슬라이드 1

Size: px
Start display at page:

Download "슬라이드 1"

Transcription

1 빅데이터플랫폼기반소셜네트워크데이터분석사례 김형준 이저작물은크리에이티브커먼즈코리아저작자표시 - 비영리 - 변경금지 2.0 대한민국라이센스에따라이용하실수있습니다.

2 김형준 현 ) 그루터 ( 아키텍트 삼성 SDS, NHN 페이스북그룹 클라우드컴퓨팅구현기술

3 소셜네트워크데이터에는어떤정보가있나? 사람 대화 링크 텍스트키워드 사진 관심 전파

4 소셜네트워크데이터에는어떤정보가있나? {createdat=sun Feb 12 10:35:37 KST 2012, id= , 일요일 11 시결혼식... 민폐. 너무일찍온일인 ', source='<a href=" rel="nofollow">twitter for iphone</a>', istruncated=false, inreplytostatusid=-1, inreplytouserid=- 1, isfavorited=false, inreplytoscreenname='null', geolocation=null, place=null, retweetcount=0, wasretweetedbyme=false, contributors=null, annotations=null, retweetedstatus=null, usermentionentities= {start=1, end=9, name='kimhj', screenname='babokim', id= }], urlentities=[], hashtagentities=[], user=userjsonimpl{id= , name='yk,kwon', screenname='gaiaville', location='seoul, Korea', description='cloud, Search and Social 검색은인간을이롭게한다. the scent of search 검색의향기. searcus.com God's Bless for human facebook.com/gaiaville', iscontributorsenabled=false, profileimageurl=' ormal.jpg', profileimageurlhttps=' 54_n_normal.jpg', url=' isprotected=false, followerscount=741, status=null, profilebackgroundcolor='022330', profiletextcolor='333333', profilelinkcolor='0084b4', profilesidebarfillcolor='c0dfec', profilesidebarbordercolor='a8c7f7', profileusebackgroundimage=true, showallinlinemedia=true, friendscount=232, createdat=sun Jun 21 13:56:00 KST 2009, favouritescount=432, utcoffset=32400, timezone='seoul', profilebackgroundimageurl=' profilebackgroundimageurlhttps=' profilebackgroundtiled=false, lang='ko', statusescount=5423, isgeoenabled=true, isverified=false, translator=false, listedcount=49, isfollowrequestsent=false}}

5 소셜네트워크데이터로무엇을분석할수있나? 성별, 나이대계정매칭친구관계지역 글쓴이의주요관심사항글쓴이의친한친구관계인기 / 급상승키워드링크종류별 ( 그림, 뉴스, 동영상등 ) 순위키워드관계 (JCO <-> 컨퍼런스 ) 자주방문하는지역 글퍼짐관계특정주제에대해관심있는그룹그룹간의관계그룹내에영향력있는사람

6 기업은왜소셜네트워크데이터에관심을가지는가? 수백만의고객이모여서대화를나누는곳이기때문에마케팅을수행하거나제품의반응등을듣기위한최적의장소이다.

7 소셜네트워크플랫폼??? 데이터처리??? 오늘발표주제는무엇으로할까?

8 BigData 소셜네트워크데이터 Volume Velocity Various Value 트위터 : 2 억 / 일, 한국 400 백만 / 일, 3 백만사용자페이스북블로그 소셜네트워크의빠른데이터전파력. 실시간모니터링 / 분석필요. 분석결과를바탕으로빠른피드백 다양한유형의데이터. 비정형텍스트데이터. 사용자관계네트워크데이터. 링크, 사진, 비디오등 잠재고객의관심사항기업브랜드, 제품등에대한평가고객들간의관계

9 왜 (Big)Data 플랫폼이필요한가? 데이터가다양하고계속변화 ( 서비스종류도많고, 서비스의데이터 /API 도계속변화 ) 무엇을분석해야할지모르는경우가많다. ( 데이터를자주만져봐야알수있다.) 시스템, 데이터모두알아야한다. ( 이런전문가는많지않고비싸다.) 비용대비성능 (Return On Investment, 엔터프라이즈급솔루션도입?)

10 Backtype: Twitter 링크분석사례 Workers choose queue to enqueue to using hash/mod of URL All updates for same URL guaranteed to go to same worker Workers share the load of schemifying tweets Distribute tweets randomly on multiple queues Workers schemify tweets and append to Hadoop Workers update statistics on URLs by incrementing counters in Cassandra

11 Storm: backtype streamming processing 트위터실시간분석 분산아키텍처 - 1 대의 Master(Nimbus) - N 대의 Worker(Supervisor) - ZooKeeper 에의해관리 DAG(Direct Acyclic Graph) - Stream: unbounded sequence of tuples - Spout: Input - Bolt: Processing unit - Topology. 여러개의 spout, bolt 로구성되며그래프로표현. 한번실행된 Topology 는강제로 kill 하기전에는계속수행됨

12 Facebook: Social plug-in Transactional 수집 실시간분석 process over 20 billion events per day (200,000 events per second) with a lag of less than 30 seconds. 실시간 Feedback 배치분석 Analytic

13 Facebook: hadoop/hbase, ptail, puma 데이터수집기 (scribe) 데이터수집기 (scribe) 데이터수집기 (scribe) Write, sync Hadoop /category1/collect_1.dat /category1/collect_2.dat /category1/collect_3.dat ptail Driver Checkpoint Handler Aggregation Store Storage Thrift Server HBase Key1: value Key2: value Key3: value 클라이언트

14 (Big)Data 플랫폼이란? 데이터의전체라이프사이클을관리하는시스템 ( 수집, 저장, 분석, 폐기 ) 데이터유형변화에도시스템의변경없이적용, 운영가능 다양한분석알고리즘또는분석플랫폼이적용가능 (Map/Reduce, MPI, Graph 등 ) 비즈니스요구사항에부합되는적절한분석 Latency 지원 ( 실시간, 준 - 실시간, 배치 ) 데이터의용량증가에도즉시대응가능

