<31322DC8B2BCBCC0B12D C0FAC0DABCF6C1A4292E687770>

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

12(4) 10.fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

exp

<31322DB9DAC1A4BFF52DB0EDC0AFBAAFC7FCB5B5B3EDB9AE32356D6D5F B315D2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30342DC0FAC0DABCF6C1A42DC6AFC1FD3132B9DABFB5B5B55F76312E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

untitled

<30362DC0FAC0DABCF6C1A42D3036BFECBFCFC3F8315FBCF6C1A4BABBC1A6C3E2C7D E687770>

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

fm

12.077~081(A12_이종국).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

767(심천식) hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

인문사회과학기술융합학회

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

디지털포렌식학회 논문양식

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

<31325FB1E8B0E6BCBA2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DOOSAN HEAVY INDUSTRIES & CONSTRUCTION TOOL STEEL FOR DIE CASTING & HOT STAMPING The ever-faster pace of change necessitates products of ever-higher p

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

°í¼®ÁÖ Ãâ·Â

Introduction to Maxwell/ Mechanical Coupling

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

歯174구경회.PDF

<3037BCF6C1A42D3533B1E8B8EDC7F65B315D2D65626F6F6B2E687770>

< C6AFC1FD28B1C7C7F5C1DF292E687770>

DBPIA-NURIMEDIA

<B8F1C2F72E687770>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

ePapyrus PDF Document

DBPIA-NURIMEDIA

page 1end

DBPIA-NURIMEDIA

Microsoft Word - KSR2013A291

09È«¼®¿µ 5~152s

DBPIA-NURIMEDIA

08_FFseo.hwp

< B1E8B5BFC0B12E687770>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<3036BCF6C1A42D3139B1E8B8EDC7F6BCF6C1A42E687770>

10(3)-10.fm

Microsoft Word - KSR2012A103.doc

DBPIA-NURIMEDIA

歯국문-Heatran소개자료1111.PDF

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

02À±¼ø¿Á

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

한국산학기술학회논문지 Vol. 6, No. 2, pp , 2005 교량용강재박스의현장제조시셀프실드플럭스코어드 아크용접의적용타당성에대한연구 황용화1* 고진현2 오세용3 A Feasibility Study on the Application of Self-Sh

08.hwp

소성해석

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

스포츠과학 143호 내지.indd

DBPIA-NURIMEDIA

10(3)-09.fm

À±½Â¿í Ãâ·Â

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Transcription:

65 연구논문 EH4 과 API2W 강재의극후판재다층 FCAW 잔류응력해석 버트접합부 황세윤 * 이장현 **, 양용식 * 이성제 * 김병종 * * 인하대학교대학원조선해양공학과 ** 인하대학교공과대학조선해양공학과 Numerical Analysis of Welding Residual Stresses for Ultra-thick Plate of EH4 TM and API 2W Gr.5 Steel Joined by Flux Core Arc Welding Se-Yun Hwang*, Jang-Hyun Lee**,, Young-Sik Yang*, Sung-Je Lee* and Byung-Jong Kim* *Dept. of Naval Architecture and Ocean Engineering, Graduate School, Inha University, Incheon 42-2, Korea **Dept. of Naval Architecture and Ocean Engineering, Inha University, Incheon 42-2, Korea Corresponding author : jh_lee@inha.ac.kr (Received December 17, 29 ; Revised January 4, 21 ; Accepted April 14, 21) Abstract Some structural members of large-scale marine vessels such as large-scale offshore structures and very large container ships are assembled by very thick plates of which thickness exceeds 6mm. Also, high-tensile steels have been selected to meet the required structural strength and fatigue strength. Generally, multi-pass welding method such as FCA(Flux-Core Arc) welding has been used to join the thick plates. Considering the welding residual stresses, fatigue strength of the welded joints of thick plates should be assured since the residual stress influences the fatigue strength. This paper presents a numerical procedure to investigate the residual stress of structure joined by multi-pass FCA welding so that it can be incorporated into the fatigue strength assessment considering the effect of welding residual stress. The residual stress distribution is also measured by X-Ray diffraction method. The residual stress obtained by the computational model also has been compared with that of experiment. The results of FEA are in very good agreement with the experimental measurements. Key Words : Multi-pass FCA welding, FEA, Welding residual stress, Flux core arc welding, X-Ray diffraction measurement, EH4 TM, API2W Gr.5 1. 서론 최근에해상물동량이증가하면서대형컨테이너운반선의수요가증가함에따라 1, TEU(Twenty feet Equivalent Unit) 이상을적재할수있는초대형컨테이너운반선이설계및건조되기시작하였다. 대형컨테이너운반선에는높은수준의응력이발생할뿐만아니라, 상갑판및현측판등의용접부에서피로파괴의가능성이높다. 따라서상갑판과현측판등에 4MPa 이상의높은항복강도를가지는 TMCP (thermo mechanical control process) 형고장력강을사용할뿐만아니라두께가 7mm 를넘는경우도있다 1). TLP(Tension leg platform) 와같은대형해양구조물에 tendon 이용접되는 tendon porch 는구조물전체의안전성과관련된중요한부재이며, 구조물전체의부력이집중되므로매우높은하중을받고있다. 따라서이부재는설계시에용접부를고려한피로강도예측이매우중요하다. 각선급의규정에의하면 tendon 大韓熔接 接合學會誌第 28 卷第 3 號, 21 年 6 月 293

