈아크용접의경우가 502.7 MPa로 496.9MPa을나타낸탄뎀가스메탈아크용접에비해 5.8MPa 정도높게나타났으며항복강도의경우 welding specimen Yield strength Tensile strength Elongation (%) 385.8 502.7 25 381.2 496.9 26 Requirement 355 490 610 19 Criterion satisfaction satisfaction satisfaction Table 7 Results of bending test welding specimen Table 6 Results of tension test Test time Crack occurrence criterion face bend 4 No satisfaction side bend 4 No satisfaction face bend 4 No satisfaction side bend 4 No satisfaction 에도일반가스메탈아크용접방식이 385.8MPa 로 381.2 MPa을나타낸탄뎀가스메탈아크용접방식에비해 4.6 MPa정도높게나타났다. 연신율의경우에는탄뎀가스메탈아크용접방식이 26% 로일반가스메탈아크용접방식에비해 1% 정도높게나타내었다. 하지만전체적으로일반가스메탈아크용접방식과탄뎀가스메탈아크용접방식의결과값에서큰차이를보이지않았고모든인장시편에서용접부가아닌열열향부에서파단이발생하였으며인장강도, 항복강도, 연신율이모재의규격치이상의강도를나타내어규격에만족하였다. 그러므로 490MPa 급 SM490YB 소재에대하여전통적인가스메탈아크용접방식을대신하여탄뎀가스메탈아크용접방식을사용하여용접하여도정적강도에는문제가없을것으로판단된다. 굽힘시험의경우표면굽힘과측면굽힘을각각 4회씩실시하였으며균열이발생되지않았다. 시험결과는 Table 7과같이나타내었다. 3.2 경도시험결과 각용접시험편의경도측정위치와결과를 Fig. 2와 Fig. 3에나타내었다. 위표면부 2mm 와아래표면부 2mm 위치에서의위치별최고경도값은큰차를보이지않으며전체적으로비슷한경도분포를나타내고있다. 중심부의경우일반가스메탈아크용접방식의열영향부최고경도값이탄뎀가스메탈아크용접방식에비해 12 Hv(10) 정도높게나타났으며평균 10 Hv(10) 196 Journal of KWJS, Vol. 27, No. 2, April, 9

490MPa 급고장력강탄뎀가스메탈아크용접부에대한기계적성질과미세조직비교 79 3.3 충격시험결과 Hardness(Hv) Hardness(Hv) Hardness(Hv) 440 420 400 380 360 340 320 440 420 400 380 360 340 320 440 420 400 380 360 340 320 Fig. 2 Position of hardness test W/M W/M W/M H.A.Z Position of hardness test at A (a) A Position H.A.Z Position of hardness test at B (b) B Position H.A.Z Position of hardness test at C B/M B/M (c) C Position Fig. 3 Result of hardness test in each specimen 정도높으나용접부의경우비슷한분포를나타내었다. 또한, 일반가스메탈아크용접부와탄뎀가스메탈아크용접부의열영향부경도시험결과 KS B ISO 9956 에서규제하고있는용접부, 열영향부최대경도값 350 Hv(10) 이하의기준을모두만족하였다. B/M 각용접시험편에대한충격시험결과를 Fig. 4에나타내었으며평균값을 Table 8에정리하였다. 일반가스메탈아크용접시험편과탄뎀가스메탈아크용접시험편모두용접부에서가장높은충격치를보이며용접선에서 5mm 지점으로갈수록충격값이낮아지는현상을보이고있다. 두시험편을비교하면용접부와용접선에서는탄뎀가스메탈아크용접시혐편이높은충격치를보이나용접선에서 2mm 지점에서는일반가스메탈아크용접시편의충격치가탄뎀가스메탈아크용접시편의충격치보다휠씬높은수치를보이고있다. Impact energy(j) Impact energy(j) 180 160 140 120 100 80 60 40 20 0 180 160 140 120 100 80 60 40 20 0 Table 8 Average of impact energy in each specimen Position of specimen Welding process GMAW GMAW Average of impact energy (J) Weld Metal 205.5 218.5 Fusion Line 175.1 197.0 2mm from Fusion Line 5mm from Fusion Line W/M F/L F/L+2 F/L+5 Position of impact test (a) GMAW W/M F/L F/L+2 F/L+5 Position of impact test (b) GMAW Fig. 4 Result of impact test in each specimen 131.3 84.3 46.1 40.2 大韓熔接 接合學會誌第 27 卷第 2 號, 9 年 4 月 197

