dhriu15@kicet.re.kr,,.. 2007 8.. 85%.,..,,.,., SiC,,.,,,,,., SiC/SiC. SiC,. 2.1 SiC Cu Cu-alloy 280~320 2~8 Si CH 3Cl (methylchlorosilane). 80-90 % (Dimethyldichlorosilane, (CH 3) 2SiCl 2) (CH 3)SiCl 3, (CH 3) 3SiCl, (CH 3)HSiCl 2. 54
(CH 3) 2Cl 2, 80-90 % (CH 3)SiCl 3, 3-6% (CH 3)SiCl 3, 3-6% Si + CH 3Cl (CH 3) 3SiCl, 1-3% (CH 3)HSiCl 2 1~3% (CH 3)Cl 2SiSiCl 2(CH 3) (CH 3) 2ClSiSiCl(CH 3) 3 SiCl 4 SiC 1 (Dimethyldichlorosilane). (KCC) 2003 2.5. RTV, HTV, Resin, PSA, Emulsion Silane coupling agent. SiC 100-200 KCC 1/100 SiC.. NaCl (polydimethylsilane, (Si(CH 3) 2)n).,, 10 %.. 1) 2.3 (polycarbosilane) (polycarbosilane) ((CH 3) 2SiCH 2)n ((CH 3)HSiCH 2)n 1:1 Si-C Si-H SiC (Fig. 1). 2.2 (polydimethylsilane) (Chlorine, Cl), SiC.. (CH 3) 2SiCl 2 + 2Na {Si(CH 3) 2}n + 2NaCl,. Na Na Na 1-2 mm. Fig. 1. Chemical Formula of polycarbosilane. (PCS) Kumada rearrangement. 2) Si-radical CH 4, Me 3SiH, SiH 4 100. Okamura 470 60% PCS. CH 4, H 2, MeSiH 3, Me 2SiH, Me 3SiH 55
100., MeSiH 3, Me 2SiH, Me 3SiH silane. 3-4) 1978 Yajima polyborodiphenylsiloxane. 3), Hasegawa AlCl 3, MnCl 3, CrCl 3, VCl 3, TiCl 3. 5), Birot Tris- (dimethylamino)borane, Me 2BN(SiMe 3) 2 B(OMe) 3, B(OPr) 3, B(OSiMe 3) 3, B(NEt 2) 3, Me 2AlN(SiMe 3) 3. 6). 7). PCS, PCS PCS. PCS. 7), SiC 4, SiC 3H, SiC xsi 4-x SiC. 1500-3000. Si-radical Si-CH 2. 3,6), Kim ZSM-5 PCS. 8) Fig. 2. Schematic diagram of 2-step process for polycarbosilane synthsis. 9) Si/Al ZSM-5 PCS. ZSM-5 350 1 400-420 2 (Fig. 2). 2.4 (polycarbosilane) SiC Fig. 3. GPC chromatograms of KICET - PCS distilled at 250 for 1 h under vacuum after reaction at 350 for 20 h and 400 for 10 h (a), polymerized further at 400 for 5 h (b), 10 h (c), and 15 h (d). 9) 56
. 7) Fig. 3 2 GPC. 9) 1000... (, continuous fiber) SiC 300 PCS 10-20 PCS. PCS. SiC 500-1500 filament/yarn 1-5 µ. Fig. 4,, 1200 SiOC. 10),. Nicalon, Tyranno... melt blown. Fig. 5 SiC. 11) DPF,, IR radiation heater Fig. 4. Photo graph of Melt spun fiber ; (a) polycarbosilane fiber, (b) polyaluminocarbosilane fiber and (c) KICET-T5 fiber pyrolyzed at 1200. Fig. 5. Photograph of (a) melt-blown PCS mat production process and SiC mat pyrolyzed (a) : Fire blocking and IR radiation test of SiC mat using gas touch. 57
. 2.5 3000 300.. 12) Fig. 6 SiC. SiC. Nippon Carbon ceramic grade Nicalon, Tyranno, Sylramic SiC, Nippon carbon Hi-Nicalon, Hi-Nicalon type S. Fig. 6. Photograph of SiC fiber that is stuck to together. FT-IR 200 C-H, Si-H Si-O peak (Fig. 7)., Si-H Si-O. 10-15% SiCO 1200 SiC β-sic SiOC. Fig. 7. FT-IR Spectra of polycarbosilane; as-received, cured at 200 and pyrolyzed at 1200. 2.6 6. 400.. 400~550 PCS Si-H Si-CH 3 Si-CH 2-Si. 550~850 H 2 CH 4, Si-H, Si-CH 3, Si-CH 2-Si. SiC SiC 1.6H 0.65 SiC, Si CH. 850~ 1000. 1000~1200, 1200 XRD pattern 2 nm β-sic aromat- 58
, 1600. Fig. 8. TEM image of KICET-SiOC fiber fabricated by the pyrolysis at 1200. ic carbon layer. H 2. 1200 2 GPa 200 GPa β-sic SiOC (Fig. 8). 13-15) 2.7 1200 1200 Si-O CO. 1200 CO SiO β-sic. 16) SiC xo SiC(s) + SiO(g) + CO(g) SiC 1200. 5-10 nm β- SiC 100 nm,, SiOC matrix 2.8 SiC 1200-2000 SiC. SiC C/Si 1 stoichiometric SiC. 17) Nicalon type. C/Si 1 PCS. 17,18) PCS PMS(polymethylsilane) Si/C PMS. 19), SiC, SiC 1., SiC. 20-23) Nippon Carbon Hi-Nicalon type S 1800 SiC. SiC Tyranno-SA, Hi-Nicalon 1800. 59