66 황세윤 이장현 양용식 이성제 김병종 porch 부재는 API 2W 강재로제작되어야하며, 실제설계에서는 6mm 이상의극후판이사용되고있다 2,3). 그리고 FPSO (Floating Production, Storage and Offloading) 와같은심해해양구조물의갑판및현측판에도 API 2W 또는 EH 4 급의강종이사용되고있다. 초대형선박, 해양구조물의용도와부재위치에따라다르나 9mm의두께까지도사용되고있다. 이러한고장력극후판이사용되는부재의용접에는자동화된 FCAW(flux cored arc welding) 가주로사용되고있다. FCAW 는 SAW(submerged arc welding) 과함께입열량이적고용착속도가좋기때문에자동화가용이하여후판의자동용접에가장많이사용하고있고, 특히후판이적용된긴용접장의수직상향맞대기이음이나선체블록탑재과정의맞대기이음에서는약 15회이상의다층용접방법을적용하여사용되고있다 4). 용접된구조물의잔류응력은피할수없으며, 용접잔류응력에구조물의외력이더해졌을때피로수명이단축되는것은주지의사실이다 5). 용접잔류응력을고려한피로수명평가및용접잔류응력완화등에는 3차원응력분포를파악할필요가있다 6). 유한요소해석법과같은수치해석모델은용접잔류응력을파악하기위해사용하는일반화된방법이다. 그러나, 후판에적용되는 FCAW 방법은 15여회이상의용접적층이생성되기때문에, 각각의적층을모두반영하여 3차원잔류응력분포를수치적인모델로구현하는것이어려울뿐만아니라많은계산시간을필요로한다. 후판의다층용접에의한잔류응력해석을위해서주로 2차원평면모델을이용한연구가수행되어왔으며 7,8), 2차원해석결과를 3차원적으로확장하여사용하고있는사례를찾아볼수있다 9). 2차원모델을이용하면계산시간을단축할수있는편리함이있으나예측할수있는응력의성분이많지않으며 3차원응력분포를모두파악할수는없는한계를가지고있다. 3차원유한요소해석모델을적용한사례로적층의수가 2회이하인박판에대한연구 1) 는찾아볼수있으나, 적층의수가많은후판의 3차원해석사례를찾아보기는쉽지않다. 본연구는다층용접에의한후판의 3차원잔류응력분포를파악하기위한해석모델을제시하고자한다. 이를위하여초대형선박및해양구조물에사용되는 EH4 강종및 API 2W 계열의두께 8mm 후판을대상으로 3차원잔류응력분포를해석및계측하였다. 각시편은초대형컨테이너운반선및 FPSO 에적용된부재로서다층 FCAW 가사용되었다. XRD(X-ray diffraction) 방법을이용하여잔류응력을계측한후에유한요소해석결과를비교하여수치모델의타당성을살펴보고자한다. 2.1 용접시편 8mm 2. 시편의특성및용접조건 본연구에사용된시편의형상은 Fig. 1과 Fig. 2에보인것과같으며, FCAW 방법으로용접된 EH4 TM 시편과 API 2W Gr. 5 시편을제작하였다. 시편은 D 조선소의설비를이용하여제작되었다. API 2W 강재는 toe grinding 및 ultra shot-peening 의후처리방법을적용하여용접잔류응력을감소시킨시편을동시에제작하였다. 시편의단면형상과적층순서는 Fig. 3에보인것과같다. 각용접시편은두께가 8mm 이며, X형개선을가진맞대기용접으로제작하였으며상면과하면에각각 14회용접을실시하였다. 두강재의화학조성과기계적재료특성은각각 Fig. 1 Specimen of EH4 TM Fig. 2 Specimen of API 2W Gr. 5 Angle : 4 Gap : 8mm As welding As welding Toe grinding Ultra peening Fig. 3 Sectional view of weldment layers and X-groove joint 294 Journal of KWJS, Vol. 28, No. 3, June, 21

