NH 은행빅데이터플랫폼구축사례

Size: px
Start display at page:

Download "NH 은행빅데이터플랫폼구축사례"

Transcription

1 SAS FORUM NH 농협은행의분석플랫폼구축사례와디지털트랜스포메이션을위한 SAS 플랫폼

2 NH 은행빅데이터플랫폼구축사례

3 APPERANCE NH BANK big-data platform TEXT Log EDW/ MART External Data SAS VIYA VDMML ( 16 node / 256 core / 4TB mem ) HADOOP Analytic Process Decision Report Campaign & Promotion independent systems

4 BACK GROUND # 4 차산업혁명맞는금융서비스개발 # PLATFORM 구축 # ML 분석모형개발 4 차산업혁명기술요소 Big-data Deep Learning AI 2016 POC 수행 (3 months) Big-data 정의및가시성 Model Evaluation 과제선정 Big-Data 분석기술검증 ( 음성, TEXT 등비정형 DATA 활용 ) 정형 / 비정형고객분석니즈 Big Data 기반신규금융서비스개발

5 JOURNEY Analytic M/L model Nov 2017 Feb 2018 Mar developing model deploy Operation 안정화 July 2017 KICK OFF OCT 2017 Nov 2017 MAY 2018 OPEN New BIZ developing Hadoop DATA 적재관리모니터링 Big Data processing

6 PERFORMANCE # Platform # Analytics HADOOP : 정형 / 비정형데이터 4TB 적재 데이터전처리 : 151 Batch SAS Viya : 3 천 2 백만건과 8 백만건 Join 처리시 3 분 5 초 4 천 4 백만건원장 MEMORY 이관시 2 분 22 초 # Biz 고객금융니즈에결합된마케팅 360 고객포탈 전행현업부서의의사결정지원 빅데이터 6개과제수행 22개의 M/L 모델수행 Champion Hit Ratio 1.5 배 ~5배 고객금융이벤트감지영역확대 ( 27개빅데이터 EBM 시나리오운영 ) 미인지 SOHO 고객군도출 (129만) 데이터가시성확보 : 고객분석을위한분석변수개발 OLAP 에빅데이터정보제공

7 FUTURE NH BANK Artificial Intelligence Service Platform Robo-Advisor Customer Recognition KEY SUCCESS POINT : Deep Learning 으로고객의금융포지션, 자산가치및 고객의위치, 자산가치및위험요인의변화, 수익및위험허용목표와같은관련정보에대한지속적인데이터공급 위험요인의변화, 수익과위험허용목표등의정보를끊임없이공급해야... Natural Language Process Streaming Analytics Machine Learning Visualization 의사결정시스템 빅데이터분석결과시각화 Video processing Image Analytics Machine Learning Voice Banking Audio processing Machine Learning

8 LESSONS LEARNS # Smart Phone # AI Platform Yr 2007 Yr 2018 Yr 2017 비정형 / 정형분석 M/L Model FIRST MOVER 인물별로문자메세지 3G 인터넷 LIFE & Culture Contents

