_,..,, [1]. (polybenzoxazole, PBO PBZO) (Figure 1). PBO,,. PBO ASTM E-1354 (FAA) 50 kw/ [2].,,. (heterocyclic aromatic polymer) PBO [3]. PBO,. PBO. 1950 poly (6,9-dihydro-6,9 -dioxobenzimidazo [2,1-b:1, 2 - j]benzo[1mn][3,8]-phenant-hroline-3,12 -diyl)(bbb) poly (7-0x0-7,1OH-benz[de]imidazo[4 5 :5,6] benzimidazo [2,1- a]isoquinoline-[3,4:10,11]-tetrayl)-10-carbonyl)(bbl). 1970 PBZT, PBZO, poly(2,5-benzimidazole)(abpbi), poly (2,5-benzoxazole)(ABPBO), poly(2,5-benzothiazole)(abpbt) (Figure 2)[4-6]. 1970 Stanford Research Institute(SRI) PBO, Dow Chemicals SRI Figure 1. (polybenzoxazole, PBO). Figure 2.. Fiber Technology and Industry, Vol. 11, No. 4, 2007 261
, 1991 Dow Chemicals Toyobo PBO ZYLON [7]. 1998 Dow Chemicals, Toyobo ZYLON. ZYLON Nylon Z N. ZYLON PBO, (ZYLON AS), 5.8 GPa 2. 600 ZYLON HM 280 GPa 2. (Table 1). Table 1 PBO, (Figure 3). Toyobo ZYLON 4-Tops. PBO. PBO 10:1, 50:1. 200:1 [8-10]. PBO PBO. Table 1. ZYLON ZYLON AS ZYLON HM 1.7 1.7 (g/ ) 1.54 1.56 (cn/dtex) 37 37 (GPa) 5.8 5.8 (Kg/mm 2 ) 590 590 (cn/dtex) 1150 1720 (GPa) 180 270 (Kg/mm 2 ) 18000 28000 (%) 3.5 2.5 (%) 2.0 0.6 ( ) 650 650 LOI 68 68 Figure 3. PBO,. Table 2 PBO. 2.1. PBO 4,6-diamino-1,3-benzenediol dihydrochloride(dabdo) (TPA) (cis) (Figure 4). PPA(polyphosphoric acid), MSA(methanesulfonic acid), CSA(chlorosulfonic acid) PPA PPA [11-13]. Table 3 P 2 O 5 PPA n. DABDO 98.5%. TPA., TPA DABDO 60~80,. TPA 10, 262
Table 2. PBO, 63-237236,,, 63-237237,,,,, 0.1 %, 1-238560,,, 95 % -10 30 5-304112, (dope) 9-265863 (dope) 230 / Process for prepartion of polybenzoxazole and polybenzothiazole filaments and fibre PCT/US95/16630 Dow Chemical 3.5 g/d 100~290 300 PBO Process for the preparation of PBO and PBZT filament and fibers 08/668784 Toyobo Co., Ltd. PBO PBZT 100 m/min 3.5 g/d 100 290 Method for stable rapid spinning of a PBO fiber 985078 Dow chemical PBO PBZT polybenzazole dope Synthesis of polybenzoxazole and polybenxothiazole precursors US 5883221 National Cheng- Kung university PBO Polybenzoxazole and polybenzothiazole precursors US 6120970, US 6153350 National Cheng- Kung university PBO,, Fluorine-containing polybenzoxazole US 6291635, US 6384182 Central Glass Cmpany, Limited PBO Fluorine, Polybenzoxazoles having pendant methyl groups US 5021580 Dow chemical BB PBO JP 2002-327060 Central Glass Cmpany, Limited,, Moisture-resistant PBO fiber and atricles, and method of making WO/2007/044041 Honeywell international INC PBO Fiber Technology and Industry, Vol. 11, No. 4, 2007 263