15 BigData 플랫폼 : Hadoop Eco-System

16 BigData 플랫폼관련기술 구분설명오픈소스 데이터수집 원본데이터저장 트렌젝션데이터저장 실시간분석플랫폼 배치분석플랫폼 데이터마이닝 / 통계도구 클러스터관리및모니터링 데이터 Serialization 데이터발생원으로부터안정적인저장소로저장하는기능 수행 수집된데이터를안정적으로저장하는저장소비구조적데이터저장소로주로대용량파일저장소 원본데이터를실시간으로저장, 조회처리를하기위한저장소구조적저장소또는검색엔진기술을활용 데이터수집과동시에분석을수행복잡한분석보다 count, sum 등단순한 aggregation 연산정도수행 전체또는부분데이터에대해복잡하고다양한분석수행대용량처리를위해분산, 병렬처리가필요단순텍스트분석부터그래프분석까지다양한분석모델지원 Cluster, Classification 등과같이데이터마이닝을위한기본알고리즘라이브러리및도구 대부분분산시스템으로구성되기때문에전체클러스터에대한관제및모니터링도복잡 이기종플랫폼및다양한종류의솔루션을사용하기때문에데이터전송및처리에대한표준프레임워크필요 Flume, Scribe, Chukwa Hadoop FileSystem MogileFS NoSQL(Cloudata, HBase, Cassandra) Katta, ElasticSearch S4, Storm Hadoop MapReduce(Hive, Pig) Giraph, GoldenOrb Mahout, R ZooKeeper, HUE, Cloumon Thrift, Avro, ProtoBuf

17 구축사례

18 기획단계 소셜네트워크데이터분석서비스에는어떤기능을제공해야할까? 개발자 1 : 친구관계를네트워크분석을이용하여추천을하자! 개발자 2: 키워드중심으로사용자를클러스터링하자! - 결론은고객도, 그루터 ( 엔지니어 ) 도잘모른다. - 시스템관점이아닌데이터를먼저살펴보자. SNS 데이터를볼수있는전문가필요 이전문가가데이터를지속적으로볼수있는시스템필요 시스템에는부분데이터가아닌전체데이터를저장하고 개발자가아닌데이터전문가가쉽게접근해서 빠르고자주분석할수있어야한다.

19 저장 / 배치분석플랫폼만들기 데이터처리에있어서가장큰고민중에하나는, 미래의구체적인요구사항을아직모른다, 다만, 확실한것은 : - 데이터는늘어날것이다 - 데이터의소비용도도다양해질것이다 - 데이터프로세싱에대한다양한요구도늘어날것이다 데이터의흐름은한번시작되면멈추지않는다 ; 즉달리는차를멈추고, 바퀴를바꿔야하는식의아키텍처는맞지않다. 기존에구축된시스템의데이터흐름에영향을없게하거나최소화하면서확장요건을만족시키는솔루션이필요하다. 장정식수석그루터데이터아키텍트

20 이런구성은? Crawler #1 Crawler #2 Database Database (Replication) 질의 Crawler #N?? 데이터분석가

21 저장 / 배치분석플랫폼구성 Crawler #1 Crawler #2 Crawler #N Cloudata (NoSQL) 실시간질의 Bamboo Collector 저장 Hadoop Map/Reduce Machine Learning HiveQL 질의 async call Bamboo Receiver (HiveTableLoader) 저장 Hadopo File System 원본 Hive Table 데이터분석가

22 저장 / 배치분석플랫폼구성 (Crawler) 수집대상, 수집데이터증가에도프로세스증설만으로수집능력향상특정 Crawler 장애시자동으로다른 Crawler 가역할대신수행

23 저장및분석플랫폼구성 ( 파일시스템 ) 고가용대용량분산파일시스템 수천대규모단일클러스터구성, BigData 분석용데이터저장소로 Defacto Standard 별도의외부스토리지가아닌 x86 장비내부의로컬디스크이용 고가용성을위해하나의파일을여러서버에복제 특정서버장애발생시자동감지및복구 서버추가 / 제거시별도의작업불필요 단점 : 저장가능한파일수한계, NameNode 가 SPOF, 범용스토리지로사용하기어려움

24 저장및분석플랫폼구성 (Data pipeline) Bamboo: Gruter s data stream platform 데이터발생원으로부터데이터처리와흐름제어를통해목적지까지수집된데이터를효과적으로전달 각노드는 Netty 기반의 upstream/downstream 구조 (Flume 의 source 와 sink 개념과유사 ) 시스템 runtime 중에도노드 (Sever/Client 조합 ) 연결을통해 data flow 확장가능하고, 동적으로프로세싱모듈조합 / 연결을통해 data processing 확장가능. Crawler ZooKeeper 클러스터멤버쉽 BambooClient netty async http Bamboo Collector netty async http Group Connector #1 Group Connector #2 분배 Or ALL netty async http Receiver#1 (Indexer) Receiver#1 (Counter) Receiver#1 (HiveLoader) Searcher MySQL Hive Group Connector #3

25 Bamboo 를이용한 IDC 간미러링 IDC1 IDC2 Crawler #1 Crawler #2 Crawler #N Bamboo Collector Group Connector Group Connector Receiver#1 (Indexer) Receiver#2 (Counter) Receiver#3 (HDFS Loader) Receiver#1 (Indexer) Receiver#2 (Counter) Receiver#3 (HiveLoader) HDFS HDFS 백업용 분석용

26 저장및분석플랫폼구성 (HIVE) Crawler, ZooKeeper, Hadoop, Bamboo 는모두개발자관점애초필요했던데이터분석가가쉽게접근, 분석할수있는기능은? HIVE HDFS 에저장된텍스트기반의테이블을데이터를 SQL 을이용하여 Map/Reduce 분산병렬작업을수행하게하는플랫폼 인용 retweet 추출 insert overwrite table retweeted_key select transform(id, created_at, rt_id, text) using 'python extractretweet.py' as (tweetkey, id, created_at) from default.twitter_hk; DEMO

