PowerPoint Template

Size: px
Start display at page:

Download "PowerPoint Template"

Transcription

1 빅데이터실시간분석기술동향및적용사례 ( 주 ) 리얼타임테크

2 목차 1. 빅데이터개요 2. 빅데이터분석개요 3. 빅데이터분석기술 4. 사례연구 2

3 1. 빅데이터개요 3

4 빅데이터개요 빅데이터기술의등장배경 Source : IDC Digital universe study(2011) Source : IDC (2012) Digital Universe: the total amount of data stored in the world s computers The rapid rate(over 45%) of data growth Problem of storage and processing speed, etc. Over 90% of data : Unstructured and semistructure data Conventional data processing? The frequency of data generation and delivery Should be applied to data in motion 4

5 빅데이터개요 빅데이터정의 Big data technologies describe a new generation of technologies and architectures, designed to economically extract value from very large volumes of a wide variety of data, by enabling high-velocity capture, discovery, and/or analysis. Definition of IDC Variety Volume 데이터의다양화 비정형데이터 (Unstructured Data) 처리필요 시스템유연성지원 사용자정의프로세스및새로운처리모델 Velocity 데이터의대용량화 (Beyond DBMS capacity) 시스템의확장성 (Scalability) 분산컴퓨팅기술 Parallelism ig ata 5 데이터의고속처리 ( 분석 ) 의사결정속도중요, 지연최소화 인메모리컴퓨팅및슈퍼컴퓨팅기술 Stream processing

6 빅데이터개요 빅데이터플랫폼의구성 데이터수집 데이터전처리 정보저장관리 정보처리분석 지능가시화 6

7 빅데이터개요 Open Source 기반빅데이터플랫폼 (1/2) Data Analysis Machine Learning (Mahout) Data mining, Statistics, Visualization Lib (R) Text Mining (Near)Real-time processing Batch processing CEP (Esper) Real-time stream processing S/W (Strom, S4) Data Aggregator Web Crawler (Nutch) RDBMS Adapter (Sqoop) Collector (Flume,Scribe,Chukwa) Job Workflow Engine (oozie) RDBMS (MySQL, PostgresSQL) Data Processing Framework (MapReduce) NoSQL (Hbase, Redis, MongoDB) Data Store File System (HDFS) Data Processing Language (Pig, Hive) NewSQL (voltdb) Graph Processing (Hama, Giraph) Search Store (ElasticSearch, solr) Cluster Management (ZooKeeper) Management 7

8 빅데이터개요 Open Source 기반빅데이터플랫폼 (2/2) Category Software Description Data Collection Data Store Real-time Analytics Batch Analytics Mining Flume, Scribe, Chukwa sqoop Nutch HDFS Hbase, Redis, MongoDB voltdb Elastic search, Solr Storm, S4 Esper Oozie MapReduce Pig, Hive Goraph, Hama Mahout R Collecting data from data source Data delivery between HDFS and RDBMS Web crawler Distributed file system Key-value based data-base management system RDBMS supporting scalability and ACID Search engine Real-time distributed and parallel data processing Processing stream data and providing high-level language Workflow scheduler for Hadoop job Batch distributed and parallel data processing Providing analytic operation and high-level language for big-data Providing distributed and parallel programming model for big graph data Machine learning Statistics, data mining, visualization library Management zookeeper Distribution coordinator for Cluster management 8

9 2. 빅데이터분석개요 9

10 Outcomes Enables Question 빅데이터분석개요 분석기술발전방향 Flow of concept in Big-Data analytics Descriptive Predictive Prescriptive What happened? What is happening? What will happen? Why will it happen? What should I do? Why should I do it? Business reporting Dashboards Scoreboards Data warehousing Data mining Text mining Web/Media mining Forecasting Optimization Simulation Decision modeling Export system Well defined business problems and opportunities Accurate projections of future states and conditions Best possible business decisions and transactions Past Future 10