9 디지털트랜스포메이션과 SAS 플랫폼

10 디지털트랜스포메이션 DIGITAL TRANSFORMATION

11 디지털트랜스포메이션 GE 는소프트웨어기업

12 디지털트랜스포메이션 ALIBABA 는데이터기업

13 디지털트랜스포메이션 NH 농협은금융플랫폼기업

14 API 기반의에코시스템 파트너 파트너 금융회사 API API 파트너 API API 파트너

15 플랫폼이핵심 Buyers 디지털플랫폼 Sellers

16 플랫폼이핵심 타기관 통신사 Buyers API 디지털플랫폼 API Sellers 소비재 공공

17 금융사의디지털트랜스포메이션 Road Map 분석플랫폼도입 빅데이터인사이트확보 고객이해제고 ML / AI 역량강화 API 기반에코시스템 병렬 - 분산환경기반의고성능플랫폼 AI- 머신러닝적용이가능한플랫폼 텍스트, 음성, 비디오분석역량 전사빅데이터저장소 데이터부자 인사이트부자 인사이트탐색을통한신사업기회발굴 360 데이터확보를통한고객맥락이해 고객상황 ( 이탈위험, 신규가망 ) 에맞는상품추천 Outside-In 전략 초대용량데이터학습 자동화를통한운영비용최소화 최신알고리즘을업무에반영 ML 을통한 AI 결과설명력 완벽함보다는빠름을추구 내부역량의 API 화 ML/AI 를활용한스마트서비스개발 외부파트너와의적극적협업체계

18 NH 빅데이터플랫폼 저축 / 대출성향 고객소득추정 상품추천 빅데이터활용 소득 / 소비 고객 Segmentation 이벤트 / 이탈마케팅 캠페인설계 / 실행 접촉성향 개인별니즈등급 Soho 고객발굴 모니터링 / 분석 모델개발 머신러닝분석엔진 (SAS VDMML) 정형분석 (SAS EM) 비정형분석 (SAS CA) Viya 컨트롤러 작업노드 Scoop/Flume /Kafka 하둡 (HDFS, Hive)

19 Analytics Lifecycle Data, Discovery, Deployment 시스템을모니터링하여결과가 시간경과에따라적절하게 유지되는지확인 다양한소스의데이터를통합 가공하고변수추출 다양한운영환경에서신뢰 할수있는시스템으로전환 트레이닝및테스트를위한 데이터분할 다양한분석을실행하고 최상의알고리즘을선택 데이터속에존재하는의미를 탐색하고패턴을발굴

20 Analytics Lifecycle modules

21 SAS Viya 의특장점 편의성 HTML 5 (GUI) Visual & Programmatic 개방성 알고리즘 SAS 9.4, Python, R Java, LUA, Rest API etc. ML / DL / TA / Image Auto-tuning 고성능 인메모리엔진 High Performance 용이성 스코어링패러다임 (Analytic Store) 시스템관리

22 알고리즘단일플랫폼에서다양한머신러닝분석가능 머신러닝 Machine Learning 딥러닝 Deep Learning 텍스트 분석 Text analytics 이미지 분석 Image analysis 단일플랫폼에서최신머신러닝, 딥러닝, 텍스트분석, 이미지분석등다양한분석가능

23 알고리즘데이터준비 / 분석 / 모형비교 Supervised and Unsupervised Learning: Logistic/Linear/Nonlinear Regression Generalized Linear Models Ordinary Least Squares Regression Partial Least Squares Regression Quantile Regression K-means / K-modes Clustering Principal Component Analysis Text Mining / Boolean Rules Network Analytics/Community Detection Bayesian network models Decision Trees* Random Forest* Gradient Boosting* Neural Networks (DNN)* Support Vector Machines* Factorization Machines* Compare and Assess models Moving Windows PCA Robust PCA Support Vector Data Description Econometrics: Copula functions Count Regression Panel Data Limited Dependent Variable Models Severity Distribution Models Optimization: Linear Programming Nonlinear Programming Mixed Integer Linear Programming Quadratic Programming Network Solver Deep Learning: Fast knn / Market basket analysis DeepLearn (CNN/RNN/LSTM etc.) Feature Extraction (Auto-encoder / SVD / PCA etc.) Forecasting: ESM (Exponential smoothing) ARIMA UCM (Unobserved components) IDM (Intermittent demand) Automated hierarchical forecasting and reconciliation Data Management: Data Step / DS2 SQL Transpose Variable Binning Variable Cardinality Analysis Sampling and Partitioning Missing Value Imputation Variable Selection Image processing *Auto-tuning 이지원되는알고리즘