27 분석대상선정 실시간검색 - 키워드, 특정사용자내, 내친구내, 여러키워드비교특정계정트윗현황집계 - 작성한글, 멘션된글, RT 된글등글의전파경로 - 실시간리트윗전파경로분석키워드모니터링 - 실시간키워드모니터링 - 키워드분류관리 Ad-hoc 분석 - 선거영향분석등

28 데이터를구조적으로저장해보자 ( 검색엔진 ) 오픈소스 Lucene 기반분산검색구성 Bamboo 인덱스볼륨이중화구성으로장애대응 크롤즉시검색인덱스에반영 ( 실시간검색 ) Web Server Web Server Web Server Parallel Search Gateway Lucene Lucene Lucene Lucene Index (shard#1) Index (shard#1) Index (shard#2) Index (shard#2) Replica Replica

29 키워드분석, 리트윗경로분석등실시간분석특정사용자메시지, 특정키워드가아닌전체메시지에대한분석 원본저장 Bamboo Filtering ( 특수문자등제외 ) 원본글검색 띄워쓰기 (Segmentation) 메시지클러스터링 키워드매칭 ( 그룹, 분류, 부정어 ) 사용자네트워크분석 형태소분석 리트윗계산 관련어추출 결과저장 결과저장

30 사람간의네트워크분석은? 연관키워드분석은? 텍스트의감정분석은? 페이스북, 블로그등다른서비스 / 데이터와통합된분석은? 데이터를좀더살펴보고 어떤 Value 를만들어낼것인가를고민 플랫폼 + 데이터 + 분석가 + 개발자가있기때문에

31 전체시스템구성 HTTP Application Analysis Storage WebServer WebServer (apache) WebServer (apache) (apache) API API API WebServer (jetty) (tomcat, (jetty) jetty) Distributed Distributed Search Distributed Search Server Server (lucene, Search (lucene, thrift) Server (lucene, thrift) thrift) Cache (memcached) AppServer AppServer AppServer (thrift) (thrift) (thrift) Distributed Indexer Analysis App. MapReduce Data Pipeline (bamboo) Crawler File Storage (HDFS) Data Storage (Cloudata) Data Storage (HBase) RDBMS (MySQL) Hadoop: 30 대 Cloudata: 18 대 Crawler: 10 대 Search: 4 대 API: 4 대 Cluster Membership Crawler Queue Indexer Event Key Generator Cluster Management (ZooKeeper) Monitoring (Cloumon)

32 개발문화 대표이사데이터아키텍트시스템아키텍트시니어개발자주니어개발자 데이터수집, 검색엔진, 서비스웹화면 데이터분석, Bamboo, Flume, 서버모듈개발, 서비스웹화면 Hadoop, HBase, Hive, 서버모듈개발, 서비스웹화면 Hadoop, Hive, Cloumon 서버모듈개발, 서비스웹화면 Hadoop, Flume, HBase 서버모듈개발, 서비스웹화면

33 감사합니다.

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Open Source 를이용한 Big Data 플랫폼과실시간처리분석 한국스파크사용자모임, R Korea 운영자 SK C&C 이상훈 (phoenixlee1@gmail.com) Contents Why Real-time? What is Real-time? Big Data Platform for Streaming Apache Spark 2 KRNET 2015 Why

More information

Ubiqutious Pubilc Access Reference Model

Ubiqutious Pubilc Access  Reference Model Hadoop/Hbase 기반의 Twitter 공간정보분석 군산대학교컴퓨터정보공학과 {pseudo_jo, didvuddn, kwnam}@kunsan.ac.kr 조현구, 양평우, 남광우 배경및필요성 Twitter 스트림에서의공간정보추출 - 공간현상의추출및공유부분은부족 Twitter 스트림에서의정보추출 - 자연어기반텍스트정보셋에서의키워드추출 - 시간의변화에따른이슈변화모니터링

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

플랫폼을말하다 2

플랫폼을말하다 2 데이터를실시간으로모아서 처리하고자하는다양한기법들 김병곤 fharenheit@gmail.com 플랫폼을말하다 2 실시간빅데이터의요건들 l 쇼핑몰사이트의사용자클릭스트림을통해실시간개인화 l 대용량이메일서버의스팸탐지및필터링 l 위치정보기반광고서비스 l 사용자및시스템이벤트를이용한실시간보안감시 l 시스템정보수집을통한장비고장예측 l 실시간차량추적및위치정보수집을이용한도로교통상황파악

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

PowerPoint Presentation

PowerPoint Presentation 하둡전문가로가는길 심탁길 terryshim@naver.com 목차 1. 하둡과에코시스템개요 2. 홗용사례붂석 3. 하둡젂문가의필요성 4. 무엇을어떻게준비할까? 5. 하둡기반추천시스템데모 하둡개요 구글인프라 배치애플리케이션 온라인서비스 MapReduce Bigtable GFS Client API Chubby Cluster Mgmt 주요소프트웨어스택 Google

More information

Agenda NoSQL 개요 NoSQL 특징 NoSQL 솔루션 HBase Architecture HBase Data Model HBase Index/Data File HBase Failover HBase Usecase

Agenda NoSQL 개요 NoSQL 특징 NoSQL 솔루션 HBase Architecture HBase Data Model HBase Index/Data File HBase Failover HBase Usecase 김형준 http://www.jaso.co.kr http://www.seenal.com babokim@gmail.com 이저작물은크리에이티브커먼즈코리아저작자표시 - 비영리 - 변경금지 2.0 대한민국라이센스에따라이용하실수있습니다. Agenda NoSQL 개요 NoSQL 특징 NoSQL 솔루션 HBase Architecture HBase Data Model HBase