11 빅데이터분석개요 분석환경변화 11

12 빅데이터분석개요 분석기술적용분야 ( Potential Use cases ) Source : SAS & IDC 12

13 3. 빅데이터분석기술 빅데이터배치분석기술 빅데이터실시간분석기술 13

14 빅데이터배치 (Batch) 분석기술 Hadoop overview Google 플랫폼의클론으로 2004 년시작된아파치오픈소스프로젝트이며현재, Big data 저장 / 분석주류플랫폼으로성장 Software platform that lets one easily write and run applications that process vast amounts of data. It includes: MapReduce offline computing engine HDFS Hadoop distributed file system HBase (pre-alpha) online data access Why Hadoop useful Scalable: It can reliably store and process petabytes. Economical: It distributes the data and processing across clusters of commonly available computers (in thousands). Efficient: By distributing the data, it can process it in parallel on the nodes where the data is located. Reliable: It automatically maintains multiple copies of data and automatically redeploys computing tasks based on failures. 14

15 빅데이터배치 (Batch) 분석기술 HDFS The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant. highly fault-tolerant and is designed to be deployed on low-cost hardware. provides high throughput access to application data and is suitable for applications that have large data sets. relaxes a few POSIX requirements to enable streaming access to file system data. part of the Apache Hadoop Core project. 15

16 빅데이터배치 (Batch) 분석기술 MapReduce A programming model developed at Google Sort/merge based distributed computing Used extensively by more organizations (e.g., Yahoo, Amazon.com, IBM, etc.) It is functional style programming(e.g., LISP) parallelizable across a large cluster of workstations or PCs. Key features for Hadoop s success partitioning of the input data scheduling the program s execution across several machines handling machine failures managing required inter-machine communication. 16

17 빅데이터배치 (Batch) 분석기술 Working model for offline-batched analytics 17

18 빅데이터배치 (Batch) 분석기술 Example applications of Hadoop A9.com Amazon: To build Amazon's product search indices; process millions of sessions daily for analytics, using both the Java and streaming APIs; clusters vary from 1 to 100 nodes. Yahoo! : More than 100,000 CPUs in ~20,000 computers running Hadoop; biggest cluster: 2000 nodes (2*4cpu boxes with 4TB disk each); used to support research for Ad Systems and Web Search AOL : Used for a variety of things ranging from statistics generation to running advanced algorithms for doing behavioral analysis and targeting; cluster size is 50 machines, Intel Xeon, dual processors, dual core, each with 16GB Ram and 800 GB hard-disk giving us a total of 37 TB HDFS capacity. Facebook: To store copies of internal log and dimension data sources and use it as a source for reporting/analytics and machine learning; 320 machine cluster with 2,560 cores and about 1.3 PB raw storage; FOX Interactive Media : 3 X 20 machine cluster (8 cores/machine, 2TB/machine storage) ; 10 machine cluster (8 cores/machine, 1TB/machine storage); Used for log analysis, data mining and machine learning University of Nebraska Lincoln: one medium-sized Hadoop cluster (200TB) to store and serve physics data; Adknowledge - to build the recommender system for behavioral targeting, plus other clickstream analytics; clusters vary from 50 to 200 nodes, mostly on EC2. Contextweb - to store ad serving log and use it as a source for Ad optimizations/ Analytics/reporting/machine learning; 23 machine cluster with 184 cores and about 35TB raw storage. Each (commodity) node has 8 cores, 8GB RAM and 1.7 TB of storage. Cornell University Web Lab: Generating web graphs on 100 nodes (dual 2.4GHz Xeon Processor, 2 GB RAM, 72GB Hard Drive) NetSeer - Up to 1000 instances on Amazon EC2 ; Data storage in Amazon S3; Used for crawling, processing, serving and log analysis The New York Times : Large scale image conversions ; EC2 to run Hadoop on a large virtual cluster Powerset / Microsoft - Natural Language Search; up to 400 instances on Amazon EC2 ; data storage in Amazon S3 18

