저작자표시 - 비영리 20 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제 배포 전송 전시 공연및방송할수있습니다 이차적저작물을작성할수있습니다 다음과같은조건을따라야합니다 : 저작자표시 귀하는원저작자를표시하여야합니다 비영리 귀하는이저작물을영리목적으로이용할수없습니다 귀하는 이저작물의재이용이나배포의경우 이저작물에적용된이용허락조건을명확하게나타내어야합니다 저작권자로부터별도의허가를받으면이러한조건들은적용되지않습니다 저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다 이것은이용허락규약 (Legal Code) 을이해하기쉽게요약한것입니다 Disclaimer
Performance analysis of an oxy-fuel combustion combined cycle using carbon dioxide as working fluid
Performance analysis of an oxy-fuel combustion combined cycle using carbon dioxide as working fluid
指導敎授金東燮 이論文을碩士學位論文으로提出함
明魯成
최근지구온난화와관련한온실가스의저감이중요한사회적인이슈가되고 있다 그중이산화탄소는대표적인온실가스로서현재대기중으로배출되는이 산화탄소를줄이기위한연구가활발히진행이되고있다 그중순산소연소를이용하는 SCOC-CC 시스템은현재의상용복합화력발 전시스템과구성상의큰차이가없이고순도의이산화탄소를포집할수있는 차세대발전시스템으로주목되고있다 본연구에서는천연가스를이용하는 SCOC-CC 서신뢰할만한성능상의예측을시도하였다 시스템의설계점설정에있어 시스템의설계점선정에있어서 필요한설계변수는오늘날에사용되고있는 1400 o C와 1600 o C의터빈입구온 도에해당되는기술범위로서그대상을선정하였고 이에있어서시스템의성능 예측에있어서중요한터빈의냉각모델역시현재의기술수준에해당하는변 수들을통해서 SCOC-CC의터빈블레이드온도를유지할수있는합리적인냉 각유량이넣어지도록고려하였다 이러한과정을통해두가지터빈입구온도에대해서 SCOC-CC의최적압력 비를예측해보았으며각급의상용복합화력발전시스템에비해서훨씬높 은압력비에서최적성능이나타나는것을확인하였다 SCOC-CC 의경우 ASU와 CSU와같은기존시스템에는없는추가적인장치가있기때문에이에 따른성능상의한계점에대해서도분석해보았다 그밖에도재순환시스템이라는 SCOC-CC의특징에따라서 ASU의순도에 따른재순환물성치의변화가시스템성능에미치는영향도분석해보았는데 공급산소의순도가적을수록시스템의출력이작아지나 효율상의변화에는큰 영향을미치지않는다는사실을확인하였다 최종적으로현재의상용복합화력발전시스템과후처리공정을포함시켰을 경우에있어서의성능상의변화와이에영향을미칠수있는인자에분석해보 았다 결과적으로 SCOC-CC 와의성능에있어서는근소한우위를보이지만 이 산화탄소의포집에있어서는 였다 SCOC-CC가뛰어난장점을가지고있음을확인하 i
This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC) Design parameters of the cycle are set up on the basis of component technologies of today s state-of-the-art gas turbines with a turbine inlet temperature between 1400 o C and 1600 o C The most important part in the cycle analysis is the turbine cooling which affects the cycle performance considerably A thermo dynamic cooling model is introduced to predict the reasonable amount of turbine coolant to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines Optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are searched We confirmed that optimal pressure ratio of SCOC-CC is much higher than that of convensional combined cycle The performance penalty due to the ASU and CO 2 capture is examined Also investigated are the influences of the purity of oxygen provided by the air separation unit on the cycle performance A comparison with the conventional combined cycle adopting a post-combustion CO 2 capture is carried out taking into account the relationship between performance and CO 2 capture rate ii
AAC ASU C CC CDT auxiliary air compressor air separation unit cooling parameter combined cycle compressor discharge temperature Cp specific heat [kj/kg-k] CSU GT HP HRSG IP carbon seperation unit gas turbine high pressure heat recovery steam generator intermediate pressure LHV lower heating value [kj/kg] LP low pressure mass flow [kg/s] PR P SCOC-CC ST pressure ratio pressure loss semi-closed oxy-fuel combustion combined cycle Steam turbine T temperature [ o C] TET turbine exhaust temperature [ o C] TIT turbine inlet temperature [ o C] heat [kw] power [kw or MW] iii