More information

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named) 오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Spider For MySQL 실전사용기 피망플러스유닛최윤묵 Spider For MySQL Data Sharding By Spider Storage Engine http://spiderformysql.com/ 성능 8 만 / 분 X 4 대 32 만 / 분 많은 DB 중에왜 spider 를? Source: 클라우드컴퓨팅구 선택의기로 Consistency RDBMS

More information

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템 분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research

More information

Cloud Friendly System Architecture

Cloud Friendly System Architecture -Service Clients Administrator 1. -Service 구성도 : ( 좌측참고 ) LB(LoadBlancer) 2. -Service 개요 ucloud Virtual Router F/W Monitoring 개념 특징 적용가능분야 Server, WAS, DB 로구성되어 web service 를클라우드환경에서제공하기위한 service architecture

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

[Brochure] KOR_TunA

[Brochure] KOR_TunA LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /

More information

슬라이드 1

슬라이드 1 NoSQL 김형준 (gruter) babokim@gmail.com Revision: 2011.06.19 2011 JCO 11th Conference Session ${track_#}-${session_#} Javacommunity.Org 김형준 babokim@gmail.com(gtalk) 그루터, www.gruter.com www.jaso.co.kr www.cloudata.org

More information

빅데이터 라이프사이클관리 심탁길

빅데이터 라이프사이클관리 심탁길 빅데이터 라이프사이클관리 심탁길 terryshim@naver.com 목차 1. 빅데이터개요 2. 빅데이터라이프사이클 3. 주요오픈소스기술소개 빅데이터개요 빅데이터란? Big Data 데이터베이스관점업무관점 기존의방식으로 저장 / 관리분석하기어려울정도의큰규모의자료 일반적인데이터베이스 SW 가저장, 관리분석할수있는범위를초과하는규모의데이터 ( 맥킨지, 2011)

More information

문서의 제목 나눔고딕B, 54pt

문서의 제목 나눔고딕B, 54pt 실시간데이터수집및처리 Network Computing System Architecture Lab Dongguk University MooSeon Choi 2013.11.07 목차 1. 연구목표 2. 2차발표리뷰 3. 실시간데이터수집및처리 4. 향후연구계획 3 / 14 연구목표 ( 1 세부 데이터페더레이션을위한기술 ) 모바일기반 SNS( 비정형 ) 데이터와기존

More information

160322_ADOP 상품 소개서_1.0

160322_ADOP 상품 소개서_1.0 상품 소개서 March, 2016 INTRODUCTION WHO WE ARE WHAT WE DO ADOP PRODUCTS : PLATON SEO SOULTION ( ) OUT-STREAM - FOR MOBILE ADOP MARKET ( ) 2. ADOP PRODUCTS WHO WE ARE ADOP,. 2. ADOP PRODUCTS WHAT WE DO ADOP,.

More information

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와 Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.

More information

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현 02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

무제-1

무제-1 표준화 논단 스마트 시대 ICT 패러다임의 변화 최 계 영 KISDI 미래융합연구실장 1. 머리말 스마트 시대 ICT 패러다임의 변화를 이야기하기에 앞 서, 스마트 시대란 무엇인지를 먼저 정의내릴 필요가 있 다. 스마트 시대라는 용어는 사실 엄밀한 학문적 용어 는 아니며, 스마트폰 등장 이후 모바일에서 이용자가 향 유할 수 있는 서비스가 증가하면서 일반화된

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project

More information

항목

항목 Cloud 컴퓨팅기반분산파일시스템개요 개발실 UPDATE : 2012. 11 18 INDEX 1. 가용성 2. 확장성 3. PrismFS 4. Q&A 2 가용성 3 Gmail 장애 2011년 2월 27일 34000명의 Gmail 사용자들이일어나보니메일, 주소록, 채팅기록등이사라진것을발견 2011년 2월 28일 스토리지소프트웨어업데이트를진행하는중 Bug로인해발생했다고공지

More information

170918_hjk_datayanolja_v1.0.1.

170918_hjk_datayanolja_v1.0.1. 모 금융회사 오픈소스 및 머신러닝 도입 이야기 김 형 준 2 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화 3 Machine Learning 삽질기 ( 분석 & 개발 ) 3 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화하기 3 Machine Learning

More information

오픈소스 NoSQL(MongoDB) 을이용한 Twitter Stream 의저장과실시간공간지식발견 군산대학교컴퓨터정보공학과 남광우

오픈소스 NoSQL(MongoDB) 을이용한 Twitter Stream 의저장과실시간공간지식발견 군산대학교컴퓨터정보공학과 남광우 오픈소스 NoSQL(MongoDB) 을이용한 Twitter Stream 의저장과실시간공간지식발견 군산대학교컴퓨터정보공학과 kwnam@kunsan.ac.kr 남광우 연구배경및필요성 Twitter 스트림에서의공간정보추출 - 도메인온톨로지와텍스트정보에기반한위치추정에집중 - 공간현상의추출및공유부분은부족 Twitter 스트림스트림에서정보추출 - 자연어기반텍스트정보셋에서의키워드추출

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

슬라이드 1

슬라이드 1 실시간분산병렬 CEP 플랫폼 2015. 10 Agenda 목차 I. SK 빅데이터솔루션소개 III. 실시간분산병렬 CEP PoC 사례 1. 배경및필요성 2. 확보방안 3. 솔루션 Coverage 4. 솔루션아키텍처 1. 동기및개선방향 2. 데이터흐름도 3. 아키텍처 II. 실시간분산병렬 CEP IV. 맺음말 1. 개요 1. 향후추진방향 2. 고려사항 2. Summary

More information

Microsoft PowerPoint - CNVZNGWAIYSE.pptx

Microsoft PowerPoint - CNVZNGWAIYSE.pptx 대용량데이터처리를위한 Sharding 2013.1. 이동현 DBMS 개발랩 /NHN Business Platform SQL 기술전략세미나 2 대용량데이터를위한솔루션은 NoSQL 인가, RDBMS 인가? 모든경우에대해어떤하나의선택을하자는게아닙니다. SQL 기술전략세미나 3 언제, 그리고왜 RDBMS 를선택해야하는가? NoSQL 과다른 RDBMS 만의특징이필요할때

More information

1701_ADOP-소개서_3.3.key

1701_ADOP-소개서_3.3.key ADOP ALL DISTRIBUTION OPTIMIZATION PLATFORM SINCE 2011 ~ PA RT 0 1 PA RT 02 회사소개 PA RT 03 ADOP 서비스 ADOP SSP (Supply Side Platform) & 솔루션 소개 CONTENTS PA RT 04 성공사례 1 PART 회사소개 WHO WE ARE? ADOP 5. 03. 10.