EH4 과 API2W 강재의극후판재다층 FCAW 버트접합부잔류응력해석 67 Table 1 Chemical component of specimen (wt %) Steel C Si Mn P S EH4 TM.8.3 1.56.1.1 API 2W Gr.5.8.25 1.43.1.2 Table 2 Mechanical property of specimen Steel YS(MPa) US(MPa) EL(%) EH4 TM 47 582 25 API 2W Gr.5 433 548 3 Table 3 Welding condition of FCAW Layer Welding Condition Root Fill Cap Fill Cap 1 2~11 12~14 15~25 26~28 Current(I) 26 25 25 236 21 Voltage(V) 27 27 28 26.6 23 Speed (cm/min) 9.1 13.1 12.1 13.6 13.7 Heat input (KJ/mm) 4.63 2.93 2.47 2.76 2.12 Table 1과 Table 2에정리하였다. 각적층별로사용된용접조건은 Table 3에보인것과같다. 수치해석은 As-Welding 시편을대상으로수행하였으며, 모든시편의용접잔류응력을계측하였다. 3. 다층 FCA 용접의유한요소해석 용접구조물은이동열원이가진열에너지의유입으로인하여국부적으로높은온도차가발생한다. 불균일한온도분포는높은열응력을발생시키고, 부재의소성변형과잔류응력을발생시킨다. 따라서잔류응력해석은온도분포해석과열변형해석의연성문제로접근할수있다 8,11). 이동열원의열유입으로인한온도분포는식 (1) 에서와같이열확산방정식으로표현된다. v T ( k T) + q = ρc t (1) Fig. 4 Schematic procedure for welding residual stress analysis 연성구조해석방법을선택하였다. 비선형해석을수행하기위한기법으로는 Newton-Raphson 방법을선택하였다. 유한요소해석의절차는 Fig. 4에정리하였다. 3.1 유한요소해석모델 각적층별로용접부의생성과정을따라온도분포해석과열응력해석을수행하기위한방법으로는시차방법 (staggered approach) 를사용하였다. 용접비드 (bead) 의생성과정은요소제거 (deactivation) 및생성 (activation) 방법을이용함으로써각각의비드가생성되는순간에요소의강성을회복시키는방법으로모사하였다. 시편의제작에자동화된 FCAW 방법을사용하였기때문에각적층별로용융부의형상이유사하다는가정하에 Fig. 5에서와같이각적층별로요소의형상을정의하였다. 각적층단계별로용접열원이진행하는속도에맞춰서요소가생성되도록하였다. 각용접적층별로서로다른용접속도, 전류및전압이적용되므로 28개의하중조건 (load case) 을정의한후에해석을수행하였다. 여기서 는 heat conductivity 이고, 은온도, 는 internal heat rate, 는재료의밀도, 는재료의 specific heat capacity 이다. 본연구에서는수치해석을위해서상용유한요소해석프로그램인 MSC.Marc 를이용하였다. 각적층별로열원이진행되는과정에따라열전달해석을수행하고, 온도분포를열하중으로치환하는 Fixed condition Welding direction 28 Pass weld bead Fixed condition Fig. 5 Finite element model of specimen 大韓熔接 接合學會誌第 28 卷第 3 號, 21 年 6 月 295