ε effectiveness η efficiency ρ density [kg/m 3 ] ϕ cooling effectiveness ϕ asymptotic cooling effectiveness flow coefficienct loading coefficient iv
1N b C c g gen mech mo net NG ref st T 1st stage nozzle blade Compressor coolant main stream gas generator mechanical motor net performance natural gas reference stage turbine v
List of Tables Table 1 Perfomance of combined cycle using two gas turbine 9 Table 2 Parameters of the bottoming cycle and auxiliary losses 10 Table 3 Composition of natural gas 10 Table 4 Parameters of the bottoming cycle and auxiliary losses 14 Table 5 Performance of SCOC-CC and comparision with conventional CC 23 Table 6 Compositions and properties at several locations of SCOC-CC(1400 o C class 95% oxygen purity) 28 Table 7 Compositions and properties at several locations of SCOC-CC(1400 o C class 90% oxygen purity) 29 Table 8 Performances of the conventional CC with post-combustion capture 35 Table 9 Compositions and properties at several locations in the conventional CC with post-combustion capture 36 vi
List of Figures Fig 1 CO 2 capture process 2 Fig 2 Schematic of the SCOC-CC system configuration 7 Fig 3 Efficiency versus specific power chart for the SCOC-CC using 1400 o C class gas turbine 20 Fig 4 Variations in compressor discharge temperature and turbine exhaust temperature with pressure ratio 20 Fig 5 Cooling effectiveness of the 1st stage nozzle blade 21 Fig 6 Variations in total coolant fraction (total coolant divided by compressor inlet air) with pressure ratio (1400 o C class) 21 Fig 7 Variations in nozzle blade temperatures with pressure ratio (1400 o C class) 22 Fig 8 Efficiency versus specific power chart for the SCOC-CC using 1600 o C class gas turbine 26 Fig 9 Variations in nozzle blade temperatures with pressure ratio (1600 o C class) 26 Fig 10 Schematic diagram of the conventional CC with post combustion CO 2 capture 33 Fig 11 Variations in reboiler heat demand steam turbine power and net cycle efficiency with absorption capure rate(1400 o C class PR18) 34 vii
Abstract Nomenclature Greek Subscripts List of Tables List of Figures i ii iii iv v vi vii viii 1 1 11 1 12 3 13 4 2 5 21 SCOC-CC 5 22 SCOC-CC 8 221 8 222 CSU 14 3 16 31 1400 o C SCOC-CC 16 32 1600 o C SCOC-CC 24 viii
33 O 2 27 34 CC 30 4 37 39 ix
11 연구배경 CCS(Carbon Capture and Storage) (Pre-combustion) (Post-combustion) (Oxy-combustion) (Air Seperation Unit) Unit) CSU(Carbon Storage 1
SCOC-CC (1) Graz (45) (2) CES SCOC-CC (3) Fig 1 CO 2 capture process (By Applied thermal engineering vol 30 pp54) 2
12 국내외연구동향 CCS ENCAP(ENhanced CAPture of CO 2 ) SCOC-CC SCOC-CC (67) (489) ASU (10) (1112) Conceptual Design (13) SCOC-CC 3
13 연구목적및내용 SCOC-CC SCOC-CC ASU CSU (F and J-class) SCOC-CC Cooling O 2 SCOC-CC 4