More information

초보자를 위한 분산 캐시 활용 전략

초보자를 위한 분산 캐시 활용 전략 초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?

More information

놀이동산미아찾기시스템

놀이동산미아찾기시스템 TinyOS를이용한 놀이동산미아찾기시스템 윤정호 (mo0o1234@nate.com) 김영익 (youngicks7@daum.net) 김동익 (dongikkim@naver.com) 1 목차 1. 프로젝트개요 2. 전체시스템구성도 3. Tool & Language 4. 데이터흐름도 5. Graphic User Interface 6. 개선해야할사항 2 프로젝트개요

More information

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š 솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476

More information

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud 오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

Slide 1

Slide 1 빅데이터기술의이해 2016. 8. 23 장형석 충북대비즈니스데이터융합학과교수 chjang1204@nate.com 장형석교수 # 경력 ( 현직 ) - 충북대학교비즈니스데이터융합학과 - 국민대학교빅데이터경영 MBA 과정겸임교수 - 연세대학교데이터사이언스과정외래교수 # 저서및역서 - [ 실전하둡운용가이드 ] 한빛미디어, 2013.07 - [ 빅데이터컴퓨팅기술 ]

More information

MySQL-Ch05

MySQL-Ch05 MySQL P A R T 2 Chapter 05 Chapter 06 Chapter 07 Chapter 08 05 Chapter MySQL MySQL. (, C, Perl, PHP),. 5.1 MySQL., mysqldump, mysqlimport, mysqladmin, mysql. MySQL. mysql,. SQL. MySQL... MySQL ( ). MySQL,.

More information

슬라이드 1

슬라이드 1 2015( 제 8 회 ) 한국소프트웨어아키텍트대회 OSS 성능모니터링을위한 Open Source SW 2015. 07. 16 LG CNS 김성조 Tomcat & MariaDB 성능모니터링 Passion Open Source Software Open Hadoop IT Service Share Communication Enterprise Source Access

More information

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 Agenda TITLE SLIDE: HEADLINE 1.? 2. Presenter Infinispan JDG 3. Title JBoss Data Grid? 4. Date JBoss

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 오픈소스검색엔진을활용한 데이터분석 Elastic Stack 을이용한데이터분석 김종민 Tech Evangelist @Elastic 2017.10.26 Elastic? Elastic? Elasticsearch 라는검색엔진을개발한회사입니다. (ELK Stack 으로더잘알려져있습니다.) 검색엔진은우리주변여기저기에있습니다. 요즘은검색엔진이데이터분석에도쓰입니다. Elastic

More information

PowerPoint Template

PowerPoint Template 빅데이터실시간분석기술동향및적용사례 2013. 10. 08 ( 주 ) 리얼타임테크 목차 1. 빅데이터개요 2. 빅데이터분석개요 3. 빅데이터분석기술 4. 사례연구 2 1. 빅데이터개요 3 빅데이터개요 빅데이터기술의등장배경 Source : IDC Digital universe study(2011) Source : IDC (2012) Digital Universe:

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Week13

Week13 Week 13 Social Data Mining 02 Joonhwan Lee human-computer interaction + design lab. Crawling Twitter Data OAuth Crawling Data using OpenAPI Advanced Web Crawling 1. Crawling Twitter Data Twitter API API

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Flamingo Big Data Performance Management Product Documentation It s the Best Big Data Performance Management Solution. Maximize Your Hadoop Cluster with Flamingo. Monitoring, Analyzing, and Visualizing.

More information

백봉현, 하일규, 안병철 Bong-Hyun Back, Ilkyu Ha, ByoungChul Ahn 1. 서론 최근들어소셜네트워크활성화로 에서발생하는대량의데이터 로부터정보를추출하여이를정치 경제 개인서비 스 연애등다양한분야에활용하고자하는노력이 계속되고있다 상의데이터를빠르게

백봉현, 하일규, 안병철 Bong-Hyun Back, Ilkyu Ha, ByoungChul Ahn 1. 서론 최근들어소셜네트워크활성화로 에서발생하는대량의데이터 로부터정보를추출하여이를정치 경제 개인서비 스 연애등다양한분야에활용하고자하는노력이 계속되고있다 상의데이터를빠르게 백봉현, 하일규, 안병철 Bong-Hyun Back, Ilkyu Ha, ByoungChul Ahn 1. 서론 최근들어소셜네트워크활성화로 에서발생하는대량의데이터 로부터정보를추출하여이를정치 경제 개인서비 스 연애등다양한분야에활용하고자하는노력이 계속되고있다 상의데이터를빠르게분석하여 의미있는정보를추출하고 이를통해대중들이요구 하는의견과생각들을실시간으로파악하여 제품을

More information

Apache2 + Tomcat 5 + JK2 를 사용한 로드밸런싱과 세션 복제 클러스터링 사이트 구축

Apache2 + Tomcat 5 + JK2 를 사용한 로드밸런싱과 세션 복제 클러스터링 사이트 구축 Apache2 + Tomcat 5 + JK2 : 2004-11-04 Release Ver. 1.0.0.1 Email : ykkim@cabsoftware.com Apache JK2 ( )., JK2 Apache2 JK2. 3 - JK2, Tomcat -.. 3, Stress ( ),., localhost ip., 2. 2,. Windows XP., Window