. Hi- Nicalon type S, Tyranno-SA, Sylramic 3 Yajima type SiC. 1600~2000. Si/C 1 stoichiometric SiC.,, SiC 0.5 %., SiC.,.,. Tyranno-SA 1 % 1 % SiC. 18) Sylramic Dow Corning, Nicalon SiC BCl 3 SiC., NASA Glenn Research Center Sylramic-iBN SiC in-situ born nitride. 24-26) Table 1 SiC Table 1. Key Properties of Near-Stoichiometric SiC Fibers for High - Temperature CMC applications 26) Trade Name Hi-Nicalon S Tyranno SA Sylramic Sylramic(1,2) Max. Proces Temp. ~1600 >1700 >1700 >1700 Average Dia, 13 8-10 10 10 trace B Reduced B, Second phases trace O+C trace Al 2O 3 +Ti trace Ti Average Grain Size, nm <100 150 ~100 >100 Avg. Surface Roughness, nm >10 ~10 ~10 ~27 Thermal Cond. W/m 2. at R.T 18 65 46 >46 Fig. 9. Comparation of heat resistant temperature of commercial SiC fiber.. 10, Tyranno-SA 1700. NASA Syramic Ti, B Tyranno-SA (Fig. 9). 2.9 SiC. 300,, SiC. 27), SiC (Fig. 10).,. 28,29), (Fig. 11). 30) 60
SiC. Fig. 10. Photograph of KICET-SiC hollow fiber: outer diameter, 250 µm, inner diameter, 100 µm. 29) Fig. 11. SiC nano-web prepared by electrospinning of polycarbosilane. 30), Si/C SiC,,. SiC 25%., Ti, Fe, Al, V, Pt, Pd,,,,,,., 2000. Carborundum. 31), SiC (B, C) 2000 SiC. SiC 1.7. SiC., (,, ) CVD SiC CVD-SiC. 32,33) 1000 1300 (MTS, methylchlorosilane), Ar, H 2 SiC CVD - CVD-SiC. AVCO Specialty Materials SCS-6. 33) CVD- 150-61
.., DERA (Defence Evaluation and Research Agency) 1994 BP s Sunbury Research Centre Rolls-Royce SNECMA CVD SiC 2000 7 Sigma CVD SiC on tungsten core. 34) 1975 Yajima. 3) Corundum AVCO CVD SiC (Fig. 12). Si-C SiC,. SiC Yajima SiC. Nippon Carbon, (Ube Industries. Co.). Fig. 12. Development of SiC fiber derived from polycarbosilane precursor. Yajima, Nippon Carbon 1980 1 Nicalon. Nicalon 10%. 1992 Nippon carbon Hi-Nicalon. 0.5% 1500. Yajima Nippon Carbon 1981 Iwai Yamamura Tianium alkoxide polytitano- carbosilane. 35) 1987 Tyranno. 1998 Ishikawa Tyranno-SA. 4,21), (NASA) 1990 Sylramic SiC. 36,37) 1998 SylramiciBN, 1700 H-Nicalon Type S, Tyranno-SA SiC. 2003 COI. 1989 SiCBN. 2003 batch 24 kg SiCBN 40 ton. 38) Li Xiadong 1980 Yajima SiC,. 21) 62
1990 SiC. 1990 SiC Yajima,. 2001 SiC, SiOC. 2006 7-1.8 GPa, 15% SiOC. 2007 6 1400 2.5 GPa SiC.,, SiC., SiC?,? Table 2. Price shift of commercial SiC fiber CVI PIP LSI NITE Nicalon Nippon NL 200 Carbon <1,100 3.0 $1,250/kg Hi-Nicalon Nippon Carbon <1,200 2.8 $6,900/kg Hi-Nicalon S Nippon Carbon 1,500 2.6 $10,000/kg Tyrano SA Ube N/A 3.3 $6,000/kg Sylamic Dow- $6,700~ 1,200 3.0 corning 10,000/kg SCS-6 Textron N/A 4.0 $5,500~ 8,800/kg SiC /?. SiC. 1980 1995 1995 2003. Nicalon kg 160 Hi-Nicalon type S kg 1200. 39). 2001 12 Nippon Carbon SiC. SiC, Nippon Carbon 2005 3. 40) SCS-6 2000 10000. 1500 6000 600. 40) Ti-6-2-4-2 F/A-18E 45%. 41) 2005 SiC (MMC),, (Formula one). 42) SiC,,,,,,. SiC, JAERI ( ), NASA,,,. 63