19 빅데이터실시간분석기술 빅데이터실시간분석플랫폼 빅데이터분석기술은은배치처리기술에서폭증스트림처리기술로발전중임. 19 Source : ETRI

20 빅데이터실시간분석기술 Concept of stream processing Stream : Unbounded sequence of data Processing of data-in-motion Finite window data processing Continuous query processing Source : EMC Blog posted by William Zhou Sep

21 빅데이터실시간분석기술 Storm - overview Developed by BackType which was acquired by Twitter Lots of tools for data (i.e. batch) processing Hadoop, Pig, HBase, Hive, None of them are real-time systems which is becoming a real requirement for businesses Problems of MR Scaling is painful Poor fault-tolerance Coding is tedious What we want Guaranteed data processing Horizontal scalability Fault-tolerance No intermediate message brokers! Higher level abstraction than message passing Just works!! Storm provides real-time computation Scalable Guarantees no data loss Extremely robust and fault-tolerant Programming language agnostic 21

22 빅데이터실시간분석기술 Storm architecture & stream processing model Storm cluster Distributed architecture as Master/Slave Nimbus : code distribution, task deployment, fault monitoring Supervisor : processing task control Zookeeper : cluster management Stream Processing model 22

23 빅데이터실시간분석기술 Storm stream grouping When a tuple is emitted which task does it go to? Shuffle grouping pick a random task Fields grouping consistent hashing on a subset of tuple fields All grouping send to all tasks Global grouping pick task with lowest id 23

24 빅데이터실시간분석기술 Storm Processing example(word count) 24

25 빅데이터실시간분석기술 S4 - Overview ( Simple Scalable Streaming System ) S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable platform that allows programmers to easily develop applications for processing continuous unbounded streams of data Released by Yahoo! in October 2010 An Apache Incubator project since September 2011 Under the Apache 2.0 license Proven Deployed in production systems at Yahoo! to process thousands of search queries per second Extensible Applications can easily be written and deployed using a simple API. Decentralized All nodes are symmetric with no centralized service and no single point of failure. Cluster management Using a communication layer built on top of ZooKeeper 25 Scalable Throughput increases linearly as additional nodes are added to the cluster. Fault-tolerance When a server in the cluster fails, a stand-by server is automatically activated to take over the tasks.

26 빅데이터실시간분석기술 S4 Architecture S4 is logically a message passing system computational units, called Processing Elements (PEs), send and receive messages (called Events) S4 framework defines an API which every PE must implement, and provides facilities instantiating PEs and for transporting Events 26

27 빅데이터실시간분석기술 S4 Stream processing model External Data Sources Data Stream Adapter Convert to Events Input Event Processing Element Processing Node PEC(Processing Element Container) Processing Element Output Event Processing Element Stream : a sequence of Events" Events Arbitrary Java Objects that can be passed between PEs of the form (K, A) K : keyed attribute/value A : other attributes Adapters convert external data sources into Events that S4 can process Attributes of events can be accessed via getters in PEs Events Events are dispatched in named streams 27 public class Person { public String class name Person = Lee ; { public int String class age = name Person 30; = Lee ; { String int String age addr = name 30; = Lee ; = Daejeon ; String int age addr = 30; = } Daejeon ; String addr = } Daejeon ; }

28 빅데이터실시간분석기술 S4 Stream processing model PE(Processing Element) Basic computational units in S4 Consume events and can in turn emit new events and update their state Each instance of a PE is uniquely identified by four components: its functionality as defined by a PE class and associated configuration, the named stream that it consumes, the keyed attribute in those events, and the value of the keyed attribute in events which it consumes Every PE consumes exactly those events which correspond to the value on which it is keyed A PE is instantiated for each value of the key attribute This instantiation is performed by the platform public class Person { String name; int age; String addr; } Type of event = named stream Keyed attribute Other attribute 28