68 황세윤 이장현 양용식 이성제 김병종 또한용융부를중심으로요소를세부분할하였고, 멀어질수록요소의크기를증가시킴으로써전체모델의요소의수를감소시켰다. 해석모델은 8,557 개의절점, 7,698 개의요소로구성하였으며 8-절점육면체요소를사용하였다 12). Quad-core CPU를사용하는워크스테이션을이용하였을때 5 시간이해석에소요되었다. 3.2 Double Ellipsoidal Heat Source Model 아크용접에의한열에너지유입은용접봉과모재 (base metal) 사이에투입되는아크에의한열유속 (Heat flux) 과용입재 (electrode) 에의한초기열에너지의투입으로가정할수있다 14). 따라서아크용접의열에너지투입은통상열유속의분포함수에따라계산된열유속을경계조건으로부여하거나, 생성되는요소에초기온도를부여함으로써열에너지투입을반영한다. 본연구에서는열유속을입열에너지분포로가정하였으며, Fig. 6에보인것과같이 Goldak 이제안한 double ellipsoidal heat source 모델을이용하였다 15). 열유속분포함수 ( ) 는식 (2) 과같이가정하였으며, 열에너지량 는식 (3) 에정의한값을사용하였다. q f, r f, r 2 2 2 3x 3y 3z f, rq 2 2 2 a b c 6 3f ( x, y, z) = e e e abc π π Q= η V I (3) 여기서, 는아크와모재사이의열손실을고려한아크의효율이고 16), 는용접전압, 그리고 는아크의전류를나타낸다. 열원모델의형상변수인 와 는각각열원의폭과깊이를나타내며, 은열원의진행방향길이및후측길이를나타낸다 15). 본연구에서의 FCAW 의아크효율 ( ) 은.8로가정하였다 17). 또한이중타원체열원 (2) Fig. 7 Sectional view of heat flux distribution 모델의전면과후면에투입되는입열비 는식 (4) 에서와같이정의하였으며 을만족하도록가정하였다 15,16). f f 2 2 =, fr = (1 + c / c ) (1 + c / c ) (4) r f f r Fig. 7은유한요소해석모델에적용된열유속경계조건의형상을나타내고있다. 3.3 대류조건용접이진행되는과정및용접완료된후에냉각과정을고려하여야하므로, 각용접적층사이에대류에의한냉각경계조건을부여하였다. 따라서용접진행단계, 용접 pass 가바뀌는중간단계, 용접후냉각단계로구별하여 Table 4에서와같이자연대류값을경계조건으로적용하였다. 대기온도는 2 o C로가정하였으며, 대류과정은각적층을고려하여 28개의경계조건으로작성하였다. 냉각은자연대류와복사에의한효과를모두고려하여야하지만, 이효과를이론적으로정확히예측하는것은어렵다. Rykalin 이제시한대류계수 ( ) 는대류냉각효과와복사열전달에의한냉각효과를동시에포함한값으로식 (5) 에제시한것과같다 18). 본연구에서는방사율 Table 4 Load cases of heat convection Cooling steps Convective time Convective surfaces Each welding pass Weld time Convection on all the surface except weldment Interval of pass 5 min Convection on all the surface except weldment Fig. 6 Double ellipsoidal heat source model After welding 2 hour Convection on all surface 296 Journal of KWJS, Vol. 28, No. 3, June, 21