24 알고리즘효율적인자동튜닝 (AUTO-TUNING) y = f x 1 + g(x 2 ) 표준그리드탐색 랜덤탐색 = 개별적인모델훈련과평가 라틴하이퍼큐브 x 2 x 2 x 2 x 1 : 모든 hyper-parameter 에대한모든조합의경우수에대해후보모델을평가 x 1 : hyper-parameter 값을랜덤하게조합하여후보모델을평가 x 1 : hyper-parameter 에서균등분포로표본추출하고조합의경우의수는랜덤하게표본추출하여후보모델평가

25 편의성사용자의유형및필요에따른다양한인터페이스 Visual I/F SAS Visual Analytics Programmatic I/F SAS Studio Open Source User s I/F R, Python 등 Visual Pipeline Process Flow I/F

26 편의성 VISUAL INTERFACE 로지스틱회귀분석 뉴럴네트워크 Visual Graph 에서모델링 리포팅 I/F 로모델 export

27 편의성 VISUAL PIPELINE INTERFACE Modeling Template Class / interval target Basic / Intermediate / Advanced Advanced: Auto-Tuning (Y/N) User Defined Template 오픈소스코드

28 편의성기존 E-MINER 사용자를위한 PFD 모델링 EM Model Viya Model SAS Enterprise Miner R Model

29 고성능데이터처리성능의비약적개선 1 데이터로딩성능 Serial Loading : 90 분 ~ Parallel Loading : 2 분 ~ MPP Hadoop/DW 2 MPP 분산병렬프로세싱 2 인메모리 Query 성능 In-memory Analytic Engine 하둡 HiveQL : 120분 ~ SAS FedSQL : 1분 ~ A 사사례, Data 65GB Hadoop 12 / SAS 16 Nodes 1 빠른병렬로딩 A 사사례, Data 40+10GB Hadoop 12 / SAS 16 Nodes

30 용이성분석플랫폼운영에필요한것 [ 분석 / 머신러닝에사용되는리소스 ] 환경설정 DATA 데이터 데이터수집 DISCOVERY 모델링 머신러닝코드 데이터검증 머신러닝코드 서버자원관리 모델관리 DEPLOY 배포 모델배포인프라 모델성능모니터링 분석변수가공 프로세스관리

31 용이성새로운스코어링 (DEPLOY) 패러다임 : ANALYTIC STORE (Analytic Store) Astore 분석개체의상태에대한정보를담고있으며, 다양한환경에서실행가능한바이너리 파일로분산환경에서모델스코어링에사용 Proc Astore In-memory 상에서 ASTORE 프로시저를이용하여수행 기존스코어링방법과달리서로다른플랫폼에서사용하는경우에도 Import/Export 가필요없음 (Transportable) 스코어링환경의제약이없음 Self-Learning 의필수요소

32 용이성새로운스코어링 (DEPLOY) 패러다임 : ANALYTIC STORE DB [SAS 분석플랫폼의 DEPLOY] API 외부 App Streams 모델 Web Service Hadoop 디바이스

33 개방성 WHAT DOES IT MEAN TO BE OPEN? 1 Interface 2 Analytics Engine SAS Model Studio SAS Open Source code node SAS Model R or Python coding environment SAS Open API (R, Python, etc.) Open source Model

34 개방성 WHAT DOES IT MEAN TO BE OPEN? proc print data = x.hmeq (obs = 10); run; Workers Controller APIs df = s.castable( hmeq ) df.head(10) CAS Action [table.fetch] table.name = hmeq from = 1 to = 10 df <- defcastable(s, hmeq ) head(df, 10)

35 End of Document

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

Cloudera Toolkit (Dark) 2018

Cloudera Toolkit (Dark) 2018 하둡에날개를달아주는 SAS 엔터프라이즈머신러닝플랫폼 SAS Korea / 김근태이사 CLOUDERA & SAS : OVERVIEW 2 FORCES SHAPING ANALYTICS Analytics embraces open Everyone wants to be a data scientist Changing data landscape Machine learning