21 SCOC-CC 발전시스템의구성 SCOC-CC Fig 2 SCOC-CC ( HRSG) ( ASU) CSU HRSG ( CC) (Closed loop) CSU 2 (Triple pressure) HRSG CC Monoethanol Amine CO 2 CO SCOC-CC HRSG CO 2 CSU CO 2 (N 2 Ar) 5
18~21 o C 2% 6
Fig 2 Schematic of the SCOC-CC system configuration 7
22 SCOC-CC 시스템모델링 221 가스터빈모델링 Gate cycle (14) HRSG CSU ASU ASPEN HYSYS (15) 1418 o C 1600 o C F-class J-class SCOC-CC Table 1 27bar ASU (1617) SCOC-CC ASU ASU Fig 2 ASU Mole fraction ASU (1) ASU Table 2 O 2 (18) 8
Table 1 Performance of combined cycle plants using two reference gas turbines Parameters 1418 o C class 1600 o C class Item Ref (16) Simulation Ref (17) Simulation Comp inlet mass flow [kg/s] 5072 5987 Pressure ratio 174 23 Total coolant fraction [%] - 202-167 Number of turbine stages 4 4 Turbine inlet temp [ o C] 1418 1600 Turbine exhaust temp [ o C] 578 582 632 6315 Comp polytropic efficiency [%] - 893-915 Combustor pressure drop [%] - 40-40 Turbine stage efficiency [%] - 892-91 GT power [MW] 1964 1986 320 3268 ST power [MW] 1126 1055 140 1431 CC Power output [MW] 3090 3041 4600 4699 CC efficiency [%] 570 568 610 606 9
Table 2 Mole fraction of different O 2 purity Item O 2 purity 95% O 2 purity 90% O 2 09503 09003 N 2 00132 00641 Ar 00351 00343 CO 2 00014 00013 Specific power consumption [kwh/t-o 2 ] Ref (18) Simulation Ref (18) Simulation 2602 2604 2392 2422 (1) 25%C 3 H 8 LHV(Lower heating Value) Table 3 CC 90% CH 4 6% C 2 H 6 Table 3 Properties of Natural gas Components Mole fraction Methane (CH 4 ) 09009 Ethane (C 2 H 6 ) 00604 Propane (C 3 H 8 ) 00254 n-butane (C 4 H 10 ) 00058 iso-butane (C 4 H 10 ) 00054 iso-pentane (C 5 H 12 ) 00002 N 2 00019 LHV[kJ/kg] 49244234 10
ASU (2) (2) Table 1 SCOC-CC Table1 SCOC-CC 870 o C 870 o C (19) (3) ( ) Tg - Tb m cc pc φ φ = = C T - T m c 1 φ g c g pg (3) Table1 C 11
(3) 870 o C C 870 o C SCOC-CC (4) (4) SCOC-CC Polytropic Table 1 4 (13) Table 1 loading (20) Smith chart loading coeffiecient (flow coefficient loading coefficient ) Smith chart loading (5) 12
(5) Gatecycle generator 98% Macro funtion (6) (6) 13
222 하부사이클및 CSU 모델링 (21) HRSG Table 4 HRSG SCOC-CC 18 o C (N 2 Ar) CSU CCS CSU Table 4 Parameters of the bottoming cycle and auxiliary losses Parameters Value HPT pressure [kpa] 12400 IPT pressure [kpa] 2350 LPT pressure [kpa] 240 HP/IP steam temperature [ o C] 565 ST polytropic efficiency (HP/IP/LP) [%] 864/890/905 Condensing pressure [kpa] 462 Pinch Temperature difference (HP/IP/LP) [ o C] 35/40/5 Pump isentropic efficiency [%] 80 Pressure losses [%] 05~50 Motor efficiency [%] 95 Generator efficiency [%] 985 14
(21) 150 bar 40 o C CSU (7) CSU (8) (7) (8) SCOC-CC (9) (10) (9) (10) 15
SCOC-CC ASU O 2 SCOC-CC CC 31 1400 o C SCOC-CC 1418 o C F-class SCOC-CC 95% (by mole fraction) Fig 3 Fig 3 ( ) (PR174) (PR18) SCOC-CC PR50~60 Gross power Gross power ASU 16
Gross SCOC-CC SCOC-CC ( ) ( ) SCOC-CC Gross PR 50~60 60% (PR18) 20% net 10%-point CSU Net 485% Gross PR60 Fig 4 SCOC-CC NGCC (CDT) (TET) SCOC-CC CDT 100 o C SCOC-CC TET CDT ( 3) 17