EH4 과 API2W 강재의극후판재다층 FCAW 버트접합부잔류응력해석 69 Heat convection coefficient(h) 1.25 1-5 1. 1-5 7.5 1-6 5. 1-6 2.5 1-6. 25 5 75 1 125 15 175 2 Temperature( ) Heat convection coefficient(h) Fig. 8 Heat convection coefficients ( ) 은.9로가정하였으며, 대류계수는 Fig. 8과같은값이다. h 4 r 1.41 = 24.1 1 ε T (5) 3.4 재료특성 재료의특성 (material property) 은온도에따라변하는값으로정의하였다. EH4 TM과 API 2W Gr. 5 강재의재료특성은 Fig. 9와같이온도의존함수로가정하였다. 재료의소성경화모델은비선형등방경화 (nonlinear isotropic hardening) 조건을적용하고 von-mises 항복조건을따르는것으로가정하였다. 또한 plastic modulus는 multi-linear isotropic hardening 특성을기준으로온도에따라세분화하여정의하였다. EH4 TM 재료의응력-변형율특성은 Fig. 1에보인것과같은값을이용하였다. API2W Gr. 5재료의응력-변형율특성 EH4 TM의항복응력의비율을 Fig. 1에곱하여가정하였다 19). 3.5 온도분포해석 용접에의한입열량은식 (3) 에서정의한값을경계조건으로부여하였다. Table 3에서정리한것과같이 3 25 2 15 1 5 12 2.4 1 8 6 4 2. 1.6 1.2.8 Stress [MPa] 55 5 45 4 35 3 25 2 15 1 5..5.1.15.2.25 Strain Fig. 1 Temperature dependency of stress plastic strain curve Table 5 Maximum temperature at each pass Layer No Temp( ) Root 1 2,15 Fill 2~11 2,3 Cap 12~14 1,8 Fill 15~24 2,35 Cap 25~28 1,79 Fig. 11 Temperature distribution in FEA 각적층단계별로전류, 전압, 용접속도가다르기때문에 Table 5에서와같이각용접단계별로다른온도분포를가지고있다. Fig. 11는용접진행과정에서발생한단면의온도분포를보이고있다. 유한요소해석을통하여얻은열영향부 (Heat Affected Zone) 과 Fig. 3에서보인용접시편에서계측한영역과동일하도록식 (3) 의변수의값을정하였다. Fig. 12는용접부끝부분 (Bead toe) 으로부터 y 방향으로 6mm 떨어진지점의계산된온도이력을나타낸것이다. 용접부끝부분에서최대약 1,5 o C의온도가발생하였으며, 6mm 떨어진지점에서는약 9 o C의온도가계산되었다. 2 5 1 15 2 25 Temperature( ) Fig. 9 Material properties.4. 3 4. 잔류응력계측실험 잔류응력을계측하기위해서현재까지알려진비파괴적잔류응력측정방법들중효과적인방법인 XRD(X- 大韓熔接 接合學會誌第 28 卷第 3 號, 21 年 6 月 297