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

歯목차45호.PDF

歯목차45호.PDF CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

Slide 1

Slide 1 SAS Visual Analytics: In-Memory 분석엔진기반의 Big Data 시각적분석 박현옥부장 SAS Korea Agenda Big Data Analysis - Issues Case Study Big Data Analytics를위한 SAS 분석아키텍쳐 SAS Visual Analytics의특징 데모 활용방안 Big Data Analytics -

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

아트앤플레이군 (2년제) Art & Play Faculty 95 교육목표 95 군 공통(네트워크) 교과과정표 96 드로잉과 페인팅 Drawing & Painting Major Track 97 매체예술 Media Art Major Track 98 비디오 & 사운드 Video & Sound Major Track 99 사진예술 PHOTOGRAPHIC ART Major

More information

160322_ADOP 상품 소개서_1.0

160322_ADOP 상품 소개서_1.0 상품 소개서 March, 2016 INTRODUCTION WHO WE ARE WHAT WE DO ADOP PRODUCTS : PLATON SEO SOULTION ( ) OUT-STREAM - FOR MOBILE ADOP MARKET ( ) 2. ADOP PRODUCTS WHO WE ARE ADOP,. 2. ADOP PRODUCTS WHAT WE DO ADOP,.

More information

SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme

SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme Advanced Analytics 기반의 고객가치 극대화 SAS Customer Intelligence SAS 고객 인텔리전스 SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

Intro to Servlet, EJB, JSP, WS

Intro to Servlet, EJB, JSP, WS ! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g

More information

서현수

서현수 Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

비식별화 기술 활용 안내서-최종수정.indd

비식별화 기술 활용 안내서-최종수정.indd 빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr

More information

untitled

untitled 3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à

More information

15인플레이션01-목차1~9

15인플레이션01-목차1~9 ISSN 87-381 15. 1 15. 1 13 1 1.3 1. 1.8 1.5 1. 1.1 () 1.5 1..1 1.8 1.7 1.3 () 1..7.6...3 (). 1.5 3.6 3.3.9. 6.3 5.5 5.5 5.3.9.9 ().6.3.. 1.6 1. i 6 5 6 5 5 5 3 3 3 3 1 1 1 1-1 -1 13 1 1).6..3.1.3.

More information

02(848-853) SAV12-19.hwp

02(848-853) SAV12-19.hwp 848 정보과학회논문지 : 소프트웨어 및 응용 제 39 권 제 11 호(2012.11) 3차원 객체인식을 위한 보완적 특징점 기반 기술자 (Complementary Feature-point-based Descriptors for 3D Object Recognition) 장영균 김 주 환 문 승 건 (Youngkyoon Jang) (Ju-Whan Kim) (Seung

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring

More information

歯CRM개괄_허순영.PDF

歯CRM개괄_허순영.PDF CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770>

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770> 축 사 - 대구 박람회 개막 - 존경하는 신상철 대구광역시 교육감님, 도승회 경상북도 교육감님, 김달웅 경북대학교 총장님, 장이권 대구교육대학교 총장님, 김영택 대구광역시교육위 원회 의장님, 류규하 대구광역시의회교사위원회 위원장님을 비롯한 내외 귀빈 여러분, 그리고 교육가족 여러분! 제8회 e-러닝 대구 박람회 의 개막을 진심으로 축하드리며, 이 같이 뜻 깊

More information

歯I-3_무선통신기반차세대망-조동호.PDF

歯I-3_무선통신기반차세대망-조동호.PDF KAIST 00-03-03 / #1 1. NGN 2. NGN 3. NGN 4. 5. 00-03-03 / #2 1. NGN 00-03-03 / #3 1.1 NGN, packet,, IP 00-03-03 / #4 Now: separate networks for separate services Low transmission delay Consistent availability

More information

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770> i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,

More information

Microsoft Word - 조병호

Microsoft Word - 조병호 포커스 클라우드 컴퓨팅 서비스 기술 및 표준화 추진 동향 조병호* 2006년에 클라우딩 컴퓨팅이란 용어가 처음 생겨난 이래 글로벌 IT 기업 CEO들이 잇달아 차 기 핵심 기술로 클라우드 컴퓨팅을 지목하면서 전세계적으로 클라우드 컴퓨팅이라는 새로운 파 라다임에 관심이 고조되고 있다. 클라우드 컴퓨팅 기술을 이용하면 효율적인 IT 자원을 운용할 수 있으며 비용절감