Fig 5 (3) SCOC-CC CC SCOC-CC CDT Fig 6 ( / ) SCOC-CC (~PR40) SCOC-CC (3) Fig 7 870 o C SCOC-CC (PR60) 870 o C SCOC-CC 18
Fig3 30 05%-point 15% Fig 7 (PR30 PR60 30 ~50 o C ) (870 o C) Fig 3 Fig 6 Net PR60 1418 o C TIT SCOC-CC Net 19
Efficiency [%] 06 056 052 048 SCOC-CC gross 80 90 CC PR24 PR18 PR12 SCOC-CC net 60 50 80 70 40 90 30 40 70 60 50 40 30 PR 20 40 PR20 all blade temperatures at the design value PR 20 PR20 044 045 050 055 060 065 070 075 080 085 Specific power [MJ/kg] Fig 3 Efficiency versus specific power chart for the SCOC-CC using 1400 o C class gas turbine 800 700 Temperature [ o C ] 600 500 400 CC SCOC-CC 300 compressor discharge temperature turbine exhaust temperature 200 0 20 40 60 80 100 Pressure ratio Fig 4 Variations in compressor discharge temperature and turbine exhaust temperature with pressure ratio 20
φ 08 07 06 05 04 03 SCOC-CC PR20 Data 4 SCOC-CC PR60 CC PR18 CC PR12 CC PR24 02 01 00 000 005 Cp m 010 015 c c Fig 5 Cooling effectiveness of the 1st stage nozzle blade(1400 o C class) Cp g m g Total coolant Fraction [%] 32 30 28 26 24 22 20 Data 1 7:10:46?? 2011-11-04 SCOC-CC CC SCOC-CC with all blade temperatures at the design value 18 10 20 30 40 50 60 70 80 90 Pressure ratio Fig 6 Variations in total coolant fraction(1400 o C class) 21
1000 Data 1 Blade Temperature [ o C] 950 900 850 1st Nozzle 2nd Nozzle 3rd Nozzle 800 20 30 40 50 60 70 80 90 Pressure ratio Fig 7 Variations in nozzle blade temperatures with pressure ratio 22
Table 5 Performance of SCOC-CC and comparision with conventional CC CC SCOC-CC CC SCOC-CC Turbine inlet temp [ o C] Pressure ratio 18 1418 60 60 24 1600 90 90 ASU O2 Compressor Inlet temp [ o C] Inlet mass flow [kg/s] Compressor discharge temp Fuel supply [kg/s] Turbine exit temp [ o C] GT power output [MW] ST power output [MW] Gross power output [MW] Gross cycle efficiency ASU power [MW] CSU power [MW)] CO2 Capture rate [%] CO2 purity [%] purity [%] Net cycle power output Net cycle efficiency [%] 15 437 3 10 74 576 4 197 6 102 7 300 3 56 8 95 18 507 2 463 1 12 25 587 7 246 4 114 2 360 6 59 8-52 0-15 8 99 5 89 5 292 9 48 5 90 18 478 5 12 00 572 2 244 3 108 9 353 2 59 8-50 0-17 1 99 9 91 5 286 1 48 4 15 478 9 15 60 623 5 325 8 140 3 466 1 60 6 95 18 507 2 508 6 18 61 635 0 425 3 160 4 585 8 63 9-82 8-24 7 99 5 89 5 478 3 52 2 90 18 525 9 18 31 617 3 423 8 153 3 577 1 64 0-80 1-27 1 99 5 81 5 470 0 52 1 23
32 1600 o C SCOC-CC Fig 8 1600 o C SCOC-CC Fig 3 1400 o C TIT Fig 3 Net PR90 Gross Net 1400 o C SCOC-CC 4%-point Net 50% Fig 9 870 o C Fig 7 1400 o C TIT SCOC-CC Net Table 5 TIT CC SCOC-CC Table 5 O 2 90% ASU O 2 95% SCOC-CC 18%(11%-point) Net 8%-point ASU CSU ASU 24
SCOC-CC ASU 1400 o C SCOC-CC ASU 20% Net 17%-point Net 50% CSU CO 2 CSU / CO 2 ASU 95% O 2 90% 25