4-324278 Steam heat-treatment method for polybenzazole fiber 985067 Dow Chemical PBO PBZT gas PBO PBZT Table 3. P 2 O 5 PPA(H n+2 P n O 3n+1 ) n P 2O 3, % 0 1 2 3 4 5 6 7 8 >9 62b 15 85 0 0 0 0 76c 0.4 52 41 5 0.5 0 0 0 82 0.6 7 22 18 15 12 8 5 3 9.4 83.3d 0.7 4 12 13 12 10 9 8 7 24.3 84.9e 0 2 6 7 8 8 7.5 7 6.5 48 b 85% phosphoric acid. c Commercially available 105% H 3 PO 4. d Commercially available 115% H 3 PO 4. e Freshly prepared PPA adding 1.52x g of P 2 O 5 to x g of 85% H 3 PO 4 (15.18). Figure 5. 100% PBO [15]., [14]. Figure 4. PBO (X=OH Cl)[14].. 90 200 10. 2.2. PBO (Figure 5). (Figure 6). (air-gap) 264
Table 4. 600 PBO [23,24] (AS) (HM) (, nm) 7.5 12.6 (degree) 8 4 (GPa) 165 317 (GPa) 4.3 4.9 (%) 2.8~3.5 1.5~1.7 (g/ ) 1.56 1.56~1.58 (%, 22 /65% RH) 2.0 <0.5 Figure 6. (dry-jet wet spinning).,,. PBO 10,000 PPA MSA 13~15%.,. PBO 3, ~ m [16,17].,,,. 90%, /.., ph,, [18-22]. 3.1. PBO PBO 0.99 1% (Figure 7, 8) 49 1.7%. a = 11.2, b = 3.54, c = 12.08, γ = 101.3 PBZT (Figure 9)[26]. PBZT PBO. 1.66 g/cm 3, 1.58 g/cm 3 49 [23,24,27]. PBO 10~20, PPTA -. 10~100. - / PBO, 0.2 2.3. PBO PPTA.. PBO 580, 480 MPa 10.,, (Table 4)[23-25]. Figure 7. PBO SAXS. Figure 8. SAXS PBO [28]. Fiber Technology and Industry, Vol. 11, No. 4, 2007 265
Figure 9. PBO (a=11.2, b=3.54, c=12.08, γ=101.3 )[26]. Table 5. (GPa) (GPa) (GPa) (g/ ) Steel 200 2.8-7.8 Al alloy 71 0.6-2.7 Ti alloy 106 1.2-4.5 Alumina 350-380 1.7 6.9 3.7 Boron 415 3.5 5.9 2.5-2.6 SiC 200 2.8 3.1 2.8 S-glass 90 4.5 >1.1 2.46 E-glass 76 3.4 4.2 2.58 Pich-based carbon P100 725 2.2 0.48 2.15 P120 827 2.2 0.45 2.18 Pan-based carbon M60J 585 3.8 1.67 1.94 T800 300 5.6 2.8-5.6 1.8 Kavlar 49 125 3.5 0.39-0.48 1.45 Kevlar 149 185 3.4 0.32-0.46 1.47 Terlon A 135 3.8 0.4 1.45 PBZT 325 4.1 0.26-0.41 1.58 PBZO 360 6.0 0.2-0.4 1.56-1.58 Spectra 1000 172 3 0.17 1.0 Vectran 65 2.9-1.4 Technora 70 3.04-1.39 Nylon 6 1.0 0.1 1.14 Textile PET 12.2 1.16 0.09 1.39 Figure 10. PBO. (Figure 10)[24,29]. 3.2. PBO 3.2.1. PBO 49 2.5, 4, 1.5~2 300 GPa. PBO, 49 (-CONH-) PBO 49. Figure 11. PBO [14]. PBO 6 GPa (Table 5). PBO PPTA, (Figure 11).. [30]. 266
Figure 12. PBO TGA [33]. Figure 15. 300, PBO [14]. (Figure 15), 49 (Figure 16). PBO,. [31,32]. Figure 13. ZYLON. 3.2.3. (Figure 17). PBO. [34]. (Table 6), PBO Figure 14. 400 500 ZYLON. 3.2.2.. PBO 620 (Figure 12). 400 (Figure 13,14). PBO. 300 200 Figure 16. 300, PBO 49 [14]. Fiber Technology and Industry, Vol. 11, No. 4, 2007 267
,. 1,000. PBO,, [41,42]. Figure 17. PBO ; (a)as-coagulated (wet); (b) as-spun (c and d) heat-treated[8,9]. Table 6. [34-40] PBZT(MPa) PBO(MPa) Loop 390 430 Bending beam 300 320 Fiber embedded in resin 330-420 380 Recoil 200-300 200-350 Direct compression - 300 Composite test 340 200-345 PBO,,,... PBO,,. (Figure 18).. star PBO 3 (Figure 19).. PBO PBO Figure 18. PBO. 0.2~0.4 GPa, 0.39~0.48 GPa 49. 49 PBO, c [8-10]. Figure 19. 3 PBO. 3.2.4. PBO Figure 20. PBO. 268