29 빅데이터실시간분석기술 S4 Stream processing model Processing Node (PN) Logical hosts to PEs Responsible for listening to events, executing operations on the incoming events, dispatching events with the assistance of the communication layer, and emitting output events S4 : route each event to PNs based on a hash function of the values of all known keyed attributes in that event Event Listener : pass incoming events to the PEC PEC : invoke the appropriate PEs in the appropriate order Every keyless PE is instantiated once per PN Only one PE prototype exists in a PN PE Container (PEC) Holds all PE instances, including the PE prototypes Responsible for routing incoming events to the appropriate PE instances 29

30 빅데이터실시간분석기술 S4 processing example Word count example 30

31 빅데이터실시간분석기술 Twitter Strom vs Yahoo! S4 31

32 4. 사례연구 빅데이터실시간플랫폼개발사례 빅데이터실시간플랫폼활용사례 In-Memory computing for Big data 32

33 빅데이터실시간플랫폼개발사례 프로젝트 : 차세대메모리기반의빅데이터분석 관리소프트웨어원천기술개발 ( ETRI, ~ ) 33

34 빅데이터실시간플랫폼개발사례 빅데이터실시간분석플랫폼구성도 34

35 빅데이터실시간플랫폼활용사례 프로젝트 : 사이버표적공격인지및추적기술개발 ( ETRI, ~ ) 35

36 빅데이터실시간플랫폼활용사례 대용량누적데이터및실시간데이터처리플랫폼구성도 ( 오픈소스활용 ) 36

37 In-Memory computing for Big Data [ Hype Cycle for Big Data ] 37

38 In-Memory computing for Big Data 적용사례 1 : 실시간공간통계분석 / 제공시스템 ( 통계청 ) 통계청통계네비게이터시스템 1) 국민생활과밀접한상세지역생활통계정보를지역별공간정보와연계하여웹기반대국민서비스를제공하는공간빅데이터시스템으로, Kairos 적용을통한고속의 Web 기반통계 GIS 서비스실현 2) 기존외산소프트웨어를기반으로구축되었던시스템을국산기술과국산웹기술기반의신규시스템으로대체하여성공한사례임 3) 데이터의실시간갱신을통한서비스의신뢰성확보 Service Gateway WebGIS Server Web Server Web Server HP Superdome : HP-UX 8CPU x Quad core, 256GB DB : 100GB ( 2012 현재 ) Kairos Spatial 4.8 이중화를통한 HA 구현 (gis.nso.go.kr) Middleware Middleware (Active) Map DB Census DB 데이터이중화 (Active) Map DB Census DB Sync Agent 38

39 In-Memory computing for Big Data 적용사례 2 : 교통정보실시간수집 / 가공 / 분석시스템 ( 현대 / 기아자동차 ) 현대 / 기아자동차교통정보시스템고도화구축 1) 현대 / 기아자동차의교통정보빅데이터처리에디스크DBMS의성능한계로 In-Memory DBMS를도입하여운영되고있는빅데이터분야의대표적인성공사례 2) 현대 / 기아자동차본사의 In-Memory DBMS의첫적용사례 3) 가공시간단축으로기존대비더정확한교통정보제공을통해양질의서비스를제공함 4) 차량의단말기 ( 카드, 내비게이션등 ) 를이용한교통제공서비스연동가능 (Active) (Active) 39

40

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

solution map_....

solution map_.... SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System

More information

Something that can be seen, touched or otherwise sensed

Something that can be seen, touched or otherwise sensed Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

1.장인석-ITIL 소개.ppt

1.장인석-ITIL 소개.ppt HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management

More information

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템 분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

Backup Exec

Backup Exec (sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.