7 황세윤 이장현 양용식 이성제 김병종 Temperature( ) 18 15 12 9 6 3 36 72 18 144 18 Time [sec] Fig. 12 Temperature history at observed points Longitudinal stresses [MPa] 4 3 2 1-1 -2-3 1 2 3 4 5 6 7 8 Distance [mm] EH4 As welding API 2W Gr.5 As welding API 2W Gr.5 Toe grinding API 2W Gr.5 Ultra peening Fig. 15 Residual stresses distribution of each specimen Fig. 13 Residual stress measurement by X-Ray Incident beam d θ θ Undeformed state Diffracted beam d Incident beam θ Diffracted beam θ deformed state Fig. 14 Measurement of variations in the lattice spacing from the diffraction angle 2) Ray Diffraction) 를이용하여 Fig. 13에서와같이용접시편표면의잔류응력을계측하였다. XRD 를이용한잔류응력측정은 Fig. 14에서와같이시편표면에서의 X-Ray 의회절각의변화를이용하여측정한다 2). 따라서동일한위치라도시편표면의상태에따라계측값이변화하기때문에정확한계측을위해서는표면의상태를매우청결하고균일하게유지하여야한다. 따라서계측된잔류응력의신뢰성을높이기위해서화학적부식방법을이용하여표면상태를처리한후잔류응력을측정하였다. 표면의불순물을제거한시편의상면 (Top Side) 의잔류응력을용접비드끝부분을시작으로 1mm 간격으로 8개의점에서측정하였다. 피로수명에가장큰영향을미치는것으로알려진종방향응력 (Longitudinal stress) 을계측하였다. Fig. 15는다층 FCA 용접이적용된 EH4의 as welding 시편과 API 2W Gr.5 의 as welding, toe grinding, ultra peening 시편에서계측한잔류응력을비교하였다. As welding 시편의경우용융부끝부분에서약 32MPa정도의인장잔류응력이발생하고거리가 3mm 이후에는압축응력이발생하는것을알수있다. 두시편의응력형태는비슷함을확인할수있었다. 그리고 toe grinding 과 ultra peening 을거친시편에서계측된잔류응력은 as welding 시편과비교하였을때잔류응력이감소함을확인할수있었으며, 특히 toe grinding 의잔류응력감소효과가큼을확인할수있었다. Im & Chang 1) 은본연구와동일한종류의시편에대해서고주기피로실험을수행한결과용융부끝을시작점으로두께방향으로균열이진전됨을확인하였다. EH4 TM 시편과 API 2W Gr.5 시편모두 as welding 상태의피로수명은 UK DEn class D mean+2s curve 를따르고있으며 toe grinding 과 ultra peening 시편의피로수명은 as welding 상태보다증가함을실험으로확인하였다 1). 5. 극후판 FCA 용접부잔류응력특성 유한요소해석결과와계측된종방향응력 ( ) 을 Fig. 16과 Fig. 17에비교하였다. 두재료에대해서계측결과와유한요소해석결과를비교하였을때약 9% 정도일치함을확인하였다. 다른응력성분및두께방향의응력성분을비교하지는못하였으나, 유한요소해석모델의타당성을일부분확인하였다고사료된다. Fig. 18은용접선을중심으로종방향의응력성분을도시한것이다. 두께방향의잔류응력은 Fig. 19와같이분포함을확인하였으며, Fig. 2은두께방향을따라종방형응력 ( ) 횡방향응력 ( ), 그리고 von- Mises 등가응력을도시하였다. 298 Journal of KWJS, Vol. 28, No. 3, June, 21

EH4 과 API2W 강재의극후판재다층 FCAW 버트접합부잔류응력해석 71 8 6 Experiment FEA -2-1 1 2 3 4 5 6-5 Stress [MPa] 4 2-2 Depth[mm] -1-15 -2-25 -3-35 -4 2 4 6 8 1 12 14 16 18 2 Length[mm] Fig. 16 Comparison of residual stresses obtained by FEA and measurement (EH4 TM) -4 Stress [MPa] Fig. 2 Residual stresses along the thickness direction Stress [MPa] 8 6 4 2-2 Experiment FEA -4 2 4 6 8 1 12 14 16 18 2 Length[mm] Fig. 17 Comparison of residual stresses obtained by FEA and measurement (API 2W Gr.5) 6. 결론 본연구에서는극후판의다층용접에의한잔류응력예측을위한유한요소해석모델을제시하고 FCAW 방법에의해서 28회적층된 8mm의극후판구조물을 EH4 TM과 API 2W Gr. 5강재로각각제작한후에, 잔류응력을파악하였다. 또한다층 FCAW 의특성을반영한 3차원유한요소해석절차를제시하고, 해석과계측을통해얻은잔류응력을비교하여두결과가유사함을확인하였다. 본연구에서제시한연구방법과결과를요약하면다음과같다. 다층용접이적용된 8mm 극후판용접구조물의 3 차원유한요소해석방법을제시하였다. EH4 TM과 API 2W Gr.5 고강도극후판의다층맞대기용접구조물의잔류응력을파악하였다. 극후판의다층용접을 3차원모델로해석한후계측값과비교함으로써잔류응력예측이가능함을확인하였다. Fig. 18 Longitudinal stress distribution obtained by FEA 후기 본연구는포항산업과학재단의지원으로이루어졌습니다. 연구지원뿐만아니라토론에참여하여주신임성우박사님과시편을제작해주신대우조선해양 ( 주 ) 께감사드립니다. 참고문헌 Fig. 19 Sectional view of the residual stress distribution 1. S. W. Im, and I. W. Chang: Fatigue Performance of EH4-TM Steel Plate for Container Carrier, Proceedings of the Nineteenth 29 International Offshore and Polar Engineering Conference, (29) 2. S. W. Im, I. W. Chang, C. H. Cho, and K. K Park: 大韓熔接 接合學會誌第 28 卷第 3 號, 21 年 6 月 299