Efficiency [%] 065 060 055 050 30 24 PR18 CC 110 90 130 70 130 110 50 SCOC-CC net PR30 90 70 50 PR30 SCOC-CC gross 045 06 07 08 09 10 11 12 Specific power [MJ/kg] Fig 8 Efficiency versus specific power chart for the SCOC-CC using 1600 o C class gas turbine 1000 1st Nozzle 2nd Nozzle 3rd Nozzle Blade temperature [ o C] 950 900 850 20 40 60 80 100 120 140 Pressure ratio Fig 9 Variations in nozzle blade temperatures with pressure ratio (1600 o C class) 26
33 O 2 순도에따른성능영향 O 2 Table 6 Table 7 SCOC-CC ASU O 2 CO 2 N 2 CO 2 CO 2 CSU CO 2 95% O 2 CSU CO 2 90% 90% O 2 CO 2 80% (Table 5 ) CSU N 2 O 2 (TET) TIT O 2 27
Table 6 Compositions and properties at several locations (1400 o C class Item (1) Compressor Inlet (2) Compressor Outlet (3) Combustor Outlet (4) Turbine Outlet (5) HRSG Outlet (6) Condenser Outlet (7) CSU Outlet (8) ASU Outlet Mass flow [kg/s] 507 2 387 3 450 4 570 3 570 3 544 5 37 2 50 9 T[ o C] 18 463 1 1418 0 587 7 117 0 18 0 40 0 25 0 P[kpa] 101 3 6049 5807 103 5 101 8 101 3 15000 2700 CO2 88 50 88 50 77 40 79 60 79 60 88 5 89 5 0 14 Composition [%] H2O N2 Ar 2 00 3 00 6 50 2 00 3 00 6 50 14 40 2 60 5 60 11 90 2 70 5 80 11 90 2 70 5 80 2 00 3 00 6 50 0 94 3 00 6 56-1 32 3 51 PR60 95% oxygen purity) O2 Density Cp [kg/m 3 ] [kj/kg- o C - 1 799 0 861-41 98 1 128-16 20 1 410-0 582 1 192-1 266 0 966-1 799 0 861-647 8 3 195 95 03 35 95 0 944 28
Table 7 Compositions and properties at several locations (1400 o C class Item (1) Compressor Inlet (2) Compressor Outlet (3) Combustor Outlet (4) Turbine Outlet (5) HRSG Outlet (6) Condenser Outlet (7) CSU Outlet (8) ASU Outlet Mass flow [kg/s] 507 2 383 6 447 9 571 4 571 4 544 5 38 9 52 2 T[ o C] 18 478 5 1418 0 572 2 117 7 18 0 40 0 25 0 P[kpa] 101 3 6049 5807 103 5 101 8 101 3 15000 2700 CO2 80 60 80 60 70 90 72 90 72 90 80 60 81 50 0 13 Composition [%] H2O N2 Ar 2 00 11 00 6 40 2 00 11 00 6 40 13 90 9 70 5 60 11 40 9 90 5 80 11 40 9 90 5 80 2 01 11 10 6 40 0 93 11 10 6 50-6 41 3 43 PR60 90% oxygen purity) O2 Density Cp [kg/m 3 ] [kj/kg- o C - 1 753 0 870-39 80 1 130-15 80 1 402-0 578 1 183-1 231 0 972-1 753 0 870-518 6 3 092 90 03 35 96 0 950 29
34 후처리공정을포함한상용복합화력시스템과의비교 CO 2 CC CO 2 CCS (SCOC-CC vs CC+post combustion) Fig 10 Amine(MEA Monoethanol Amine) CC ASPEN HYSYS CO 2 SCOC-CC CSU CO 2 SCOC-CC CSU Amine CC CO 2 Amine MEA Pumping reboiler (22) (IP steam turbine) (Feedwater stream) CO 2 (CSU CO 2 / HRSG CO 2 ) 85% Amine 85%~90% (2324) 85% reboiler 30
363GJ/ton-CO 2 82~85% 34~365GJ/ton-CO 2 ) (7) (22) ( CSU CO 2 SCOC-CC (~85%) SCOC-CC(99% ) Fig 11 CO 2 CO 2 reboiler MEA 90% Table 8 1400 o C 1600 o C CC 1400 o C 85% Reboiler 21MW (Table 8 810 MW vs Table 5 1027 MW) MEA Pumping CSU 504% Table 3 Gross 64%-point SCOC-CC (O 2 95% ) 19%-point 31
SCOC-CC SCOC-CC(99%) 849% Table 9 SCOC-CC (Table 6) SCOC-CC CO 2 CC CO 2 899% Net SCOC-CC 928% Reboiler Net SCOC-CC 441% 1600 o C CC CSU CO 2 Table 8 CO 2 CSU SCOC-CC CC CO 2 90% CO 2 SCOC-CC CO 2 SCOC-CC 32