More information

Oracle9i Real Application Clusters

Oracle9i Real Application Clusters Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

PowerPoint Presentation

PowerPoint Presentation Data Protection Rapid Recovery x86 DR Agent based Backup - Physical Machine - Virtual Machine - Cluster Agentless Backup - VMware ESXi Deploy Agents - Windows - AD, ESXi Restore Machine - Live Recovery

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information

Social Network

Social Network Social Network Service, Social Network Service Social Network Social Network Service from Digital Marketing Internet Media : SNS Market report A social network service is a social software specially focused

More information

OP_Journalism

OP_Journalism 1 non-linear consumption 2 Whatever will change television will do so by re-defining the core product not just the tools we use to consume it. by Horace Dediu, Asymco 3 re-defining the core product not

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

歯I-3_무선통신기반차세대망-조동호.PDF

歯I-3_무선통신기반차세대망-조동호.PDF KAIST 00-03-03 / #1 1. NGN 2. NGN 3. NGN 4. 5. 00-03-03 / #2 1. NGN 00-03-03 / #3 1.1 NGN, packet,, IP 00-03-03 / #4 Now: separate networks for separate services Low transmission delay Consistent availability

More information

0125_ 워크샵 발표자료_완성.key

0125_ 워크샵 발표자료_완성.key WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host

More information

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM 中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012.

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012. : 2013 1 25 Homepage: www.gaia3d.com Contact: info@gaia3d.com I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References

More information

플랫폼을말하다 2

플랫폼을말하다 2 데이터를실시간으로모아서 처리하고자하는다양한기법들 김병곤 fharenheit@gmail.com 플랫폼을말하다 2 실시간빅데이터의요건들 l 쇼핑몰사이트의사용자클릭스트림을통해실시간개인화 l 대용량이메일서버의스팸탐지및필터링 l 위치정보기반광고서비스 l 사용자및시스템이벤트를이용한실시간보안감시 l 시스템정보수집을통한장비고장예측 l 실시간차량추적및위치정보수집을이용한도로교통상황파악

More information

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현 02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인

More information

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770> 논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

Service-Oriented Architecture Copyright Tmax Soft 2005

Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770> 327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화

More information

AV PDA Broadcastin g Centers Audio /PC Personal Mobile Interactive (, PDA,, DMB ),, ( 150km/h ) (PPV,, ) Personal Mobile Interactive Multimedia Broadcasting Services 6 MHz TV Channel Block A Block

More information

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project

More information

HTML5가 웹 환경에 미치는 영향 고 있어 웹 플랫폼 환경과는 차이가 있다. HTML5는 기존 HTML 기반 웹 브라우저와의 호환성을 유지하면서도, 구조적인 마크업(mark-up) 및 편리한 웹 폼(web form) 기능을 제공하고, 리치웹 애플리케이 션(RIA)을

HTML5가 웹 환경에 미치는 영향 고 있어 웹 플랫폼 환경과는 차이가 있다. HTML5는 기존 HTML 기반 웹 브라우저와의 호환성을 유지하면서도, 구조적인 마크업(mark-up) 및 편리한 웹 폼(web form) 기능을 제공하고, 리치웹 애플리케이 션(RIA)을 동 향 제 23 권 5호 통권 504호 HTML5가 웹 환경에 미치는 영향 이 은 민 * 16) 1. 개 요 구글(Google)은 2010년 5월 구글 I/O 개발자 컨퍼런스에서 HTML5를 통해 플러 그인의 사용이 줄어들고 프로그램 다운로드 및 설치가 필요 없는 브라우저 기반 웹 플랫폼 환경이 점차 구현되고 있다고 강조했다. 그리고 애플(Apple)은 2010년

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Open Source 를이용한 Big Data 플랫폼과실시간처리분석 한국스파크사용자모임, R Korea 운영자 SK C&C 이상훈 (phoenixlee1@gmail.com) Contents Why Real-time? What is Real-time? Big Data Platform for Streaming Apache Spark 2 KRNET 2015 Why

More information

¹Ìµå¹Ì3Â÷Àμâ

¹Ìµå¹Ì3Â÷Àμâ MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

초보자를 위한 분산 캐시 활용 전략

초보자를 위한 분산 캐시 활용 전략 초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?