More information

슬라이드 1

슬라이드 1 Big Architecture 2014.10.23 SK C&C Platform 사업팀이정일차장 Table of 1. Big 개요 2. Big 플랫폼아키텍처 3. 아키텍처수립시고려사항 4. 하둡배포판기반아키텍처 5. Case Study 1. Big 개요 Big 란 Big Big Big Big 3 1. Big 개요 Big 의특성 3V 데이터의크기 (Volume)

More information

PlatformDay2009-Hadoop_OSBI-YoungwooKim

PlatformDay2009-Hadoop_OSBI-YoungwooKim Hadoop 과오픈소스소프트웨어를이용한비지니스인텔리전스플랫폼구축 (Building Business Intelligence Platform Using Hadoop and OpenSource Tools) PlatFromDay2009 2009. 6. 12 김영우 warwithin@daumcorp.com 다음커뮤니케이션 프리젠테이션개요 비즈니스인텔리전스그리고데이터웨어하우스

More information

자동화된 소프트웨어 정의 데이터센터

자동화된 소프트웨어 정의 데이터센터 사례로보는 Big Data 프로젝트의 Success Factor 한지수이사 한국이엠씨컴퓨터시스템즈 1 목차 Big Data는무엇인가? BI/DW와 Big Data의차이점? Big Data프로젝트의목표 Big Data 프로젝트수행의 3가지어려움 Big Data 프로젝트사례와시사점 Key Success Factor Big Data 수행을위한조직 Big Data

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅데이터플랫폼 Flamingo 를통해알아보는성공적인오픈소스비즈니스비법 빅데이터개발본부 김병곤상무 GPL 라이선스인 Ghostscript 를한컴오피스에내장 GPL 라이선스위반 Ghostscript 개발사인 Artifex 가소송 소송에서패소 ( 협의만남음 ) 여전히한컴은소스코드를 공개하지않음 오픈소스 (open source) 는소프트웨어의제작자의권리를지키면서원시코드를누구나열람할수있도록한소프트웨어혹은오픈소스라이선스에준하는모든통칭을일컫는다.

More information

Backup Exec

Backup Exec (sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.

More information

빅데이터분산컴퓨팅-5-수정

빅데이터분산컴퓨팅-5-수정 Apache Hive 빅데이터분산컴퓨팅 박영택 Apache Hive 개요 Apache Hive 는 MapReduce 기반의 High-level abstraction HiveQL은 SQL-like 언어를사용 Hadoop 클러스터에서 MapReduce 잡을생성함 Facebook 에서데이터웨어하우스를위해개발되었음 현재는오픈소스인 Apache 프로젝트 Hive 유저를위한

More information

표준프레임워크로 구성된 컨텐츠를 솔루션에 적용하는 것에 문제가 없는지 확인

표준프레임워크로 구성된 컨텐츠를 솔루션에 적용하는 것에 문제가 없는지 확인 표준프레임워크로구성된컨텐츠를솔루션에적용하는것에문제가없는지확인 ( S next -> generate example -> finish). 2. 표준프레임워크개발환경에솔루션프로젝트추가. ( File -> Import -> Existring Projects into

More information

Microsoft Word - 조병호

Microsoft Word - 조병호 포커스 클라우드 컴퓨팅 서비스 기술 및 표준화 추진 동향 조병호* 2006년에 클라우딩 컴퓨팅이란 용어가 처음 생겨난 이래 글로벌 IT 기업 CEO들이 잇달아 차 기 핵심 기술로 클라우드 컴퓨팅을 지목하면서 전세계적으로 클라우드 컴퓨팅이라는 새로운 파 라다임에 관심이 고조되고 있다. 클라우드 컴퓨팅 기술을 이용하면 효율적인 IT 자원을 운용할 수 있으며 비용절감

More information

슬라이드 1

슬라이드 1 2015( 제 8 회 ) 한국소프트웨어아키텍트대회 Database In-Memory 2015. 07. 16 한국오라클 김용한 Agenda 1 2 3 4 5 6 In-Memory Computing 개요주요요소기술 In-Memory의오해와실제적용시고려사항 12c In-Memory Option의소개결론 2 1. In-Memory Computing 개요 전통적인데이터처리방식

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information

Windows Live Hotmail Custom Domains Korea

Windows Live Hotmail Custom Domains Korea 매쉬업코리아2008 컨퍼런스 Microsoft Windows Live Service Open API 한국 마이크로소프트 개발자 플랫폼 사업 본부 / 차세대 웹 팀 김대우 (http://www.uxkorea.net 준서아빠 블로그) Agenda Microsoft의 매쉬업코리아2008 특전 Windows Live Service 소개 Windows Live Service

More information

FileMaker 15 ODBC 및 JDBC 설명서

FileMaker 15 ODBC 및 JDBC 설명서 FileMaker 15 ODBC JDBC 2004-2016 FileMaker, Inc.. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker FileMaker Go FileMaker, Inc.. FileMaker WebDirect FileMaker, Inc... FileMaker.