Fig 10 Schematic diagram of the conventional CC with post combustion CO 2 capture 33
ST power [ MW ] & net cycle efficiency [%] Data 3 2:01:47?? 2011-11-01 90 80 ST Power 70 60 net efficiency 50 40 3 85 86 87 88 89 90 91 92 93 Absorption CO capture rate 2 8 7 6 5 4 Reboiler heat demand [ GJ/ton-CO 2 ] Fig 11 Variations in reboiler heat demand steam turbine power and net cycle efficiency with absorption capture rate (1400 o C class PR18) 34
Net cycle efficiency [%] 20 4 49 0 44 1 54 3 53 1 49 3 Net cycle power output [MW] 266 6 259 3 233 4 417 4 408 5 378 7 CO2 purity for Storage [%] 99 0 99 0 98 9 99 0 99 0 98 9 Overall CO2 Capture rate [%] 84 9 89 9 92 8 84 9 89 9 92 8 CSU power [MW] -12 0-12 9-16 8-17 4-18 4-22 8 Gross cycle efficiency 52 7 51 4 47 3 56 6 55 5 52 2 Gross power output [MW] 278 6 272 1 250 1 434 8 426 9 401 5 ST power output [MW] 81 0 74 5 52 5 109 0 101 1 75 7 GT power output [MW] 197 6 197 6 197 6 325 8 325 8 325 8 Absorption CO2 capture rate [%] 85 90 93 85 90 93 It e m 8 5 % 1 41 9 0 % 9 5 % 8 o C N G C C P R 1 8 8 5 % 1 60 9 0 % 9 5 % 0 o C N G C C P R 2 4 Table 8 Performance of the conventional CC with post-combustion capture 35
Table 9 Compositions and properties at several locations in the conventional CC with post-combustion capture (1400 o C class PR18) mass Item T[ o C] P[kpa] flow[kg/s] CO2 Composition [%] H2O N2 Ar O2 Density Cp [kg/m 3 ] [kj/kg- o C (1) Compressor Inlet 507 2 15 0 101 3 0 03 1 00 77 30 0 92 20 70 1 221 1 009 (2) Compressor Outlet 403 8 437 3 1814 0 03 1 00 77 30 0 92 20 70 8 816 1 099 (3) Combustor Outlet 414 5 1418 0 1740 4 70 9 70 73 90 0 88 10 90 3 501 1 332 (4) Turbine Outlet 518 0 476 4 103 5 3 80 8 00 74 60 0 89 12 80 0 417 1 175 (5) HRSG Outlet 518 0 118 8 101 8 3 80 8 00 74 60 0 89 12 80 0 889 1 071 (6) Post process Outlet (6) CSU Outlet 32 6 25 6 93 9 40 0 200 15000 59 6 99 00 40 3 0 96 0 03 0 03 0 04 0 01 2 216 766 2 1 127 2 925 36
SCOC-CC ASU O 2 CC [1] SCOC-CC ( ) CC Net 1418 o C PR60 1600 o C PR90 [2] Net CC SCOC-CC 8%-point ASU O 2 SCOC-CC SCOC-CC CO 2 (99% ) ASU O 2 CO2 95% O 2 CO 2 90% O 2 90% CO 2 815% [3] SCOC-CC CO 2 CC 90% ( ) SCOC-CC 37
Reboiler SCOC-CC 38
[1] Franco F J Mina T Woollatt G Rost M and Bolland O 2006 Characteristics of cycle components for CO 2 capture Procof 8th International Greenhouse Gas Control Technologies June 19-22 Trondheim Norway [2] Jericha H Sanz W Gottlich E and Neumayer F 2008 Design details of a 600MW Graz cycle thermal power plant for CO 2 capture ASME paper GT2008-50515 [3] Anderson R E MacAdam S Viteri F Davies D O Downs J P and Paliszewski A 2008 Adapting gas turbines to zero emission oxy-fuel power plants ASME paper GT2008-51377 [4] Sanz W Jericha H Bauer B and Gottlich E 2008 Qualitative and quantitative comparison of two promising oxy-fuel power cycles for CO 2 capture Journal of Engineering for Gas Turbines and Power Vol130 pp1-11 [5] Tak S H Park S K Kim T S Sohn J L and Lee Y D 2010 Performance