More information

구로구민체육센터 여성전용 기구필라테스 강좌 신설 구로구시설관리공단은 신도림생활체육관에서 2014년도부터 시행하여 주민의 큰 호응을 얻고있는 기구필라 테스 강좌를 2015.12.01일자로 구로구민체육센터에 확대 시행하게 되었습니다. 구로구 관내 고객들의 니즈를 반영한 기

구로구민체육센터 여성전용 기구필라테스 강좌 신설 구로구시설관리공단은 신도림생활체육관에서 2014년도부터 시행하여 주민의 큰 호응을 얻고있는 기구필라 테스 강좌를 2015.12.01일자로 구로구민체육센터에 확대 시행하게 되었습니다. 구로구 관내 고객들의 니즈를 반영한 기 01 2015년도 공단의 이모저모 소식을 전해드려요~ 구로구시설관리공단 구로구시설관리공단 제5대 김완호이사장 취임 구로구시설관리공단 제5대 김완호 신임 이사장이 2015.11.02(월) 취임하였습니다. 취임식에서 소통, 배려, 화합의 구정 방침과 공기업의 경영목표인 공익성과 기업성 양면의 조화로운 경영을 위해 모든 분야의 3% 업그레이드, 3% 절약, 경영환경의

More information

Service-Oriented Architecture Copyright Tmax Soft 2005

Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite

More information

CRM Fair 2004

CRM Fair 2004 easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.

More information

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은 Enterprise Mobility 경영혁신 스마트폰, 웹2.0 그리고 소셜라이프의 전략적 활용에 대하여 Enterpise2.0 Blog : www.kslee.info 1 이경상 모바일생산성추진단 단장/경영공학박사 이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33%

More information

untitled

untitled SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

Business Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-

More information

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING

More information

歯김한석.PDF

歯김한석.PDF HSN 2001 Workshop Session IX Service Providers and Business Model Future Business Models for Telecom Industry 1. Internet Economy 2. E-business 3. Internet Economy 4.? 1 1. Internet Economy 1.1 Internet

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

PowerPoint Presentation

PowerPoint Presentation Data Protection Rapid Recovery x86 DR Agent based Backup - Physical Machine - Virtual Machine - Cluster Agentless Backup - VMware ESXi Deploy Agents - Windows - AD, ESXi Restore Machine - Live Recovery

More information

? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement

? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement Daum Communications CRM 2007. 3. 14. ? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement Communication

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅데이터분석의현재와미래 2018 동국대학교통계학과이영섭 yung@dongguk.edu 데이터마이닝 (Data Mining) 데이터마이닝과 KDD KDD (Knowledge Discovery in Data) 란? - 데이터에서숨겨져있는유용한패턴들을알아나가는전체적인과정 KDD 학회의변천사 - Knowledge Discovery in Databases(1989)

More information

AV PDA Broadcastin g Centers Audio /PC Personal Mobile Interactive (, PDA,, DMB ),, ( 150km/h ) (PPV,, ) Personal Mobile Interactive Multimedia Broadcasting Services 6 MHz TV Channel Block A Block

More information

슬라이드 1

슬라이드 1 [ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System

More information

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM 中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

PowerPoint Presentation

PowerPoint Presentation SAP HANA 와 Predictive Analytics 를홗용한 IoT & Big Data 의인사이트도출 이철 / SAP Korea 2016.04.05 2015 2014 SAP AG. SE or All rights an SAP reserved. affiliate company. All rights reserved. 1 AGENDA 1 2 3 4 5 분석에대한니즈의변화