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 공개 SW 솔루션설치 & 활용가이드 시스템 SW > 스토리지 제대로배워보자 How to Use Open Source Software Open Source Software Installation & Application Guide CONTENTS 1. 개요 2. 기능요약 3. 실행환경 4. 설치및실행 5. 기능소개 6. 활용예제 7. FAQ 8. 용어정리 -

More information

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져

More information

SK C&C IR Book

SK C&C IR Book Create Value for Customers 서버통합가상화 (IT Paradigm Shift to Cloud Computing) Chap. Ⅰ Cloud Computing 개요 1. 과거 Cloud Computing 관련기술 2. Cloud Computing 사례 3. Cloud Computing 현재 4. Cloud Computing 정의및특징 5. Cloud

More information

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이 Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event

More information

슬라이드 1

슬라이드 1 네이버의플랫폼기술소개 2014-11-27 Naver Labs / 서비스플랫폼 G 김태웅 2 https://www.facebook.com/naverlabs 3 3 역할 네이버의핵심기술의연구 / 개발을통해기술내재화 학생및개발자들을대상으로기술과꿈을나누는조직 4 서비스플랫폼 G 의연구개발분야 범용스토리지플랫폼 분산파일시스템 : OwFS, Papyrus DBMS: CUBRID

More information

SANsymphony-V

SANsymphony-V 국내대표적인구축사례 (KR) XXXX공사(공공) 2013년 12월 도입 센터 이전에 따른 스토리지가상화 통합 및 이기종통합 이기종 스토리지 (무중단이중하) 무중단 서비스 확보 24시간 운영 체계의 고가용 확보 스토리지 인프라의 유연한 구성 및 통합 환경 구축 업무서버 Unix 20대 업무서버 V 58대 CIe SSD(Fusion IO 3.2TB) ㅇㅇㅇㅇㅇㅇ

More information

슬라이드 1

슬라이드 1 ment Perspective (주)아임굿은 빅데이터 기술력, 반응형웹 제작, 온라인마케팅 노하우를 겸비한 IT 솔루션개발 및 마케팅 전문 기업입니다. 웹 정보를 수집하는 크롟링 시스템과 대량의 데이터를 처리하는 빅데이터 기술을 통해 쉽게 지나칠 수 있는 정보를 좀 더 가치있고 흥미로운 결과물로 변화하여 고객에게 제공하고 있습니다. 또한 최근 관심이 높아지고

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 개인데이터기반활용 서비스융합기반 인공지능기반 데이터산업생태계변화 데이터산업생태계변화 실시간빅데이터분석솔루션 데이터의이해 데이터처리기술의이해 데이터분석기획 데이터분석 데이터시각화 고성능및고가용성 빅데이터플랫폼 다양한분석기능 Index Sharding 및 Parallel Query Mirroring 및 Fail Over 효율적인데이터관리 대용량처리 다양한사용자인터페이스제공

More information

Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN

Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN Enterprise Cloud Networking CDN (Content Delivery Network) 전 세계에 배치된 콘텐츠 서버를 통해 빠른 전송을 지원하는 서비스 전 세계에 전진 배치된 CDN 서버를 통해 사용자가 요청한 콘텐츠를 캐싱하여

More information

컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는 우수한 인력을 양성 함과 동시에 직업적 도덕적 책임의식을 갖는 IT인 육성을 교육목표로 한다. 1. 전공 기본 지식을 체계적으로

컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는 우수한 인력을 양성 함과 동시에 직업적 도덕적 책임의식을 갖는 IT인 육성을 교육목표로 한다. 1. 전공 기본 지식을 체계적으로 2015년 상명대학교 ICT융합대학 컴퓨터과학과 졸업 프로젝트 전시회 2015 Computer Science Graduate Exhibition 2015 Computer Science Graduate Exhibition 1 컴퓨터과학과 교육목표 컴퓨터과학과의 컴퓨터과학 프로그램은 해당분야 에서 학문적 기술을 창의적으로 연구하고 산업적 기술을 주도적으로 개발하는

More information

<4D F736F F D204954B1E2C8B9BDC3B8AEC1EE2DC1A4BAB4B1C7>

<4D F736F F D204954B1E2C8B9BDC3B8AEC1EE2DC1A4BAB4B1C7> 주간기술동향 2012. 4. 11. 미래사회와빅데이터 (Big data) 기술 정병권 ETRI 서버플랫폼연구팀 / 선임연구원 bkjung@etri.re.kr 김학영, 최완 ETRI 클라우드컴퓨팅연구부 1. 서론 2. 빅데이터요소기술 3. 빅데이터분석기술 4. 빅데이터처리기술 5. 빅데이터미래기술 6. 결론 1. 서론스마트폰과 SNS 혁명으로인해몇년전만해도생각지도못한엄청난양의데이터가생성되고있다.

More information

Oracle9i Real Application Clusters

Oracle9i Real Application Clusters Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability

More information

지능형 IoT 를위한빅데이터기술현황 이러한추세는 2016년가트너의 신기술하이퍼사이클 보고서에도그대로드러나있다. 하이퍼사이클상의머신러닝은디지털비즈니스혁신을위한기술로서의정점에있으며, IoT 플랫폼기술이그뒤를따르고있다. 빅데이터기반의처리기술의바탕위에서가장대두되는어플리케이션이

지능형 IoT 를위한빅데이터기술현황 이러한추세는 2016년가트너의 신기술하이퍼사이클 보고서에도그대로드러나있다. 하이퍼사이클상의머신러닝은디지털비즈니스혁신을위한기술로서의정점에있으며, IoT 플랫폼기술이그뒤를따르고있다. 빅데이터기반의처리기술의바탕위에서가장대두되는어플리케이션이 기획특집 지능형 IoT 를위한빅데이터기술현황 이연희선임연구원, 유웅식 표철식책임연구원 / 한국전자통신연구원, KSB 융합연구단 yeonhee@apache.org 서론 지난해알파고와이세돌의대결을기점으로자율주행 자동차, 인공지능비서등인공지능에대한관심이한층 높아졌다. 이러한흐름에맞춰 IoT 시장에서도인텔리전트 IoT라는이름으로농업, 제조, 에너지등다양한산업분야에서모니터링,

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물 저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

TTA Journal No.157_서체변경.indd

TTA Journal No.157_서체변경.indd 표준 시험인증 기술 동향 FIDO(Fast IDentity Online) 생체 인증 기술 표준화 동향 이동기 TTA 모바일응용서비스 프로젝트그룹(PG910) 의장 SK텔레콤 NIC 담당 매니저 76 l 2015 01/02 PASSWORDLESS EXPERIENCE (UAF standards) ONLINE AUTH REQUEST LOCAL DEVICE AUTH