(Figure 20), 2,2 -bishydroxy-4,4 - biscarboxyl PPA (Figure 21). PBO. PBO PPA, MSA. PBO hexafluoroisopropyridene 6F (Figure 22). Figure 21. PBO. Figure 22. 6F (Z, X). PBO,,,,,,,,,,,., 3 (nonlinear optics, NLO). PBO,. 1. H. Jiang, W. W. Adams and R. K. Eby in High Technology Fibers Part D, M. Lewin Ed., Marcel Dekker, NY, p.171, 1996. 2. P. K. Kim, P. Pierini, and R. Wessling, J. Fire Science, 11(4), p.296, 1993. 3. J. M. G. Cowie, in Polymers: Chemistry and Physics of Modern Materials, 2nd Ed., Blakie Academic & Professional, NY, p.350, 1991. 4. Committee on High-Performance Synthetic Fibers for Composites, National Materials Advisory Board, National Research Council, High-Performance Synthetic Fiber for Composites, National Academy Press, Washington, DC, 1992. 5. W. W. Adams and T. E. Helminiak, in Science and Ceramic Chemical Processing (L. L. Hench, and D. R. Ulrich, Eds.), John Wiley & Sons, NY, 1986. 6. F. E. Arnold, Jr. and F. E. Arnold, Advanced Polymer science, 117, 257, 1994. 7. F. Flam, Science, 251, 874, 1991. 8. S. Kumar, in International Encyclopedia of Composites, VCH Publishers, Weinheim, Germany, p.51, 1990. 9. D. C. Martin and E. L. Thomas, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E McLemore, Eds., Pittsburgh, 134, p.415, 1989. 10. S. Kumar, personal communication, 1992. 11. G. C. Berry, P. C. Metzger, S. Venkatramm, and D. B. Cotts, ACS Polymer Preprints, 20(1), 42, 1979. 12. G. C. Berry, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Pittsburgh, 134, p.181, 1989. 13. J. A. Odell, A. Keller, E. D. T. Atkins, M. J. Nagy, J. L. Feijoo, and G. Ungar in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Pittsburgh, 134, p.223, 1989. 14. J. Im, Z. Lysenko, S. Martin, M. Mills, J. Jakubowski, and D. E McLemore, presentation in ESF 94, Yokohama, Japan, 1994. 15. E. W. Won Choe and S. N. Kim, Macromolecules, 14, 920, 1981. 16. S. J. Nolan, C. F. Broomall, R. A. Bubeck, M. J. Radler, and B. G. Landes, Rev. Science Instrument, 66(3), 2652, 1995. 17. A. W. Chow, J. F. Sandell, and J. F. Wolfe, Polymer, 1988, 29, 1370; A. W. Chow, R. D. Hamlin, and C. M. Ylitalo, Macromolecules, 25, 7135, 1992. 18. S. R. Allen and R. J. Farris, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., 134, p.297. 19. H. H. Yang, in Aromatic High-Strength Fibers, John Wiley & Sons, NY, 1989. 20. S. R. Allen, R. J. Farris, and E. L. Thomas, J Material Science, 20, 2727, 1985. 21. S. R. Allen, A. G. Filippov, R. J. Farris, and E. L. Thomas, Macromolecules, 14, 1138, 1981. 22. S. R. Allen, A. G. Filippov, R. J. Farris, E. L. Thomas, and E. C. Chenevey, J Application Polymer Science, 26, 291, 1981. 23. D. C. Martin and E. L. Thomas, Macromolecules, 24, 2224, 1991. 24. S. J. Krause, T. B. Handdock, D. L. Vezie, P. G. Lenhert, W. -F. Hwang, G. E. Price, T. E. Helminiak, J. F. O Brien, and W. W. Adams, Fiber Technology and Industry, Vol. 11, No. 4, 2007 269