More information

À±½Â¿í Ãâ·Â

À±½Â¿í Ãâ·Â Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at

More information

6주차.key

6주차.key 6, Process concept A program in execution Program code PCB (process control block) Program counter, registers, etc. Stack Heap Data section => global variable Process in memory Process state New Running

More information

2 / 26

2 / 26 1 / 26 2 / 26 3 / 26 4 / 26 5 / 26 6 / 26 7 / 26 8 / 26 9 / 26 10 / 26 11 / 26 12 / 26 13 / 26 14 / 26 o o o 15 / 26 o 16 / 26 17 / 26 18 / 26 Comparison of RAID levels RAID level Minimum number of drives

More information

NoSQL

NoSQL MongoDB Daum Communications NoSQL Using Java Java VM, GC Low Scalability Using C Write speed Auto Sharding High Scalability Using Erlang Read/Update MapReduce R/U MR Cassandra Good Very Good MongoDB Good

More information

Chap7.PDF

Chap7.PDF Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed

More information

歯3이화진

歯3이화진 http://www.kbc.go.kr/ Abstract Terrestrial Broadcasters Strategies in the Age of Digital Broadcasting Wha-Jin Lee The purpose of this research is firstly to investigate the

More information

04_오픈지엘API.key

04_오픈지엘API.key 4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

UML

UML Introduction to UML Team. 5 2014/03/14 원스타 200611494 김성원 200810047 허태경 200811466 - Index - 1. UML이란? - 3 2. UML Diagram - 4 3. UML 표기법 - 17 4. GRAPPLE에 따른 UML 작성 과정 - 21 5. UML Tool Star UML - 32 6. 참조문헌

More information

Oracle Database 10g: Self-Managing Database DB TSC

Oracle Database 10g: Self-Managing Database DB TSC Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%

More information

untitled

untitled SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy

More information

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,

More information

J2EE & Web Services iSeminar

J2EE & Web Services iSeminar 9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING

More information

Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer

Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer Domino, Portal & Workplace WPLC FTSS Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer ? Lotus Notes Clients

More information

Voice Portal using Oracle 9i AS Wireless

Voice Portal using Oracle 9i AS Wireless Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video

More information

- 2 -

- 2 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -

More information

강의지침서 작성 양식

강의지침서 작성 양식 정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,

More information

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범... ... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13

More information

05(533-537) CPLV12-04.hwp

05(533-537) CPLV12-04.hwp 모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,

More information

vm-웨어-01장

vm-웨어-01장 Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

국내 디지털콘텐츠산업의 Global화 전략

국내 디지털콘텐츠산업의 Global화 전략 Digital Conents Contents Words, Sound, Picture, Image, etc. Digitizing : Product, Delivery, Consumption NAICS(, IMO Digital Contents Digital Contents S/W DC DC Post PC TV Worldwide Digital Contents

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

6.24-9년 6월

6.24-9년 6월 리눅스 환경에서Solid-State Disk 성능 최적화를 위한 디스크 입출력요구 변환 계층 김태웅 류준길 박찬익 Taewoong Kim Junkil Ryu Chanik Park 포항공과대학교 컴퓨터공학과 {ehoto, lancer, cipark}@postech.ac.kr 요약 SSD(Solid-State Disk)는 여러 개의 낸드 플래시 메모리들로 구성된

More information

06_ÀÌÀçÈÆ¿Ü0926

06_ÀÌÀçÈÆ¿Ü0926 182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %

More information

sdf

sdf 하둡기반트래픽분석경험으로 보는 IoT 데이터수집및분석방법 2014. 5. 29 이영석 lee@cnu.ac.kr 충남대학교컴퓨터공학과데이터네트워크연구실 (http://networks.cnu.ac.kr ) 1 발표내용 하둡기반인터넷트래픽측정 IoT 데이터수집과분석 결론 2 인터넷트래픽측정분석연구 Challenges Scalability Storage for bulky

More information

? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement

? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement Daum Communications CRM 2007. 3. 14. ? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement Communication

More information

11¹Ú´ö±Ô

11¹Ú´ö±Ô A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -

More information

dbms_snu.PDF

dbms_snu.PDF DBMS : Past, Present, and the Future hjk@oopsla.snu.ac.kr 1 Table of Contents 2 DBMS? 3 DBMS Architecture naive users naive users programmers application casual users casual users administrator database