,. Oak Ridge National Lab (ORNL) DOE 1990 10 CFCC (continuos fiber ceramic composite), NIRIM ( ) NEDO SiC/SiC. Table 3. Applications and Markets for Ceramic Matrix Composites Industry Applications Potential annual market Power generation Combustion liners and vanes $1 billion Aerospace Military aircraft (nozzles and flaps) $250 million Industrial products Filtration, diesel engine liners Varies by industry SiC 10.,.,,, 43,44). SiC SiC Liner San Diego Solar Turbines Inc. 3000, 1999 4 liner Allied Signal Composites Hi-Nicalon SiC SiC. Liner (chemical vapor infiltration), Liners NASA environmental barrier coating. 45) Fig. 13. SiCf/SiC composite combustor liner developed for ultralow Nox combustor at NASA: 9,000-hour life at 2,200 F in lab test. 45).,., SiC.,,. Nippon Carbon SiC.., SiC. 2001 12 Nippon Carbon SiC, 2005 3. SiC. 2002 2001 40 %., 1700 2002,. 2001 2 Toyama, Hi- Nicalon, Hi-Nicalon Type S. prototype phase commercial production phase SiC. reheat resistance FRP 64
Fig. 15. SiC mat heater module of high quality gas-burner for house-hold. Fig. 14. Tyranno fiber felts used for DPF materials.,. SiC CMC, 2005. SiC. 40) Ube 2000 7 Tyranno. SiC 6 Isuzu DFP (Fig. 14). 5,45)., SiC. SiC well-being. Ishikawa TiO 2..,.. LG, SiC (Fig. 15). SiC, SiC IR. SiC.. Tyranno SA, Hi-Nicalon S stoichiometric SiC 1500,. 26,37) Sylramic SiC 2003., SiC. SiC, 65
.., high grade low grade, high grade, 1700. low grade..., -.,, (monolithic materials).,,.,. PAN Pitch, PAN PAN, SiC SiC...,., kg 300., kg, 1. SiC kg 20 1000. 100 ton.,. SiC. 1940-60, SiC 1975 10-20... SiC.,,,,,.,,. SiC SiC SiCf/SiC., 66
.. 1. T. Ohnaka, Industrial Scale Fabrication and Application of Polysilane, in Development of Organosilicon Polymers, Ed. by H. Sakurai, CMC, Tokyo, pp. 99-114, 1999. 2. Y. H. Kim, D. G. Shin, H. R. Kim, D. Y. Han, Y. U. Kang and D. H. Riu, Kumada Rearrangement of Polydimethylsilane using a catalytic process, Key Engineering Materials, 317-318, pp. 85-88, 2006. 3. S. Yajima, Y. Hasegawa, K. Okamura, and T. Matsuzawa, Development of High Tensile Strength Silicon Carbide Fiber Using an Organosilicon Polymer Precursor, Nature, 273[15], pp.525-527, 1978. 4. S. Yajima, Japanese Patent, JP54061299, 1977. 5. Y. Hasegawa, Organosilicon polymer and process for production thereof, US Patent, 4.590.253, 1986. 6. M. Birot, E. Bacque, J.-P. Pillot, and J. Dunogues, Comprehensive Chemistry of Polycarbosilanes, Polysilanzanes, and Polycarbosilazanes as Precursors of Ceramics, Chem. Rev., 95. pp. 1443-1477, 1995. 7. R. J. P. Emsley in Fine Ceramic Fibers (A. R. Bunsell and M.-H. Berger Eds.), Chap. 4, Marcell Dekker Inc, New York, 1999. 8. H. S. Park, D. W. Lim, K. S. Kim, Y. H. Kim, D. H. Riu, H. L. Kim, D. G. Shin, S. R. Kim, K. J. Kim, H. K. Shin, D. H. Cho, "The method of producing polycarbosilane using zeolite as catalyst," Korean parent, 10-0515239 (2005). 9. D. G. Shin, D. H. Riu, Y. H. Kim, H. R. Kim, H. S. Park, and H. E. Kim, Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight. Journal of the Korean Ceramic Society., 42[8], pp. 593-598, 2005. 10. D. G. Shin, D. H. Riu, E. B. Kong, Y. H. Kim, H. S. Park and H-E. Kim, Relationship between Microstructure and Mechanical Properties of Aluminum Doped Polycrystalline SiC fiber, Poster presentation at IU-MRS International Conference, 2006. 