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

_LG히다찌 브로슈어

_LG히다찌 브로슈어 SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION

More information

MS-SQL SERVER 대비 기능

MS-SQL SERVER 대비 기능 Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT

More information

1

1 04단원 컴퓨터 소프트웨어 1. 프로그래밍 언어 2. 시스템 소프트웨어 1/10 1. 프로그래밍 언어 1) 프로그래밍 언어 구분 각종 프로그래밍 언어에 대해 알아보는 시간을 갖도록 하겠습니다. 우리가 흔히 접하는 소프트웨어 들은 프로그래밍 언어로 만들어지는데, 프로그래밍 언어는 크게 2가지로 나눌 수 있습니다. 1 저급어 : 0과 1로 구성되어 있어, 컴퓨터가

More information

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf 11-1140100-000102-01 9 93320 788988 807705 ISBN 978-89-88807-70-5 93320 2013 11 25 2013 11 28,,, FKI ISBN 978-89-88807-70-5 87 www.acrc.go.kr 24 www.fki.or.kr PREFACE CONTENTS 011 017 033 043 051 061

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

[Brochure] KOR_TunA

[Brochure] KOR_TunA LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /

More information

목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향

목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향 차량-IT 융합 기반의 미래형 서비스 발전 동향 이범태 (현대자동차) 목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향 Ⅰ. 정보 기술의 환경변화 1. 정보기술의 발전 2. 자동차 전장 시스템의 발전 1. 정보기술의 발전 정보기술은 통신 네트워크의 급속한 발전, 단말의 고기능화,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

09오충원(613~623)

09오충원(613~623) A Study of GIS Service of Weather Information* Chung-Weon Oh**,..,., Web 2.0 GIS.,.,, Web 2.0 GIS, Abstract : Due to social and economic value of Weather Information such as urban flooding, demand of Weather

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

장기계획-내지4차

장기계획-내지4차 2011~2020 KOREA FOREST SERVICE 2011~2020 2011~2020 KOREA FOREST SERVICE 2011~2020 2011~2020 6 7 2011~2020 8 9 2011~2020 10 11 2011~2020 12 2011~2020 KOREA FOREST SERVICE 2011~2020 14 15 2011~2020 16 17

More information

정보화 산업의 발전단계 : 정보혁명의 진화 정보화 산업의 발전단계 1세기에 두 번 정도의 큰 기술혁명이 이루어져 경제성장의 원동력으로 작용 uit 시대는 정보혁명 중 인터넷 이후의 새로운 기술혁명인 컨버전스 기술이 핵심이 되는 시대 uit 시대는 정보화의 극대화와 타

정보화 산업의 발전단계 : 정보혁명의 진화 정보화 산업의 발전단계 1세기에 두 번 정도의 큰 기술혁명이 이루어져 경제성장의 원동력으로 작용 uit 시대는 정보혁명 중 인터넷 이후의 새로운 기술혁명인 컨버전스 기술이 핵심이 되는 시대 uit 시대는 정보화의 극대화와 타 모바일 혁명이 바꾸는 기업의 미래 모바일 빅뱅의 시대 기업경영환경의 변화 2011. 04. 26 더존 IT 그룹 더존씨앤티 지용구 사장 더존씨앤티 (트위터ID : Jiyonggu / E-mail : todcode@duzon.com) 11 정보화 산업의 발전단계 : 정보혁명의 진화 정보화 산업의 발전단계 1세기에 두 번 정도의 큰 기술혁명이 이루어져 경제성장의

More information

Voice Portal using Oracle 9i AS Wireless

Voice Portal using Oracle 9i AS Wireless Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video

More information

Oracle Database 10g: Self-Managing Database DB TSC

Oracle Database 10g: Self-Managing Database DB TSC Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%

More information

thesis

thesis ( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype

More information

001지식백서_4도

001지식백서_4도 White Paper on Knowledge Service Industry Message Message Contents Contents Contents Contents Chapter 1 Part 1. Part 2. Part 3. Chapter

More information

Slide 1

Slide 1 SAS High-Performance Analytics : Big Data Analytics 를위한기술혁신 SAS Korea 김근태 빅데이터가과거에는불가능했던새로운기회를제공합니다. 수일또는수주일이소요되었던분석인사이트를수분또는수초내에 확보할수있습니다. What if you could. Big Data 를경쟁사보다며칠더빠르게가망 고객의구매행위와의사결정기준을예측할수

More information

I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3.