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 새로운이중화솔루션 AlwaysOn 한국마이크로소프트 하만철대리 Speaker 하만철대리 현재 한국마이크로소프트 SQL Server Support Engineer 경력 NHN DBA Nexon DBA SQL Server MVP 2010 주요활동사항 SQL Server 운영과튜닝집필 세션소개 기존의고가용성솔루션과 AlwaysOn의비교 AlwaysOn의주요기능 AlwaysOn

More information

PowerPoint Template

PowerPoint Template 대량기록물의 효율적인 처리를 위한 Database 관리방안 연구 2011.10.08 서강대학교 컴퓨터공학과 이대욱 목 차 1. 연구범위 및 내용 2. 대량기록물의 효율적인 처리를 위한 Database 구조연구 기록관리 서브시스템별 특징,기능 및 DBMS 역할 입수단 / 보존단 / 제공단 3. 인프라 변화에 대응한 Database 관리 방안 연구 대용량데이터처리기술

More information

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여

More information

Web Scraper in 30 Minutes 강철

Web Scraper in 30 Minutes 강철 Web Scraper in 30 Minutes 강철 발표자 소개 KAIST 전산학과 2015년부터 G사에서 일합니다. 에서 대한민국 정치의 모든 것을 개발하고 있습니다. 목표 웹 스크래퍼를 프레임웍 없이 처음부터 작성해 본다. 목표 웹 스크래퍼를 프레임웍 없이 처음부터 작성해 본다. 스크래퍼/크롤러의 작동 원리를 이해한다. 목표

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

슬라이드 1

슬라이드 1 사례를통해본 ORACLE MAA (Maximum Availability Architecture) 2013. 02. Seungtaek Lee( 放浪 DBA) ORACLE MAA 최고의가용성을보장하기위해 Oracle( 사 ) 의여러솔루션을조합한 Oracle 권고아키텍처 2 ORACLE DB HA Solution Set RAC, Data Guard(ADG), ASM,

More information

<BFACB1B85F323031332D333728BCDBC5C2B9CE295FC3D6C1BEC8AEC1A45FC0CEBCE2BFEB28323031343031323029B8F1C2F7BCF6C1A42E687770>

<BFACB1B85F323031332D333728BCDBC5C2B9CE295FC3D6C1BEC8AEC1A45FC0CEBCE2BFEB28323031343031323029B8F1C2F7BCF6C1A42E687770> 연구보고서 2013-37 인터넷 건강정보 게이트웨이 시스템 구축 및 운영 -빅데이터 활용방안을 중심으로- 송태민 진달래 이중순 안지영 박대순 책임연구자 송태민 한국보건사회연구원 연구위원 주요저서 빅데이터 분석 방법론 한나래아카데미, 2013(공저) 보건복지연구를 위한 구조방정식 모형 한나래아카데미, 2012(공저) 공동연구진 진달래 한국보건사회연구원 연구원

More information

Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page

Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page Multi Channel Analysis. Multi Channel Analytics :!! - (Ad network ) Report! -! -!. Valuepotion Multi Channel Analytics! (1) Install! (2) 3 (4 ~ 6 Page ) Install!. (Ad@m, Inmobi, Google..)!. OS(Android

More information

NHN 포털 서비스 플랫폼

NHN 포털 서비스 플랫폼 NHN 포털서비스플랫폼 한규흥랩장 NHN 서비스플랫폼개발랩 2008 년 11 월 22 일 - 이발표자료는나눔글꼴로작성했습니다. 목차 1. Backgrounds 2. Goals 3. Strategy 4. Web Service Architecture 5. Development Environment 6. Runtime Environment 7. Demo 1 Backgrounds

More information

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770> i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,

More information

슬라이드 1

슬라이드 1 제 2 장 빅데이터기술 2015.02 조완섭충북대학교경영정보학과대학원비즈니스데이터융합학과 wscho@chungbuk.ac.kr 043-261-3258 010-2487-3691 목차 개요 빅데이터기술 클라우드컴퓨팅 Hadoop & Databases 데이터분석기술 다차원분석 통계분석 : R 데이터마이닝 빅데이터시각화기술 2015-07-23 2 개요 빅데이터 -

More information

HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API

HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API WAC 2.0 & Hybrid Web App 권정혁 ( @xguru ) 1 HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API Mobile Web App needs Device APIs Camera Filesystem Acclerometer Web Browser Contacts Messaging

More information

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에 Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만,

More information

62

62 2 instance database physical storage 2 1 62 63 tablespace datafiles 2 2 64 1 2 logical view control files datafiles redo log files 65 2 3 9i OMF Oracle Managed Files, OMF 9i 9i / / OMF 9i 66 8 1MB 8 10MB

More information

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL)

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 02-570-4352 (e-mail) jjoon75@kisdi.re.kr 1 The Monthly Focus.

More information

PowerPoint Presentation

PowerPoint Presentation MapR Platform 2017 MapR Technologies 1 빅데이터시장동향 2017 MapR Technologies 2 빅데이터시장동향 기업 IT 환경의변화 1980 년대모든데이터를플랫파일로관리하던어려움을극복하고자데이터베이스시스템이시장에출시된이후로기업용 어플리케이션등장, 인터넷의등장, 디지털변혁접목등기업혁신의핵심에는항상데이터가중요한역할을함 1980s

More information

Hadoop 10주년과 Hadoop3.0의 등장_Dongjin Seo

Hadoop 10주년과 Hadoop3.0의 등장_Dongjin Seo Hadoop 10 th Birthday and Hadoop 3 Alpha Dongjin Seo Cloudera Korea, SE 1 Agenda Ⅰ. Hadoop 10 th Birthday Ⅱ. Hadoop 3 Alpha 2 Apache Hadoop at 10 Apache Hadoop 3 Apache Hadoop s Timeline The Invention

More information