72 황세윤 이장현 양용식 이성제 김병종 Fatigue Behavior of Large Scale Tabular Joint for API 2W Gr.5 Steel, Journal of Korean Society of Ocean Engineers, (25), 19-3 (in Korean) 3. S. W. Im, and J. S. Lee: Assessment of Fatigue Strength Characteristics of Tendon Porch in Offshore platforms for API 2W Gr.5 Steel, Journal of Korean Society of Ocean Engineers, 2-5 (26) (in Korean) 4. I. W. Han, Y. H. Park, G. B. An, and Y. H. An: Development Trends of Steel Plates for Ship Building and Off-shore Construction and It s Weldability, Journal of KWJS, 27-1(29), 25-33 (in Korean) 5. M. N. James, D. J. Hattingh, D. G. Mills, and P. J. Webster: Residual stress and strain in MIG butt welds in 583-H321 aluminum: As-welded and fatigue cycled, Int J of Fatigue, 31-1 (29), 28-4 6. T. L. Teng, and P. H. Chang: Effect of Residual stresses on fatigue crack initiation life for butt-welded joints, Journal of Materials Processing Technology, 145 (24), 325-335 7. G. B. Jang, H. K. Kim, and S. S Kang: The Effects of Root Opening on Mechanical Properties, Deformation and Residual Stress on Weldments, Welding Research Supplement, (21) 8. I. S. Kim, I. K. Kim, C. J. Moon, Y. J. Jeong, and Y. H. An: A Study on Analysis of Heat Transfer and Residual Stress on the Weld Zone using FEM, Journal of the Korean Society of Machine Tool Engineers, 9-5 (2), 96-14 (in Korean) 9. S. M. Joo, B. H. Yoon, W. S. Chang, H. S. Bang, H. S. Bang, and C. S. Ro: Redistributions of welding residual stress for CTOD specimen by local compression, Journal of KWJS, 27-6 (29) 31-35 (in Korean) 1. C. H. Lee, and J. H. Chang: Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects, Materials Science and Engineering, 487-1 (28), 21-218 11. J. H. Lee, S. Y. Hwang, and Y. S. Yang: Effect of Melting Pool on the Residual Stress of Welded Structures in Finite Element Analysis, Journal of Ship and Ocean Technology, 11-3 (27), 14-23 (in Korean) 12. S. Y. Hwang, J. H. Lee, Y. S. Yang and, S.W. Im: Numerical Analysis and Experiments of Residual Stress in Tandem EGW for Very Thick Plate, Journal of KWJS Conference, 5 (28), 11 (in Korean) 13. MSC.Marc Volume B : Element Library, MSC. Software Co., (27) 14. MSC.Marc Volume A : Theory and User Information, MSC.Software Co., (27) 15. J. Goldak, A. Chakravarti, and M. Bibby: A New Finite Element Model for Welding Heat Sources, Metallurgical Transactions, 15B (1983), 299-35 16. S. S. Lee, and B. Y. Ahn: Development of Residual Stress Measurement Techniques in Weldments, Proceedings of Korea Institute Structure Maintenance Insection, (1997), 43-48 17. E. Armentani, R. Esposito, and R. Sepe: The effect of thermal properties and weld efficirncy on residual stresses in welding, Journal of Achievements in Materials and Manufacturing Engneering, 2-1 (27), 319-322 18. R. R. Rykalin: Energy Source for Welding, Houdrement Lecture, International Institute of Welding, (1974), 1-23 19. S. Lamont: The Behaviour of Multi-storey Composite Steel Framed Structures in Response to Compartment Fires, Ph.D. Thesis, The University of Edinburgh, (21) 2. K. S. Chun, H. C. Song, and S. W. Im: Measurement of Welding Residual Stresses by X-ray Diffraction Method, Proceedings of the Annual Autumn Meeting of SNAK, (27), 28-213 3 Journal of KWJS, Vol. 28, No. 3, June, 21