11. D. G. Shin, D. H. Riu, H. R. Kim, Y. H. Kim, Y. K. Jeong, H. S. Park and H-E. Kim, Fabrication of SiC fiber and non-woven fabric from the polycarbosilane produced using a catalytic process, Key Engineering Materials, 287, pp. 91-96, 2005. 12. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Curege, P. V. Huong, J. C. Sarthou, A. Delpuech, C. Laffon P. Lagarde, M. Monthioux, and A. Oberlin, Conversion Mechanism of a Polycarbosilane Precursor into an SiC Based Ceramic Material, J. Mater. Sci., 26[5] pp.1333-45, 1991. 13. Y. Hasegawa, M. Iimura, and S. Yajima, Synthesis of Continuous Silicon Carbide Fibres, J. Mat. Sci., 15, pp.720-728, 1980. 14. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, and P. V. Huong, Conversion Mechanisms of a Polycarbosilane Precursor into an SiC-based Ceramic Material. J. Mat. Sci., 26, pp.1333-1345, 1991. 15. G. Chollon, M. Czerniak, R. Pailler, X. Bourrat, and R. Naslain, A Model SiC-based Fibre with a Low Oxygen Content Prepared from a Polycarbosilane Precursor, J. Mat. Sci, 32, pp.893-911, 1997. 16. M. Takeda, A. Urano, J. Sakamoto, and Y. Imai, Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon Type S, Journal of Nuclear Materials, 258-263, Part 2, pp.1594-1599, 1998. 17. M. Takeda, A. Saeki, J.-I. Sakamoto, Y. Imai, and H. Ichikawa, Properties of Polycarbosilane-Derived Silicon Carbide Fibers with Various C/Si Compositions, Composites Science and Technology, 59, pp.787-792, 1999. 18. M. Takeda, J.-I. Sakamoto, Y. Imai, and H. Ichikawa, Thermal Stability of the Low-oxygen Content Silicon Carbide Fiber, Hi-Nicalon TM, Comosites Science and Technology, 59, pp.819-819, 1999. 19. F. Cao, D.-P. Kim, and X.-D. Li, Preparation of Hybrid Polymer as a Near-stoichiometric SiC Precursor by Simple Blending of Polycarbosilane and Polymethylsilane, J. Mat. Chem., 12[3], pp. 1213-1217, 2002. 20. T. Ishikawa, Y. Harada, Y. Inoue, and H. Yamaoka, Silicon Carbide Fiber Having Excellent Alkali Durability, US Parent, 5.945.362, 1999. 21. F. Cao, X.-D.Li, C.-X Feng, and Y.-C. Song, Synthesis of Polyaluminocarbosilane and Reaction Mechanism Study, J. Appl. Polym. Sci., 11[2], pp.2787-2792, 2002. 67
22. X. Fan, C.-X. Feng, Y.-C. Song, and X.-D. Li, Preparation of Si-C-O-N-B Ceramic Fibers from Polycarbosilane, J. Mat. Sci. Leu., 18. pp.629-630, 1999. 23. M. Takeda, A. Urano, J. Sakamoto, and Y. Imai, Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon Type S, Journal of Nuclear Materials, 258-263, Part 2, pp.1594-1599, 1998. 24. J. Lipowitz et al., Structure and Properties of Sylamic Silcon Carbide Fiber: A Polycrystalline, Stoichiometric b-sic Composition, Ceram. Eng. Sci. Proc., 18[3], pp.147-157, 1997. 25. H. M. Yun et al., Tensile Behavior of SiC/SiC Composites Reinforced by Treated Sylamic SiC Fibers, Ceram. Eng. Sci. Proc., 22[3], pp.521-531, 2000. 26. J. A. Dicarlo and H. M. Yun, Overview of NASA Studies on High-Temperature Ceramic Fibers, NASA 2000 Seals/Secondary Air System Workshops Proceedings. 27. E. B. Kong, D. H. Riu and D. G. Shin, Nano-structure control of SiC hollow fiber, Poster presentation at Engineering Ceramic Symposium 2007, Korean Ceramci Society. 