80 이희준 강성수 유금빈 배원학 문현수 이는상대적으로용접속도가빠른탄뎀가스메탈아크용접방식의열영향부가일반가스메탈아크용접방식의열영향부에비해좁기때문이며나이탈 2% 로에칭한후육안으로마크로시편을관찰하여게이지로열영향부를측정한결과탄뎀가스메탈아크용접방식은 1.8mm, 일반가스메탈아크용접방식은 2.5mm 정도로나타났다. 이원인으로인하여탄뎀가스메탈아크용접방식의용접선에서 2mm 구간의충격치는용접부와열영향부에비해상대적으로충격인성이낮은모재부의영향으로인해충격치가낮게나타나는것으로사료된다. 하지만, 모든시험편에서 KS D 3515에명시한샤르피충격에너지가 27J 이상을만족하고있다. 그러므로탄템가스메탈아크용접방식을사용하여용접하여도파괴인성부분에서는규격이내에상당하는값을나타내리라판단된다. 3.4 미세조직관찰시편을나이탈 2% 용액으로에칭한후 500 배전자현미경을통해용접부의미세조직을관찰하였다. 관찰결과일반가스메탈아크용접방식과탄템가스메탈아크용접방식의용접부구오스테나이트결정입도는 15.6 μm이며용접부미세조직을 Fig. 5와같이나타내었다. Microstructural component(wt%) 100 80 60 40 20 0 GMAW Ferrite with second phase Primary ferrite Acicular ferrite Welding process GMAW Fig. 6 Volume fraction of ferrite phase in weld metal 미세조직의정량화는 IIW에서규정한방법에따라 AF(Acicular ferrite), PF(Primary ferrite), FS (Ferrite with second phase) 로분류하였으며체적분률 Fig. 6 과같이나타내었다. 용착금속의강도와인성을동시에향상시킬수있으며저온균열저항성을확보하는데필수적인조직이라고인식되고있는침상형페라이트 (Acicular ferrite) 조직의분율이탄뎀가스메탈아크용접방식이일반가스메탈아크용접방식에비해 4% 정도낮은것으로나타났으며이는비슷한범위의입열량에서침상형페라이트 (Aciculat ferrite) 의분율이용접속도가높은쪽에서낮게나타나는기존의연구와동일한결과를보이고있다 8-10). 4. 결론 생산현장에서일반적으로사용되고있는전통적인가스메탈아크용접방식의생산성향상을위해본연구에서고효율 / 고용착용접방식중탄템가스메탈아크용접방식에대한정적강도과용접부미세조직을기존의일반가스메탈아크용접방식과비교평가하였으며다음과같은결론을얻었다. (a) GMAW (b) GMAW Fig. 5 Optical microstructures weld metal 1) 인장시혐결과모든시험편이규격이상의강도를만족하였으며굽힘시험결과모든시험편에서균열이발생하지않았으며규격을만족시켰다. 2) 경도시험결과일반가스메탈아크용접방식과탄템가스메탈아크용접방식의용접부, 열영향부에서규격의최고치이하규제에만족하는경도값을보였다. 충격시험결과용접선 2mm 지점에서탄뎀가스메탈아크용접방식이낮은충격치를보이나이는좁은열영향부의영향으로사료되며두방식모두용접부와열영향부에서규격의규제충격치이상의결과를나타내었다. 3) 용접부미세조직관찰결과구오스테나이트결정입도는 15.6μm이며침상형페라이트 (Acicular ferrite) 의분율이탄뎀가스메탈아크용접방식에서약간낮게 198 Journal of KWJS, Vol. 27, No. 2, April, 9

490MPa 급고장력강탄뎀가스메탈아크용접부에대한기계적성질과미세조직비교 81 나타났지만전체적으로비슷한수준을나타내었다. 그러므로, 490MPa 급 SM490YB 강재를이용한용접구조물제작의경우탄템가스메탈아크용접방식을사용하는것이기존에사용하고있는전통적인가스메탈아크용접방식의사용보다생산성향상측면에서효과적이라고판단된다. 참고문헌 1. Bertil PEKKARI and ESAB AB : Where and how are the welding process developing, ASR International Conference-3-Bucharest, 13-24 2. K. J Matthes and S. Thurner : Using cored wires for tandem gas mwtal arc welding of high alloyed steels, Welding and Cutting, 12-14 (5), 461-466 3. Gred Trommer : High-performance welding, One ctchphrase, four alternatives, Institute of Production Engineering&Welding Technology at the Technical University of Chemnitz 4. NAVY JOINING CENTER : NJC developing cost-effective tandem arc welding process for shipbuilding, Welding Journal, 86-2 (7), 85 5. J. Dierksheide, D. Harwig, N, Evans and L. Kvidashi : New automated tandem process for agile fillet welding of ship structures, Journal of Ship production, 21-2 (5), 81-91 6. Ji-chul Byun, Kook-soo Bang and Woong-sung Chang : Effect of heat input and interpass temperature on the strength and impact toughness of multipass weld metal in 570MPa grade steel, Journal of KWS, 24-1 (6), 64-70 (in Korean) 7. Guide to the light microscope examination of ferritc steel weld metal, Weld World, 29-7/8 (1991), 160-176 8. Hee Jin Kim and Bong Young Kang : Microstructal characteristics of steel weld metal, Journal of KWS, 18-5 (0), 565-572 (in Korean) 9. D. M. Viano, N. U. Ahmed and G. O. Schumann : Influence of heat input and travel speed on microstructure and mechanica properties of double tandem submerged arc high strength low ally steel weldments, Science and Technology of Weling and Joining, 5-1 (0), 26-34 10. G.S. Barrite, R. A. Ricks and P. R. Howell : The effect of inclusion on the structure and properties of HSLA steel weld metals, 6th International Conference 16-20 (0), 121-126 大韓熔接 接合學會誌第 27 卷第 2 號, 9 年 4 月 199