Polymer, 29, 1354, 1988. 25. M. E. Hunsaker, G. E. Price, and S. J. Bai, Polymer, 33(10), 2128, 1992. 26. A. V. Fratini, P. G. Lenhert, T. J Resch, and W. W. Adams, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Pittsburgh, 134, p.431, 1989. 27. H. Jiang, P. Arsenovic, R. K. Eby, J. M. Liu, and W. W. Adams, Polymer Preprints, Jp., 36, 5, 1987. 28. S. Kumar, S. Warner, H. G. Zachman, and W. W. Adams, Polymer, 35(25), 5408, 1994. 29. C. F. Broomall, R. A. Bubeck, B. G. Landes, M. J. Mills, S. J. Nolan, M. J. Radler, and P. R. Rudolf, Bull. Am. Phys. Soc., 39, 565, 1994. 30. S. R. Allen, A. G. Filippov, R. J. Farris, and E. L. Thomas, in The Strength and Stiffness of Polymers, A. E. Zachariadas and R. S. Porter, Eds., Marcel Dekker, NY, p.357, 1983. 31. P. E. Klumzinger, K. A. Green, R. K. Eby, B. L Farmer, W. W. Adams, and G. Czornyj, Technical Paper, XXXVII, Society of Plastics Engineering, p.1532, 1991. 32. P. E. Klumzinger, R. K. Eby, and W. W. Adams, in MRS Proceedings, I. Aksay, E. Bear, M. Sarikaya, and D. Tirrell, Eds., Pittsburgh, 255, 119, 1992. 33. L. R. Denny, I. J. Goldfarb, and E. J. Soloski, in The Materials Science and Engineering of Rigid-Rod polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Pittsburgh, 134, p.345, 1989. 34. S. Kumar and T. E. Helminiak, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Rittsburgh, 134, p.363, 1989. 35. S. R. Allen, J Material Science, 22, 853, 1987. 36. W. Huh, S Kumar, T. E. Helminiak, and W. W. Adams, SPE Annual Technical Conference Proceddings, 1245, 1990. 37. U. Santhosh, M. H. Dontrong, H. H. Song, and C. Y. C. Lee, Proc. ACS Polymer Material Science Engineering, 64, 40, 1991. 38. S. A. Fawaz, A. N. Palazotto, and C. S. Wang, in The Materials Science and Engineering of Rigid-Rod Polymers, W. W. Adams, R. K. Eby, and D. E. McLemore, Eds., Pittsburgh, 134, p.381, 1989. 39. S. Bhattacharya, H. H. Chuah, M. Dotrong, K. H. Wei, C. S. Wang, D. Vezie, A. Day, and W. W. Adams, Proc. ACS Polymer Material Science Engineering, 60, 512, 1989. 40. S. Fidan, Master s thesis, Air Force Institute of Technology, 1988. 41. S. Kumar and W. W. Adams, Polymer, 31, 15, 1990. 42. W. W. Adams and R. K. Eby, Bull. Mater. Res. Soc., 22, 1987. 1981. 1984. ( ) 1987. ( ) 1988-1992. ( )SK 1997-1998. University of Massachusetts at Amherst, 2006-2007. University of Texas at Dallas, Nanotech Institute 1992-. : 042-821-6618, Fax: 042-823-4345 e-mail: dhbaik@cnu.ac.kr 2007. 2007-. : 042-821-7697 e-mail: pomipoo@nate.com 270