28. E. B. Kong, Nano-structure control of SiC Hollow Fiber Fabricated from Polycarbosilane, Ms Thesis, Hanyang University, Seoul, Korea (2007). 29. D. H. Riu, E. B. Kong, Y. H. Kim, D. G. Shin, H. Y. Hong, K. Y. Cho, S. H. Huh Method of SiC micro tube with a controlled wall porosity and porous wall SiC micro tube, Korean patent application, 10-2007- 0045428 (2007). 30. D. G. Shin, D. H. Riu, H. E. Kim, Manufacturing Method of Polycarbosilane MAT by Electrospinning Process and Manufacturing Method of Silicon Carbide through The Process, Korean patent application, 10-2007-0045378 (2007). 31. Ceramic Fibers and Coatings (Advanced Materials for the Twenty-First Century), Committee on Advanced Fibers for High-Temperature Ceramic Composites, Publication NMAB-494 National Academy Press, P.20, Washington, D.C., 1998, print.nap.edu/pdf/0309059968 /pdf_image/20.pdf. 32. A. R. Bunsell and M.-H. Berger, Fine Ceramic Fibers, Marcel Dekker, Inc., 1999. 33. SCS SiC Fibers: Process, Properties, and Production, Technical Data from the Website of Specialty Materials www.specmaterials.com/scs.pdf. 34. R. V. Krishnarao, J. Subrahmanyam and S. Subbarao, SiC fibre by chemical vapour deposition on tungsten filament, Bull. Mater. Sci., 24[3], pp. 273-279, 2001. 35. S. Yajima, T. Iwai, T. Yamamura, K. Okamura, and Y. Hasegawa, Synthesis of a Polytitanocarbosilane and Its Conversion into Inorganic Compounds, J. Mat. Sci., 16, pp.1349-1355, 1981. 36. A. R. Bunsell and M. H. Berger, Fine Diameter Ceramic Fibers, J. Europ. Ceram. Soc., 20 284-87, 1995. 37. D. C. Deleeuw, J. Lipowitz, and P. P. Lu, Preparation of Substantially Polycrystalline Silicon Carbide Fibers from Polycarbosilane, US Patent No. 5,071,600, 1991. 38. D. Sporn, Current Developments in Non-Oxide Fibers for Ceramic Matrix Composites, Invited Presentation at 2003 Annual Meeting of American Ceramic Society, Nashville, TN, USA. 39. H. Ichikawa, Silicon Carbide Fibers, Ceramics Japan(Bulletin of the Ceramic Society of Japan), Special Issue on the Price of Ceramic Raw Materials, 36[4], pp. 265-266, 2001. 40. The Extension of the SiC Fibers Business in NCK, Topics in Nippon Carbon Co. 20/12, 2001. www.carbon.co.jp/english/topics/topic_01_12_20.html. 41. SCS SiC Fibers: Process, Properties, and Production, Technical Data from the Website of Specialty Materials www.specmaterials.com/scs.pdf. 42. www.engineeringnet.co.uk/features/eng092000009.htm. 43. The Extension of the SiC Fibers Business in NCK, Topics in Nippon Carbon Co. 20/12, 2001. www.carbon.co.jp/english/topics/topic_01_12_20.html. 44. R. A. Lowden and M. A. Karnitz., A Survey of the Status of Ceramic Reinforcement Technology and Its Relationship to CFCCs for Industrial Applications, CFCC fiber Report. www.ms.ornl.gov/cfcc/pro/ fibrep_f.htm, 1995. 45. M. Shibuya, Tyranno Fiber, Ceramics Japan(Bulletin of the Ceramic Society of Japan), Special Issue on the Price of Ceramic Raw Materials, 36[4], pp. 271-273, 2001. 68
(,, ),. (, ). ( ) ( ).. (,, ). ( ). (, ) Polytechnic University of New York ( ). 69