28 6 2010 12 pp 547~554 3D Stereo Display of Spatial Data from Various Sensors 1) 2) 3) 4) Abstract Visualization requires for effective analysis of the spatial data collected by various sensors. The best way to convey 3D digital spatial information which is modeling of the real world to the users, realistic 3D visualization and display technology. Since most of the display is based on 2D or 2.5D projection to the plane, there is limitation in representing real world in 3D space. In this paper, data from airborne LiDAR for topographic mapping, Flashi-LiDAR as emerging sensor with great potential to 3D data acquisition, and multibeam echo-sounder for underwater measurement, were stereoscopically visualized. 3D monitors are getting popular and could be information media and platform in geoinformatics. Therefore, study on creating 3D stereoscopic contents of spatial information is essential for new technology of stereo viewing systems. Keywords : Sensor data, 3D visualization, Stereo display monitor. 3. 2D 2.5D 3. 3, Flash-LiDAR. 3D. :, 3, TV 3D 3D,.,.. 3D (, 2010). 2D 3 2 3 1) (E-mail:sysypark@sju.ac.kr) 2) (E-mail:sgyun@sju.ac.kr) 3) (E-mail:leeyoungwook@empal.com) 4) (E-mail:dclee@sejong.ac.kr) 547
28 6. 3 2 2.5D, 3 2.,., (DPW). 3D TV DPW (Shutter glasses).. Google Earth Stereo GE Browser 3D. 3D. 3D (SDI) GIS. (Semantic information). 3D 3D 2D 2.5D., Flash- LiDAR 3D NVIDIA 3D Vision. TV PC.,,., 3. 3, Flash-LiDAR,. 3,. NVIDIA 3D. 3D, 3,,,. ( : Kelsh, < 1-a> ), ( : Zeiss, < 1-b> ), (< 1-c> ), ( : Intergraph, < 1-d> ), ( : DAT/EM, < 1-d> ). ( : Philips, < 1- f>). 3D 3 GIS.,. 548
3D. Peterka (2006). (a) (b) (c) (d) 3D TV 3D ( 2 ).,,, 3D,. (e) (f) 1. (2009), 4. (2010) 3,. (2008) 3 side-by-side up-down,. (2007). (2004) (VR) 3. Kim (2008) 3,, 2 NVIDIA 3D Vision 3D. 60Hz.,.,. lenticular parallax barrier.. (Screen depth) ( 3 ). 549
28 6,,. (Intrinsic image). Flash-LiDAR 3D,,, UAV, UGV,,, ( 4 ). 3 Optech ALTM 3070, 1. 4 Flash-LiDAR 1 ALTM 3070 33 ~ 167kHz 80 ~ 4000m 1/11,000 5 ~ 10cm 100Hz 0 ~ 25 (Swath) 0 ~ 0.93 (m) (ALS) (, 2009), Flash-LiDAR Flash. Flash, Flash,,, TOF(Time-of-Flight) 3D.,. Flash-LiDAR 5 Flash-LiDAR, 2. 2 Flash-LiDAR csem SR3000 176 144 (QCIF) 47.5 39.6 degrees 1 watt ( ) 850nm ( ) x, y, z, i ( ) 20MHz 7.5m 25 fps (a) 5. Flash-LiDAR (b) csem Flash-LiDAR 550
3D, SeaBeam 2000. 2 SeaBeam 2000 28 84 (, 2006). 4,600m~5,100m (, 2000). 3 SeaBeam 2000 12kHz 10~11,000m ping 1Hz 121 90~120 deg 3~20 ms 7.5 deg 10 deg 10~600m 400~11,000m 6, 7 8 3 (DSM). (a) (b) DSM 8.,. 3 3. 9., Flash-LiDAR. line-dropout. line-dropout Landsat SPOT (Systematic error). (, 2006). (a) (b) DSM 6. (a) (b) Flash-LiDAR (a) (b) DSM 7. Flash-LiDAR ( : The Ohio State University/Center for Mapping) (c) 9. 551
28 6 ( 10 ). ( : Flash-LiDAR, linedropout ) 3 falsecolor flying through 11 22 ViewSonic FuHzion 120Hz 3D LCD. 3.,,. walking through flying through., 3. 3. (a) (a) 2D (b) Flash-LiDAR (b) (c) 10 (c) 11 552
3D 2D 2.5D. 3D 3. 2D. 3.,,., Flash-LiDAR., line-dropout. X,Y,Z 3.. 3 3, DEM,,,,. 3D,. 3D, 3D.., Flash-LiDAR The Ohio State University Center for Mapping Charlse Toth,. (2000),,, pp. 201-239. (2009),,,, pp. 56-64.,, (2008), 3,,, 33 10, pp. 813-819.,, (2006), 3,,, 10 2, pp. 53-66.,,,,, (2006), EM 120 SeaBeam 2000,,, 28 4, pp. 467-473. (2004), 3,,, 7 2, pp. 105-108.,, (2010), 3D,,, pp. 81-85. (2006), 553
28 6,,, pp. 53-92.,,, (2009), 3D,,, 14 4, pp. 419-427. Kim, E. (2008), Future 3D display technologies and applications, International Meeting on Information Display,, pp. 133-138. Peterka, T., Sandin, D., Ge, J., Girado, J., Kooima, R., Leigh, J., Johnson, A., Thiebaux, M., and DeFanti, T. (2006), Personal Varrier: Autostereoscopic virtual reality display for distributed scientific visualization, Future Generation Computer Systems, Vol. 22, Issue 8, pp. 976-983. ( 2010. 10. 05, 2010. 10. 15, 2010. 10. 18) 554