analyses of oxy-fuel power generation systems including CO 2 capture : comparison of two cycles using different recirculation fluids Journal of Mechanical Science and Technology Vol 24 pp 1947-1954 [6] Ulizra I and Pilidis P 1997 A semi closed-cycle gas turbine with carbon dioxide-argon as working fluid Journal of Engineering for Gas Turbines and Power Vol119 pp612-616 [7] Jackson A J B Neto A C Whellens M W and Audus H 2000 Gas turbine performance using carbon dioxide as working fluid in closed cycle operation ASME paper 2000-GT-153 [8] Bolland O and Mathieu P 1998 Comparison of two CO 2 removal options in combined cycle power plants Energy Conversion and 39
Management Vol39 No16-18 pp1653-1663 [9] Kvamsdal H M Jordal K and Bolland O 2007 A quantiative comparison of gas turbine cycles with CO 2 capture Energy Vo132 pp10-24 [10] Yang H J Kang S Y Kang D W and Kim T S 2011 Performance expectation of a semi-closed oxy-fuel combustion combined cycle using an existing gas turbine International Gas Turbine Congress Nov 14-18 Osaka Japan IGTC2011-0231 [11] Jordal K Bolland O and Klang A 2003 Aspects of cooled gas turbine modelling for the Semi-closed O 2 /CO 2 cycle with CO 2 capture ASME paper GT2003-38067 [12] Jonsson M and Bolland O 2005 "Gas turbine cooling model for evaluation of novel cycles" Proceedings of ECOS 2005 June 20-22 Trondheim Norway [13] Sammak M Jonshagen K Thern M and Genrup M 2011 Conceptual design of a mid-sized semi-closed oxy-fuel combustion combined cycle ASME paper GT2011-46299 [14] Enter Software Gate Cycle Ver 602006 [15] Aspen Technology AspenOne HYSYS Ver72 20065 [16] Gas Turbine World 2011 Performance specs Vol 41 No1 [17] Biasi V 2010 1600 o C-class M501J plant rated 460MW and over 61% efficiency Gas Turbine World Vol 40 pp 10-14 [18] Amann J M Kanniche M and Bouallos C 2009 Natural gas combined cycle power plant modified into O 2 /CO 2 cycle for CO 2 capture Energy Conversion and Management Vol50 pp510-521 [19] Kim T S and Ro S T 1995 Comparative evaluation of the effect of turbine configuration on the performance of heavy-duty gas turbines ASME paper 95-GT-334 40
[20] Moustapha H Zelesky M F Baines N C and Japikse D 2003 Axial and radial turbines Chapter 1-Turbine Fundamentals and Parameters [21] Park S K Ahn J H and Kim T S 2011 Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture Appl Energy Vol 88 pp 2976-2987 [22] Oei L E 2007 Aspen HYSYS simulation of CO 2 removal by amine absorption from a gasbased power plant SIMS2007conference October 30-31 Goteborg Sweden [23] Mohamed K Rene G B Philippe J Jose V M Jean Pfaff I Oexmann J and Kather A 2010 Optimised integration of post-combustion CO 2 capture process in Greenfield power plants Energy Vol35 pp4030-4041 [24] M A and Chakib B 2010 "Pre-combustion post- combustion and oxy-combustion in thermal power plant for CO 2 capture" Applied Thermal Engineering Vol30 pp 53-62 41