I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3. Deep-Dive into Syrup Store Syrup Store I What is Syrup Store? Open API Syrup Order II Syrup Store Component III Open API I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3. 가맹점이 특정 고객을 Targeting하여

More information

vm-웨어-01장

vm-웨어-01장 Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http

More information

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS

More information

컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는 우수한 인력을 양성 함과 동시에 직업적 도덕적 책임의식을 갖는 IT인 육성을 교육목표로 한다. 1. 전공 기본 지식을 체계적으로

컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는 우수한 인력을 양성 함과 동시에 직업적 도덕적 책임의식을 갖는 IT인 육성을 교육목표로 한다. 1. 전공 기본 지식을 체계적으로 2015년 상명대학교 ICT융합대학 컴퓨터과학과 졸업 프로젝트 전시회 2015 Computer Science Graduate Exhibition 2015 Computer Science Graduate Exhibition 1 컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는

More information

Data Scientist Shortage

Data Scientist Shortage Data Science: 4 차산업혁명의핵심역량 2018 년 1 월 31 일 김형주교수 서울대컴퓨터공학부 Table of Contents What is Data Science Data Scientist 부족현상관련자료 Data Science 응용분야 Data Science 교육현황 삼성전자 DS 2 과정 Big Data 가주는가치 데이터 : 의미를담고있는기록된사실

More information

Cache_cny.ppt [읽기 전용]

Cache_cny.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Improving Performance and Scalability with Oracle9iAS Cache Oracle9i Application Server Cache... Oracle9i Application Server Web

More information

SLA QoS

SLA QoS SLA QoS 2002. 12. 13 Email: really97@postech.ac.kr QoS QoS SLA POS-SLMS (-Service Level Monitoring System) SLA (Service Level Agreement) SLA SLA TM Forum SLA QoS QoS SLA SLA QoS QoS SLA POS-SLMS ( Service

More information

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템 분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은

More information

국내 디지털콘텐츠산업의 Global화 전략

국내 디지털콘텐츠산업의 Global화 전략 Digital Conents Contents Words, Sound, Picture, Image, etc. Digitizing : Product, Delivery, Consumption NAICS(, IMO Digital Contents Digital Contents S/W DC DC Post PC TV Worldwide Digital Contents

More information

*....1..~2..

*....1..~2.. Contents 1 2 Contents 2 3 Korea Culture Korea Culture Information Service Information Service 1 1 1 02 Korea Culture Information Service 2 03 04 Korea Culture Information Service 3 05 06 Korea Culture

More information

Microsoft PowerPoint - 발표_090513_IBM세미나_IPTV_디디오넷_완료.ppt

Microsoft PowerPoint - 발표_090513_IBM세미나_IPTV_디디오넷_완료.ppt 신후랑 팀장, 디디오넷 (010-8752-4952, hrshin@dideonet.com) 05/20/2009 BIZ in a box - Solution for Enterprise IPTV 2 UNIX vs. x86 Non-x86 UNIX 2008 2007 0% Y/Y Total x86 2008 2007-25.3% Y/Y 0 200 400 600 800 3 Why

More information

IBM SPSS Statistics 제품 소개 (2017 Aug)

IBM SPSS Statistics 제품 소개 (2017 Aug) IBM SPSS Statistics 제품소개 -V25 및 Subscription 2017 Aug ecustomercare Center 담당자 ( 한국어지원 ) 무료전화 : 007986112156 메일주소 : ecareap@sg.ibm.com 2017 IBM Corporation IBM SPSS ü SPSS Statistics SPSS Modeler SPSS

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information