More information

untitled

untitled 3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by

More information

歯이시홍).PDF

歯이시홍).PDF cwseo@netsgo.com Si-Hong Lee duckling@sktelecom.com SK Telecom Platform - 1 - 1. Digital AMPS CDMA (IS-95 A/B) CDMA (cdma2000-1x) IMT-2000 (IS-95 C) ( ) ( ) ( ) ( ) - 2 - 2. QoS Market QoS Coverage C/D

More information

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not, Page 1 of 5 Learn Korean Ep. 4: To be and To exist Of course to be and to exist are different verbs, but they re often confused by beginning students when learning Korean. In English we sometimes use the

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 EBC (Equipment Behaviour Catalogue) - ISO TC 184/SC 5/SG 4 신규표준이슈 - 한국전자통신연구원김성혜 목차 Prologue: ISO TC 184/SC 5 그룹 SG: Study Group ( 표준이슈발굴 ) WG: Working Group ( 표준개발 ) 3 EBC 배경 제안자 JISC (Japanese Industrial

More information

목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate

목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate ALTIBASE HDB 6.1.1.5.6 Patch Notes 목차 BUG-39240 offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG-41443 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate 한뒤, hash partition

More information

Microsoft Word - 조병호

Microsoft Word - 조병호 포커스 클라우드 컴퓨팅 서비스 기술 및 표준화 추진 동향 조병호* 2006년에 클라우딩 컴퓨팅이란 용어가 처음 생겨난 이래 글로벌 IT 기업 CEO들이 잇달아 차 기 핵심 기술로 클라우드 컴퓨팅을 지목하면서 전세계적으로 클라우드 컴퓨팅이라는 새로운 파 라다임에 관심이 고조되고 있다. 클라우드 컴퓨팅 기술을 이용하면 효율적인 IT 자원을 운용할 수 있으며 비용절감

More information

CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD SSD 서버 & HDD 서버 비교 4. LSD SSD 서버 & 글로벌 SSD 서버 비교 2

CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD SSD 서버 & HDD 서버 비교 4. LSD SSD 서버 & 글로벌 SSD 서버 비교 2 읽기속도 1초에 20Gbps www.lsdtech.co.kr 2011. 7. 01 Green Computing SSD Server & SSD Storage 이기택 82-10-8724-0575 ktlee1217@lsdtech.co.kr CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD

More information

thesis

thesis CORBA TMN Surveillance System DPNM Lab, GSIT, POSTECH Email: mnd@postech.ac.kr Contents Motivation & Goal Related Work CORBA TMN Surveillance System Implementation Conclusion & Future Work 2 Motivation

More information

` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not

More information

スライド タイトルなし

スライド タイトルなし 2 3 회사 소개 60%출자 40%출자 주식회사 NTT데이타 아이테크 NTT DATA의 영업협력이나 첨단기술제공, 인재육성등 여러가지 지원을 통해서 SII 그룹을 대상으로 고도의 정보 서비스를 제공 함과 동시에 NTT DATA ITEC 가 보유하고 있는 높은 업무 노하우 와 SCM을 비롯한 ERP분야의 기술력을 살려서 조립가공계 및 제조업 등 새로운 시장에

More information

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL)

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 02-570-4352 (e-mail) jjoon75@kisdi.re.kr 1 The Monthly Focus.

More information

Intro to Servlet, EJB, JSP, WS

Intro to Servlet, EJB, JSP, WS ! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g

More information

슬라이드 제목 없음

슬라이드 제목 없음 (Electronic Commerce/Electronic Business) ( ) ,, Bio Bio 1 2 3 Money Money ( ) ( ) 4025 39 21 25 20 13 15 13 15 17 12 11 10 1 23 1 26 ( ) 1 2 2 6 (1 3 ) 1 14:00 20:00 1 2 1 1 5-6 4 e t / Life Cycle (e-commerce)

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information